Predicting short-term electricity demand through artificial neural network

Forecasting the consumption of electric power on a daily basis allows considerable money savings for the supplying companies, by reducing the expenses in generation and operation. Therefore, the cost of forecasting errors can be of such magnitude that many studies have focused on minimizing the fore...

Full description

Autores:
Viloria, Amelec
García Guliany, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Hernández Palma, Hugo
Valero, Lesbia
Marín-González, Freddy
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7752
Acceso en línea:
https://hdl.handle.net/11323/7752
https://doi.org/10.1007/978-981-15-2612-1_14
https://repositorio.cuc.edu.co/
Palabra clave:
Primary feeder
Demand short-term electricity prognosis
Neural networks
Forecast accuracy
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_6d492b01a865f377567025c15b9c5894
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7752
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Predicting short-term electricity demand through artificial neural network
title Predicting short-term electricity demand through artificial neural network
spellingShingle Predicting short-term electricity demand through artificial neural network
Primary feeder
Demand short-term electricity prognosis
Neural networks
Forecast accuracy
title_short Predicting short-term electricity demand through artificial neural network
title_full Predicting short-term electricity demand through artificial neural network
title_fullStr Predicting short-term electricity demand through artificial neural network
title_full_unstemmed Predicting short-term electricity demand through artificial neural network
title_sort Predicting short-term electricity demand through artificial neural network
dc.creator.fl_str_mv Viloria, Amelec
García Guliany, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Hernández Palma, Hugo
Valero, Lesbia
Marín-González, Freddy
dc.contributor.author.spa.fl_str_mv Viloria, Amelec
García Guliany, Jesús
Varela Izquierdo, Noel
Pineda, Omar
Hernández Palma, Hugo
Valero, Lesbia
Marín-González, Freddy
dc.subject.spa.fl_str_mv Primary feeder
Demand short-term electricity prognosis
Neural networks
Forecast accuracy
topic Primary feeder
Demand short-term electricity prognosis
Neural networks
Forecast accuracy
description Forecasting the consumption of electric power on a daily basis allows considerable money savings for the supplying companies, by reducing the expenses in generation and operation. Therefore, the cost of forecasting errors can be of such magnitude that many studies have focused on minimizing the forecasting error, which makes this topic as an integral part of planning in many companies of various kinds and sizes, ranging from generation, transmission, and distribution to consumption, by requiring reliable forecasting systems.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-22T23:38:47Z
dc.date.available.none.fl_str_mv 2021-01-22T23:38:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7752
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-2612-1_14
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7752
https://doi.org/10.1007/978-981-15-2612-1_14
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Hu, C., Du, S., Su, J., et al.: Discussion on the ways of purchasing and selling electricity and the mode of operation in China’s electricity sales companies under the background of new electric power reform. Power Netw. Technol. 40(11), 3293–3299 (2016)
2. Xue, Y., Lai, Y.: The integration of great energy thinking and big data thinking: Big data and electricity big data. Power Syst. Autom. 40(1), 1–8 (2016)
3. Wang, Y., Chen, Q., Kang, C., et al.: Clustering of electricity consumption behavior dynamics toward big data applications. IEEE Trans. Smart Grid 7(5), 2437–2447 (2017)
4. Rong, L., Guosheng, F., Weidai, D.: Statistical Analysis and Application of SAS (China Machine Press, 2011)
5. Sanchez, L., Vásquez, C., Viloria, A., Meza-Estrada, C.: Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)
6. Sánchez, L., Vásquez, C., Viloria, A., Rodríguez Potes, L.: Greenhouse gases emissions and electric power generation in Latin American countries in the period 2006–2013. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)
7. Perez, R., et al.: Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol. 10942. Springer, Cham (2018)
8. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. Preprint 1–11 (2019)
9. Ghia, A., Rosso, A.: Análisis de respuesta de la demanda para mejorar la eficiencia de sistemas eléctricos, 2nd edn. Camara Argetina de la Construccion, Buenos Aires (2009)
10. Pérez Arriaga, J.I., Sánchez de Tembleque, L.J., Pardo, M.: La gestión de la demanda de electricidad vol. I, no. I (2005)
11. Silva, V., Jesús, A.: Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced Materials Research, vol. 601, pp. 618–625. Trans Tech Publications (2013)
12. Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., Henry, M.A.: Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International Conference on Sensing and Imaging, pp. 174–185). Springer, Cham (2018)
13. Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob. Netw. Appl. 23(4), 956–966 (2017)
14. Bradley, P., Fayyad, U., Mangasarian, O.: Mathematical programming for data mining: formulations and challenges. Informs J. Comput. 11, 217–238 (1999)
15. Rahmani, A.M., Liljeberg, P., Preden, J., Jantsch, A.: Fog Computing in the Internet of Things. Springer, New York (2018). ISBN 978-3-319-57638-1, ISBN 978-3-319-57639-8 (eBook)
16. Abualigah, L.M., Khader, A.T., Al-Beta, M.A., Alomari, O.A.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Lecture Notes in Electrical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-2612-1_14
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d1ed41ee-4f51-4b6a-ac22-d25f439f2997/download
https://repositorio.cuc.edu.co/bitstreams/c2172076-08c0-4cfb-914f-b56ef4d28cad/download
https://repositorio.cuc.edu.co/bitstreams/8347b120-ca46-40fc-b151-355dd92dbd4b/download
https://repositorio.cuc.edu.co/bitstreams/4a522baa-23b1-42d3-8b90-3693c8388d4b/download
https://repositorio.cuc.edu.co/bitstreams/ede5c456-9cd9-4b3b-8587-e4d075407173/download
bitstream.checksum.fl_str_mv 54a1e158c20793288a210325903ddcba
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
3b82ebdc0f18b33daa33432b73a62afa
9c0ad4745bf4097faea666326193cc9a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760722101665792
spelling Viloria, AmelecGarcía Guliany, JesúsVarela Izquierdo, NoelPineda, OmarHernández Palma, HugoValero, LesbiaMarín-González, Freddy2021-01-22T23:38:47Z2021-01-22T23:38:47Z2020https://hdl.handle.net/11323/7752https://doi.org/10.1007/978-981-15-2612-1_14Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Forecasting the consumption of electric power on a daily basis allows considerable money savings for the supplying companies, by reducing the expenses in generation and operation. Therefore, the cost of forecasting errors can be of such magnitude that many studies have focused on minimizing the forecasting error, which makes this topic as an integral part of planning in many companies of various kinds and sizes, ranging from generation, transmission, and distribution to consumption, by requiring reliable forecasting systems.Viloria, AmelecGarcía Guliany, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Hernández Palma, HugoValero, LesbiaMarín González, Freddy-will be generated-orcid-0000-0002-3935-8806-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lecture Notes in Electrical Engineeringhttps://link.springer.com/chapter/10.1007/978-981-15-2612-1_14Primary feederDemand short-term electricity prognosisNeural networksForecast accuracyPredicting short-term electricity demand through artificial neural networkArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Hu, C., Du, S., Su, J., et al.: Discussion on the ways of purchasing and selling electricity and the mode of operation in China’s electricity sales companies under the background of new electric power reform. Power Netw. Technol. 40(11), 3293–3299 (2016)2. Xue, Y., Lai, Y.: The integration of great energy thinking and big data thinking: Big data and electricity big data. Power Syst. Autom. 40(1), 1–8 (2016)3. Wang, Y., Chen, Q., Kang, C., et al.: Clustering of electricity consumption behavior dynamics toward big data applications. IEEE Trans. Smart Grid 7(5), 2437–2447 (2017)4. Rong, L., Guosheng, F., Weidai, D.: Statistical Analysis and Application of SAS (China Machine Press, 2011)5. Sanchez, L., Vásquez, C., Viloria, A., Meza-Estrada, C.: Conglomerates of Latin American countries and public policies for the sustainable development of the electric power generation sector. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)6. Sánchez, L., Vásquez, C., Viloria, A., Rodríguez Potes, L.: Greenhouse gases emissions and electric power generation in Latin American countries in the period 2006–2013. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)7. Perez, R., et al.: Fault diagnosis on electrical distribution systems based on fuzzy logic. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Advances in Swarm Intelligence. ICSI 2018. Lecture Notes in Computer Science, vol. 10942. Springer, Cham (2018)8. Perez, R., Vásquez, C., Viloria, A.: An intelligent strategy for faults location in distribution networks with distributed generation. J. Intell. Fuzzy Syst. Preprint 1–11 (2019)9. Ghia, A., Rosso, A.: Análisis de respuesta de la demanda para mejorar la eficiencia de sistemas eléctricos, 2nd edn. Camara Argetina de la Construccion, Buenos Aires (2009)10. Pérez Arriaga, J.I., Sánchez de Tembleque, L.J., Pardo, M.: La gestión de la demanda de electricidad vol. I, no. I (2005)11. Silva, V., Jesús, A.: Indicators systems for evaluating the efficiency of political awareness of rational use of electricity. In: Advanced Materials Research, vol. 601, pp. 618–625. Trans Tech Publications (2013)12. Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., Henry, M.A.: Fault diagnosis on electrical distribution systems based on fuzzy logic. In: International Conference on Sensing and Imaging, pp. 174–185). Springer, Cham (2018)13. Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for IoT-enabled smart grid. Mob. Netw. Appl. 23(4), 956–966 (2017)14. Bradley, P., Fayyad, U., Mangasarian, O.: Mathematical programming for data mining: formulations and challenges. Informs J. Comput. 11, 217–238 (1999)15. Rahmani, A.M., Liljeberg, P., Preden, J., Jantsch, A.: Fog Computing in the Internet of Things. Springer, New York (2018). ISBN 978-3-319-57638-1, ISBN 978-3-319-57639-8 (eBook)16. Abualigah, L.M., Khader, A.T., Al-Beta, M.A., Alomari, O.A.: Text feature selection with a robust weight scheme and dynamic dimension reduction to text document clustering. Expert Syst. Appl. 84, 24–36 (2017)PublicationORIGINALPredicting short-term electricity demand through artificial neural network.pdfPredicting short-term electricity demand through artificial neural network.pdfapplication/pdf93901https://repositorio.cuc.edu.co/bitstreams/d1ed41ee-4f51-4b6a-ac22-d25f439f2997/download54a1e158c20793288a210325903ddcbaMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/c2172076-08c0-4cfb-914f-b56ef4d28cad/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8347b120-ca46-40fc-b151-355dd92dbd4b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPredicting short-term electricity demand through artificial neural network.pdf.jpgPredicting short-term electricity demand through artificial neural network.pdf.jpgimage/jpeg27468https://repositorio.cuc.edu.co/bitstreams/4a522baa-23b1-42d3-8b90-3693c8388d4b/download3b82ebdc0f18b33daa33432b73a62afaMD54TEXTPredicting short-term electricity demand through artificial neural network.pdf.txtPredicting short-term electricity demand through artificial neural network.pdf.txttext/plain895https://repositorio.cuc.edu.co/bitstreams/ede5c456-9cd9-4b3b-8587-e4d075407173/download9c0ad4745bf4097faea666326193cc9aMD5511323/7752oai:repositorio.cuc.edu.co:11323/77522024-09-17 10:48:16.03http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==