Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)

When operating near the ground beneath a Vertical/Short Take-Off and Landing (VSTOL) aircraft a complex turbulent 3D flow is generated. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Studying these jets is a significant parameter for the design of VTO...

Full description

Autores:
Cárdenas R, César A.
Collazos Morales, Carlos Andrés
Amaya, Juan Carlos
Caviativa Castro, Yaneth Patricia
De-la-Hoz-Franco, Emiro
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7317
Acceso en línea:
https://hdl.handle.net/11323/7317
https://doi.org/10.1007/978-3-030-61834-6_29
https://repositorio.cuc.edu.co/
Palabra clave:
VSTOL
Impingement jet
CFD
Crossflow
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_6db3dbea8298b332a9ef610c69bcba45
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7317
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
title Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
spellingShingle Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
VSTOL
Impingement jet
CFD
Crossflow
title_short Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
title_full Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
title_fullStr Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
title_full_unstemmed Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
title_sort Simulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)
dc.creator.fl_str_mv Cárdenas R, César A.
Collazos Morales, Carlos Andrés
Amaya, Juan Carlos
Caviativa Castro, Yaneth Patricia
De-la-Hoz-Franco, Emiro
dc.contributor.author.spa.fl_str_mv Cárdenas R, César A.
Collazos Morales, Carlos Andrés
Amaya, Juan Carlos
Caviativa Castro, Yaneth Patricia
De-la-Hoz-Franco, Emiro
dc.subject.spa.fl_str_mv VSTOL
Impingement jet
CFD
Crossflow
topic VSTOL
Impingement jet
CFD
Crossflow
description When operating near the ground beneath a Vertical/Short Take-Off and Landing (VSTOL) aircraft a complex turbulent 3D flow is generated. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Studying these jets is a significant parameter for the design of VTOL aircraft. This flowfield during very low speed or hover flight operations is very complex and time dependent. An important number of experimental researches and simulations have been carried out to be able to understand much better these flows related with powered lift vehicles. Computational Fluid Dynamics (CFD) approach will be used in this paper work for simulation purposes of a single and twin impinging jet through and without crossflow.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-17T19:07:55Z
dc.date.available.none.fl_str_mv 2020-11-17T19:07:55Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7317
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-030-61834-6_29
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7317
https://doi.org/10.1007/978-3-030-61834-6_29
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdel-Fattah, A.: Numerical and experimental study of turbulent im- pinging twin-jet flow. Exp. Therm. Fluid Sci. 31(8), 1061–1072 (2007)
Alvi, F., Iyer, K.G., Ladd, J.: Properties of supersonic impinging jets. In: November 1999
Behrouzi, P., McGuirk, J.J.: Experimental data for CFD validation of the intake ingestion process in STOVL aircraft. Flow Turbul. Combust. 64(4), 233–251 (2000)
Bertelsen, W.D., Bertelsen, W.R.: History of deflected slip-stream VTOL aircraft. In: American Helicopter Society 61st Annual Forum. Citeseer (2005)
Collazos, C., et al.: State estimation of a dehydration process by interval analysis. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 66–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00350-0_6
Collazos, C.A., et al.: Detection of faults in an osmotic dehydration process through state estimation and interval analysis. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 699–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_56
Gibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86(3), 491–511 (1978)
Goldstein, R.J., Behbahani, A.I.: Impingement of a circular jet with and without cross flow. Int. J. Heat Mass Transf. 25(9), 1377–1382 (1982)
Cárdenas R., C.A., et al.: Correction to: quadrotor modeling and a PID control approach. In: Tiwary, U.S., Chaudhury, S. (eds.) IHCI 2019. LNCS, vol. 11886, pp. C1–C1. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44689-5_26
Jiménez-Cabas, J., et al.: Robust control of an evaporator through algebraic riccati equations and DK iteration. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 731–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_58
Patel, K., Shah, H., Dcosta, M., Shastri, D.: Evaluating neurosky’s single-channel EEG sensor for drowsiness detection. In: Stephanidis, C. (ed.) HCI 2017. CCIS, vol. 713, pp. 243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58750-9_35
Kuhn, R.E.: Review of Basic Principles of V/STOL Aerodynamics. National Aeronautics and Space Administration, Washington, D.C. (1960)
Leschziner, M.A., Ince, N.Z.: Computational modelling of three-dimensional impinging jets with and without cross-flow using second-moment closure. Comput. Fluids 24(7), 811–832 (1995)
Li, Q., Page, G.J., McGuirk, J.J.: Large-eddy simulation of twin impinging jets in cross-flow. Aeronaut. J. 111(1117), 195–206 (2007)
McGuirk, J., et al.: Simulation of an impinging jet in a cross flow using an LES method. In: 2002 Biennial International Powered Lift Conference and Exhibit, p. 5959
Page, G.J., McGuirk, J.J.: Large eddy simulation of a complete Harrier aircraft in ground effect. Aeronaut. J. 113(1140), 99–106 (2009)
Radhouane, A., Mahjoub Saïd, N., Mhiri, H., Bournot, H., Le Palec, G.: Dynamics of the flowfield generated by the interaction of twin inclined jets of variable temperatures with an oncoming crossflow. Heat and Mass Transf. 50(2), 253–274 (2013). https://doi.org/10.1007/s00231-013-1241-9
Richardson, G.A., Dawes, W.N., Savill, A.M.: An unsteady, moving mesh CFD simulation for Harrier hot-gas ingestion control analysis. Aeronaut. J. 111(1117), 133–144 (2007)
Rizk, M.H., Menon, S.: Large-eddy simulations of axisymmetric excitation effects on a row of impinging jets. Phys. Fluids 31(7), 1892–1903 (1988)
Rizk, M.H., Menon, S.: Large-eddy simulations of excitation effects on a VTOL upwash fountain. Phys. Fluids Fluid Dyn. 1(4), 732–740 (1989)
Worth, N.A., Yang, Z.: Simulation of an impinging jet in a cross flow using a reynolds stress transport model. Int. J. Numer. Methods Fuids 52(2), 199–211 (2006)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Communications in Computer and Information Science
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007%2F978-3-030-61834-6_29
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8fa7da0c-5a67-4383-a88f-fffdb40f6613/download
https://repositorio.cuc.edu.co/bitstreams/5f3c24db-6574-4f8e-82b5-7652f83ba6d1/download
https://repositorio.cuc.edu.co/bitstreams/e116ec51-67aa-440f-93cf-913ca1203850/download
https://repositorio.cuc.edu.co/bitstreams/8ab460fb-7d15-490d-8671-a5e323ce96cc/download
https://repositorio.cuc.edu.co/bitstreams/1072ec18-521f-4611-ae70-81f928a699cf/download
https://repositorio.cuc.edu.co/bitstreams/8395c229-c27e-44d8-8f5a-f7aab32eea9b/download
bitstream.checksum.fl_str_mv 849fbe68f4c3a4d08ddcd637aeef76e0
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
a845493b0d5226ed7b7e058003b9d276
a845493b0d5226ed7b7e058003b9d276
f0277a5d32c2d156e9bfd7735ef0e3e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166841562824704
spelling Cárdenas R, César A.Collazos Morales, Carlos AndrésAmaya, Juan CarlosCaviativa Castro, Yaneth PatriciaDe-la-Hoz-Franco, Emiro2020-11-17T19:07:55Z2020-11-17T19:07:55Z2020https://hdl.handle.net/11323/7317https://doi.org/10.1007/978-3-030-61834-6_29Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/When operating near the ground beneath a Vertical/Short Take-Off and Landing (VSTOL) aircraft a complex turbulent 3D flow is generated. This flow field can be represented by the configuration of twin impinging jets in a cross-flow. Studying these jets is a significant parameter for the design of VTOL aircraft. This flowfield during very low speed or hover flight operations is very complex and time dependent. An important number of experimental researches and simulations have been carried out to be able to understand much better these flows related with powered lift vehicles. Computational Fluid Dynamics (CFD) approach will be used in this paper work for simulation purposes of a single and twin impinging jet through and without crossflow.Cárdenas R, César A.Collazos Morales, Carlos AndrésAmaya, Juan CarlosCaviativa Castro, Yaneth PatriciaDe-la-Hoz-Franco, Emiroapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Communications in Computer and Information Sciencehttps://link.springer.com/chapter/10.1007%2F978-3-030-61834-6_29VSTOLImpingement jetCFDCrossflowSimulation of Single and Twin Impinging Jets in Cross-flow of VTOL Aircrafts (Review)Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbdel-Fattah, A.: Numerical and experimental study of turbulent im- pinging twin-jet flow. Exp. Therm. Fluid Sci. 31(8), 1061–1072 (2007)Alvi, F., Iyer, K.G., Ladd, J.: Properties of supersonic impinging jets. In: November 1999Behrouzi, P., McGuirk, J.J.: Experimental data for CFD validation of the intake ingestion process in STOVL aircraft. Flow Turbul. Combust. 64(4), 233–251 (2000)Bertelsen, W.D., Bertelsen, W.R.: History of deflected slip-stream VTOL aircraft. In: American Helicopter Society 61st Annual Forum. Citeseer (2005)Collazos, C., et al.: State estimation of a dehydration process by interval analysis. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 66–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00350-0_6Collazos, C.A., et al.: Detection of faults in an osmotic dehydration process through state estimation and interval analysis. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 699–712. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_56Gibson, M.M., Launder, B.E.: Ground effects on pressure fluctuations in the atmospheric boundary layer. J. Fluid Mech. 86(3), 491–511 (1978)Goldstein, R.J., Behbahani, A.I.: Impingement of a circular jet with and without cross flow. Int. J. Heat Mass Transf. 25(9), 1377–1382 (1982)Cárdenas R., C.A., et al.: Correction to: quadrotor modeling and a PID control approach. In: Tiwary, U.S., Chaudhury, S. (eds.) IHCI 2019. LNCS, vol. 11886, pp. C1–C1. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44689-5_26Jiménez-Cabas, J., et al.: Robust control of an evaporator through algebraic riccati equations and DK iteration. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11620, pp. 731–742. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24296-1_58Patel, K., Shah, H., Dcosta, M., Shastri, D.: Evaluating neurosky’s single-channel EEG sensor for drowsiness detection. In: Stephanidis, C. (ed.) HCI 2017. CCIS, vol. 713, pp. 243–250. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58750-9_35Kuhn, R.E.: Review of Basic Principles of V/STOL Aerodynamics. National Aeronautics and Space Administration, Washington, D.C. (1960)Leschziner, M.A., Ince, N.Z.: Computational modelling of three-dimensional impinging jets with and without cross-flow using second-moment closure. Comput. Fluids 24(7), 811–832 (1995)Li, Q., Page, G.J., McGuirk, J.J.: Large-eddy simulation of twin impinging jets in cross-flow. Aeronaut. J. 111(1117), 195–206 (2007)McGuirk, J., et al.: Simulation of an impinging jet in a cross flow using an LES method. In: 2002 Biennial International Powered Lift Conference and Exhibit, p. 5959Page, G.J., McGuirk, J.J.: Large eddy simulation of a complete Harrier aircraft in ground effect. Aeronaut. J. 113(1140), 99–106 (2009)Radhouane, A., Mahjoub Saïd, N., Mhiri, H., Bournot, H., Le Palec, G.: Dynamics of the flowfield generated by the interaction of twin inclined jets of variable temperatures with an oncoming crossflow. Heat and Mass Transf. 50(2), 253–274 (2013). https://doi.org/10.1007/s00231-013-1241-9Richardson, G.A., Dawes, W.N., Savill, A.M.: An unsteady, moving mesh CFD simulation for Harrier hot-gas ingestion control analysis. Aeronaut. J. 111(1117), 133–144 (2007)Rizk, M.H., Menon, S.: Large-eddy simulations of axisymmetric excitation effects on a row of impinging jets. Phys. Fluids 31(7), 1892–1903 (1988)Rizk, M.H., Menon, S.: Large-eddy simulations of excitation effects on a VTOL upwash fountain. Phys. Fluids Fluid Dyn. 1(4), 732–740 (1989)Worth, N.A., Yang, Z.: Simulation of an impinging jet in a cross flow using a reynolds stress transport model. Int. J. Numer. Methods Fuids 52(2), 199–211 (2006)PublicationORIGINALSimulation of Single and Twin Impinging Jets in Cross.pdfSimulation of Single and Twin Impinging Jets in Cross.pdfapplication/pdf82566https://repositorio.cuc.edu.co/bitstreams/8fa7da0c-5a67-4383-a88f-fffdb40f6613/download849fbe68f4c3a4d08ddcd637aeef76e0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/5f3c24db-6574-4f8e-82b5-7652f83ba6d1/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e116ec51-67aa-440f-93cf-913ca1203850/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSimulation of Single and Twin Impinging Jets in Cross.pdf.jpgSimulation of Single and Twin Impinging Jets in Cross.pdf.jpgimage/jpeg31786https://repositorio.cuc.edu.co/bitstreams/8ab460fb-7d15-490d-8671-a5e323ce96cc/downloada845493b0d5226ed7b7e058003b9d276MD54THUMBNAILSimulation of Single and Twin Impinging Jets in Cross.pdf.jpgSimulation of Single and Twin Impinging Jets in Cross.pdf.jpgimage/jpeg31786https://repositorio.cuc.edu.co/bitstreams/1072ec18-521f-4611-ae70-81f928a699cf/downloada845493b0d5226ed7b7e058003b9d276MD54TEXTSimulation of Single and Twin Impinging Jets in Cross.pdf.txtSimulation of Single and Twin Impinging Jets in Cross.pdf.txttext/plain1046https://repositorio.cuc.edu.co/bitstreams/8395c229-c27e-44d8-8f5a-f7aab32eea9b/downloadf0277a5d32c2d156e9bfd7735ef0e3e4MD5511323/7317oai:repositorio.cuc.edu.co:11323/73172024-09-17 14:16:53.659http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==