Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia

Air pollution has become a major problem in urban areas due to increasing industrialization and urbanization. In this study, the source contribution of particulate material (PM10 and PM2.5) in Barranquilla was quantified. Samples were recolected for periods of 48 hours, at the Universidad de la Cost...

Full description

Autores:
Núñez Blanco, Yuleisy Paola
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6017
Acceso en línea:
http://hdl.handle.net/11323/6017
https://repositorio.cuc.edu.co/
Palabra clave:
Urban air pollution
Particulate material
Chemical composition
Emission sources
PMF
Contaminación atmosférica urbano
Material particulado
Composición química
Fuentes de emisión
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_6d0b6fc7adf60032d991e2074b41c79e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6017
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
title Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
spellingShingle Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
Urban air pollution
Particulate material
Chemical composition
Emission sources
PMF
Contaminación atmosférica urbano
Material particulado
Composición química
Fuentes de emisión
title_short Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
title_full Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
title_fullStr Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
title_full_unstemmed Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
title_sort Estimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia
dc.creator.fl_str_mv Núñez Blanco, Yuleisy Paola
dc.contributor.advisor.spa.fl_str_mv Silva Oliveira, Luis Felipe
Schneider, Ismael Luis
dc.contributor.author.spa.fl_str_mv Núñez Blanco, Yuleisy Paola
dc.subject.spa.fl_str_mv Urban air pollution
Particulate material
Chemical composition
Emission sources
PMF
Contaminación atmosférica urbano
Material particulado
Composición química
Fuentes de emisión
topic Urban air pollution
Particulate material
Chemical composition
Emission sources
PMF
Contaminación atmosférica urbano
Material particulado
Composición química
Fuentes de emisión
description Air pollution has become a major problem in urban areas due to increasing industrialization and urbanization. In this study, the source contribution of particulate material (PM10 and PM2.5) in Barranquilla was quantified. Samples were recolected for periods of 48 hours, at the Universidad de la Costa, with the Partisol 2000-iD equipment and 47 mm Teflon filters. Major and trace elements were quantified using X-ray fluorescence, ionic species with ion chromatography and black Carbon (BC) with the reflectance method. The Positive Matrix Factorization (PMF) model estimated the PM sources contributions. The average concentration of PM10 was 46.6 µg/m3 and 12.0 µg/m3 for PM2.5. The greatest contributions for PM10 were BC, Cl and Ca, and for PM2.5 were BC, S and Cl. Similar sources were obtained for both PM fractions: marine spray (Cl and Na+), resuspended soil (Al, Si, Ti, Fe) and vehicular traffic (BC, Mn and Zn). In addition, PM2.5 was associated with two mixed sources: fuel combustion and fertilizer industry (S, V, P, K+ and SO42-), and a secondary source and civil works (Ca2+ and NO3-). The PM10 was also associated with civil works and resuspended soil (Ti, Mn, Fe) as well with the metallurgical industry (S, Zn and Cu). These results are fundamental to the knowledge about the sources that can have the greatest source contributions and strategies can be implement for the continuous improvement of the city's air quality.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-02-08T15:41:11Z
dc.date.available.none.fl_str_mv 2020-02-08T15:41:11Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/6017
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url http://hdl.handle.net/11323/6017
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alastuey, A., Mantilla, E., Querol, X., & Rodríguez, S. (2000). Estudio y evaluación de la contaminación atmosférica por material particulado en España: necesidades derivadas de la propuesta de la directiva del consejo relativa a partículas PM10 y PM2.5 e implicaciones en la industria cerámica. Boletín de La Sociedad Española de Cerámica y Vidrio, 39(1), 135–148. https://doi.org/10.3989/cyv.2000.v39.i1.882
Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., … Santamaría, J. M. (2011). Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 102(1–2), 191–205. https://doi.org/10.1016/j.atmosres.2011.07.003
Aluanlli, P. (2008). Aportes De Fuentes Al Material Particulado Fino Y Grueso En Santiago Usando Factorización De Matrices Positivas ( Pmf ).
Álvarez, C. (2014). Cromatografia de intercambio ionico.
Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., … Sciare, J. (2016). Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmospheric Environment, 129, 114–124. https://doi.org/10.1016/j.atmosenv.2016.01.022
Arana, A. (2014). AEROSSÓIS ATMOSFÉRICOS NA AMAZÔNIA: COMPOSIÇÃO ORGÂNICA E INORGÂNICA EM REGIÕES COM DIFERENTES USOS DO SOLO.
Arana, Andréa, & Artaxo, P. (2014). Composição elementar do aerossol atmosférico na região central da bacia amazônica. Quimica Nova, 37(2), 268–276. https://doi.org/10.5935/0100- 4042.20140046
Arciniégas, C. (2015). Diagnóstico Y Control De Material Particulado: Partículas Suspendidas Totales Y Fracción Respirable Pm10. Luna Azul, (34), 195–213. https://doi.org/10.17151/luaz.2012.34.12
Argumedo, C. D., & Castillo, J. F. (2016). Chemical characterization of particulated atmospheric matter PM10 in Guajira, Colombia. Revista Colombiana de Quimica, 45(2), 19–29. https://doi.org/10.15446/rev.colomb.quim.v45n2.56991
Arjona, A. (2006). Determinación de la calidad del aire en interiores por PM10.
Barranquilla Verde. (2016). Inventario de Emisiones Atmosféricas Barranquilla, Atlántico. Retrieved from http://barranquillaverde.gov.co/storage/app/media/calidadaire/inv_emisiones_atmosfericas_v4.pdf
Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., & Hoque, R. R. (2018). Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution, 234, 997–1010. https://doi.org/10.1016/j.envpol.2017.12.009
Blanco-Becerra, L. C., Gáfaro-Rojas, A. I., & Rojas-Roa, N. Y. (2015). Influence of precipitation scavenging on the PM2.5/PM10 ratio at the Kennedy locality of Bogotá, Colombia. Revista Facultad de Ingenieria, 2015(76), 58–65. https://doi.org/10.17533/udea.redin.n76a07
Brito, J., Rizzo, L. V., Herckes, P., Vasconcellos, P. C., Caumo, S. E. S., Fornaro, A., … Andrade, M. F. (2013). Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmospheric Chemistry and Physics, 13(24), 12199–12213. https://doi.org/10.5194/acp-13-12199-2013
Bruno, R. L., Almeida, A. F., Nascimento Filho, V., Aguiar, M. L., Gonçalves, J. A. S., & Coury, J. R. (2004). Atmospheric particulate matter in the city of São Carlos/SP, Brazil. International Journal of Environment and Pollution, 22(4), 476–489. https://doi.org/10.1504/IJEP.2004.005682
Canales-Rodríguez, M. A., Quintero-Núñez, M., Castro-Romero, T. G., & García-Cuento, R. O. (2014). Las partículas respirables PM10 y su composición química en la zona Urbana y rural de Mexicali, Baja California en México. Informacion Tecnologica, 25(6), 13–22. https://doi.org/10.4067/S0718-07642014000600003
Carolina, A., & Cifuentes, B. (2009). Evaluación de iones presentes en PM2.5, de las localidades de Fontibón y Kennedy en ambientes intra y extramurales.
Carvalho, R. B., Rhoden, C. R., Amantéa, S. L., Barbosa, F., Batista, B. L., Simonetti, J., & Carneiro, M. F. H. (2018). The impact of occupational exposure to traffic-related air pollution among professional motorcyclists from Porto Alegre, Brazil, and its association with genetic and oxidative damage. Environmental Science and Pollution Research, 25(19), 18620–18631. https://doi.org/10.1007/s11356-018-2007-1
César, J., Molina, S., & Echeverri, C. A. (2004). Partículas suspendidas ( PST ) y partículas respirables ( PM 10 ) en el Valle de Aburrá , Colombia Total suspended particles ( TSP ) and breathable particles ( PM 10 ) in Aburra Valley , Colombia. (December 2014), 7–16.
Cesari, D., De Benedetto, G. E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., … Contini, D. (2018). Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Science of the Total Environment, 612, 202–213. https://doi.org/10.1016/j.scitotenv.2017.08.230
Chen, P., Wang, T., Lu, X., Yu, Y., Kasoar, M., Xie, M., & Zhuang, B. (2017). Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing, China. Science of the Total Environment, 579, 860–870. https://doi.org/10.1016/j.scitotenv.2016.11.014
Cheung, K. L., Ntziachristos, L., Tzamkiozis, T., Schauer, J. J., Samaras, Z., Moore, K. F., & Sioutas, C. (2010). Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology, 44(7), 500–513. https://doi.org/10.1080/02786821003758294
CIOH. (2007). Climatologia De Los Principales Puertos Del Caribe Colombiano Barranquilla. Retrieved from https://www.cioh.org.co/derrotero/images/PDFExternos/Climatologia_Barranquilla.pdf
Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M. C., & Guascito, M. R. (2010). Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmospheric Research, 95(1), 40–54. https://doi.org/10.1016/j.atmosres.2009.07.010
Contini, Daniele, Cesari, D., Conte, M., & Donateo, A. (2016). Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Science of the Total Environment, 560–561, 131–140. https://doi.org/10.1016/j.scitotenv.2016.04.031
CRA. (2005). Diagnostico Integral Sector De fundición en el Dpto del Atlantico.
D’Angiola, A., Dawidowski, L. E., Gómez, D. R., & Osses, M. (2010). On-road traffic emissions in a megacity. Atmospheric Environment, 44(4), 483–493. https://doi.org/10.1016/j.atmosenv.2009.11.004
Damasceno, M. V. A. (2009). EMISSÕES VEICULARES EM SÃO PAULO: QUANTIFICAÇÃO DE FONTES COM MODELOS RECEPTORES E CARACTERIZAÇÃO DO MATERIAL CARBONÁCEO. 174.
Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne particulate matter and human health: A review. Aerosol Science and Technology, 39(8), 737–749. https://doi.org/10.1080/02786820500191348
De, M. D. E. L. P., & Handbook, P. (2015). Manual del Puerto de Barranquilla. de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S., Artaxo, P., … de Castro Vasconcellos, P. (2015). Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment, 120, 277– 285. https://doi.org/10.1016/j.atmosenv.2015.08.059
Del, A., & Urbano, C. (2017). Caracterización Química Del Material Particulado Atmosférico Del Centro Urbano De Huancayo, Perú. Revista de La Sociedad Química Del Perú, 83(2), 187–199. Echeverri Londoño, C., & Maya Vasco, G. (2008). Relación entre las partículas finas (PM 2.5) y respirables PM 10) en la ciudad de Medellín. Revista de Ingenierías: Universidad de Medellín, 7(12), 23–42.
El-Zanan, H. S., Zielinska, B., Mazzoleni, L. R., & Hansen, D. A. (2009). Analytical determination of the aerosol organic mass-to-organic carbon ratio. Journal of the Air and Waste Management Association, 59(1), 58–69. https://doi.org/10.3155/1047-3289.59.1.58
Fang, C., Zhong, S., & Cai, W. (2015). The pancreatic surgery in the era of digital medical science. Digital Medicine, 1(1), 17. https://doi.org/10.4103/2226-8561.166365 Farahmandkia, Z., Moattar, F., Zayeri, F., Sadegh Sekhavatjou, M., & Mansouri, N. (2017). Contribution of point and small-scaled sources to the PM10 emission using positive matrix factorization model. Journal of Environmental Health Science and Engineering, 15(1), 1– 11. https://doi.org/10.1186/s40201-016-0265-8
Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (2004). Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Wood Types Grown in the Midwestern and Western United States. Environmental Engineering Science, 21(3), 387–409. https://doi.org/10.1089/109287504323067021
Galán Madruga, D., & Fernández Patier, R. (2006). Implicación de los NOx en la Química Atmosférica. M+A, Revista Electrónica y de Medioambiente, (2), 6. https://doi.org/10.5209/MARE.16109
Galvão, E. S., Reis, N. C., Lima, A. T., Stuetz, R. M., D’Azeredo Orlando, M. T., & Santos, J. M. (2019). Use of inorganic and organic markers associated with their directionality for the apportionment of highly correlated sources of particulate matter. Science of the Total Environment, 651, 1332–1343. https://doi.org/10.1016/j.scitotenv.2018.09.263
Gao, J., Peng, X., Chen, G., Xu, J., Shi, G. L., Zhang, Y. C., & Feng, Y. C. (2016). Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution. Science of the Total Environment, 542, 162–171. https://doi.org/10.1016/j.scitotenv.2015.10.082
Gonzalez, L. T. (2018). CARACTERIZACIÓN QUÍMICA Y MORFOLÓGICA DEL MATERIAL PARTICULADO SUSPENDIDO DEL ÁREA METROPOLITANA DE MONTERREY Y SUS POSIBLES FUENTES DE EMISIÓN.
González, Y. (2012). Caracterización físico-química del material particulado atmosférico de origen industrial en Andalucía.
Gozzi, F, Ventura, G. Della, Marcelli, A., & Lucci, F. (2017). 201-JMES-2584-Gozzi. 8(6), 1901–1909.
Gozzi, Fernando, Della Ventura, G., & Marcelli, A. (2016). Mobile monitoring of particulate matter: State of art and perspectives. Atmospheric Pollution Research, 7(2), 228–234. https://doi.org/10.1016/j.apr.2015.09.007
Gu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., … Bai, Z. P. (2014). Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Quality, Atmosphere and Health, 7(3), 251–262. https://doi.org/10.1007/s11869-013-0232-9
Hadley, O. L. (2017). Background PM2.5 source apportionment in the remote Northwestern United States. Atmospheric Environment, 167, 298–308. https://doi.org/10.1016/j.atmosenv.2017.08.030
Hao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., … Xie, S. (2018). Characteristics of trace elements in PM 2.5 and PM 10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmospheric Research, 213(June), 550–561. https://doi.org/10.1016/j.atmosres.2018.07.006
Health Effects Institute. (2017). State of Global Air 2017. Retrieved from https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdf
Heimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M., Stewart, G. B., & Jones, R. L. (2015). Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors. Atmospheric Environment, 113, 10–19. https://doi.org/10.1016/j.atmosenv.2015.04.057
Holgado, F. R. (2015). TESIS DOCTORAL DESARROLLO Y APLICACIÓN DE METODOLOGÍAS DEPOSICIONES ATMOSFÉRICAS Fernando Rueda Holgado Departamento de Química Analítica , 2015 Conformidad de los directores :
IPCC. (2013). 7: Clouds and Aerosols BT - Climate Change 2013: The Physical Science Basis. Climate Change 2013: The Physical Science Basis, (January 2014), 1–149. Retrieved from papers3://publication/uuid/E639F41C-F434-44A7-8BF5-328433DDAF9B
Jain, S., Sharma, S. K., Mandal, T. K., & Saxena, M. (2018). Source apportionment of PM 10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology, 37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009
Jaiprakash, & Habib, G. (2017). Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Science of the Total Environment, 586, 900– 916. https://doi.org/10.1016/j.scitotenv.2017.02.070
Jerónimo, E. (2012). CAPA LIMITE, REFLECTANCIA Y ESPESOR OPTICO DE AEROSOLES SOBRE SANTIAGO PROYECTO.
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087
Kholod, N., & Evans, M. (2016). Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environmental Science and Policy, 56, 1–8. https://doi.org/10.1016/j.envsci.2015.10.017
Kirchstetter, T. W., Aguiar, J., Tonse, S., Fairley, D., & Novakov, T. (2008). Black carbon concentrations and diesel vehicle emission factors derived from coefficient of haze measurements in California: 1967-2003. Atmospheric Environment, 42(3), 480–491. https://doi.org/10.1016/j.atmosenv.2007.09.063
Lenschow, P., Abraham, H., Kutzner, K., Lutz, M., Preub, J., & Reichenbficher, W. (2010). ENVIRONMENT Some ideas about the sources of PM10. 0(0 1), 23–33.
Levy, I., Mihele, C., Lu, G., Narayan, J., & Brook, J. R. (2014). Evaluating multipollutant exposure and urban air quality: Pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environmental Health Perspectives, 122(1), 65–72. https://doi.org/10.1289/ehp.1306518
Li, J., Chen, B., de la Campa, A. M. S., Alastuey, A., Querol, X., & de la Rosa, J. D. (2018). 2005–2014 trends of PM10 source contributions in an industrialized area of southern Spain. Environmental Pollution, 236, 570–579. https://doi.org/10.1016/j.envpol.2018.01.101
Li, T. C., Yuan, C. S., Huang, H. C., Lee, C. L., Wu, S. P., & Tong, C. (2016). Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Scientific Reports, 6(November 2015), 1– 16. https://doi.org/10.1038/srep22956
Liu, B., Song, N., Dai, Q., Mei, R., Sui, B., Bi, X., & Feng, Y. (2016). Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmospheric Research, 170, 23–33. https://doi.org/10.1016/j.atmosres.2015.11.002
Liu, Y., Xing, J., Wang, S., Fu, X., & Zheng, H. (2018). Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution, 239, 544–553. https://doi.org/10.1016/j.envpol.2018.04.047
López, M. L., Ceppi, S., Palancar, G. G., Olcese, L. E., Tirao, G., & Toselli, B. M. (2011). Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmospheric Environment, 45(31), 5450–5457. https://doi.org/10.1016/j.atmosenv.2011.07.003
Lowenthal, D. H., El-Zanan, H. S., Zielinska, B., Chow, J. C., & Kumar, N. (2004). Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples {PRIVATE}. Regional and Global Perspectives on Haze, 134 VIP, 721–724. https://doi.org/10.1016/j.chemosphere.2005.01.005
Lu, Z., Liu, Q., Xiong, Y., Huang, F., Zhou, J., & Schauer, J. J. (2018). A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models. Environmental Pollution, 238, 39–51. https://doi.org/10.1016/j.envpol.2018.02.091
Luís, I., Calesso, E., Agudelo-castañeda, D. M., Silva, G., Balzaretti, N., Ferreira, M., … Oliveira, S. (2016). Science of the Total Environment FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM 1 . 0. Science of the Total Environment, The, 541, 1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142
Ma, Y., Cheng, Y., Qiu, X., Lin, Y., Cao, J., & Hu, D. (2016). A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. Environmental Pollution, 219, 742–749. https://doi.org/10.1016/j.envpol.2016.07.034 Madrazo, J., Clappier, A., Belalcazar, L. C., Cuesta, O., Contreras, H., & Golay, F. (2018). Screening differences between a local inventory and the Emissions Database for Global Atmospheric Research (EDGAR). Science of the Total Environment, 631–632, 934–941. https://doi.org/10.1016/j.scitotenv.2018.03.094
Maldonado, M. J. (2012). Caracterización del material particulado suspendido PM10 de la red de monitoreo de aire de la ciudad de Quito de los años 2009 y 2010 por Espectroscopía de Absorción Atómica. (Vol. 5).
Manjarrés García, G., Manjarrés Pinzón, G., & Linero Cueto, J. (2005). Composition and concentration of aerial particulate material in a sector of santa marta city (Magdalena, Colombia). Intropica, 23–33.
Manousakas, M., Diapouli, E., Papaefthymiou, H., Kantarelou, V., Zarkadas, C., Kalogridis, A. C., … Eleftheriadis, K. (2018). XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-Ray Spectrometry, 47(3), 190–200. https://doi.org/10.1002/xrs.2817
Marino, D. (2009). Aerosoles. Características. Transporte de partículas. 30–107.
Minambiente. (2019). Empresas registradas fertilizantes junio 11 de 2019.
Ministerio de Ambiente Vivivenda y Desarrollo Territorial. (2010). Manual de diseño de sistemas de vigilancia de la calidad del aire. Protocolo Para El Monitoreo y Seguimiento de La Calidad Del Aire, 137.
Morales, M. (2018). Contribución de fuentes particulares a Material Particulado en el corregimiento la Loma , Zona Minera del Cesar Marjolyne Morales Fontalvo Trabajo Final de Maestría para optar el título de : Magister en Ingeniería Ambiental Director : Néstor Y . Rojas , P.
Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., & Santamaría, J. M. (2018a). Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmospheric Environment, 192(July), 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058
Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., & Santamaría, J. M. (2018b). Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmospheric Environment, 192, 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058
Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., … Alcántara, E. (2009). PM composition and source reconciliation in Mexico City. Atmospheric Environment, 43(32), 5068–5074. https://doi.org/10.1016/j.atmosenv.2009.06.051
Murillo, J. H., Roman, S. R., Rojas Marin, J. F., Ramos, A. C., Jimenez, S. B., Gonzalez, B. C., & Baumgardner, D. G. (2013). Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4(2), 181–190. https://doi.org/10.5094/APR.2013.018
Nasibeh, Mohsen, S., Amini, Babak, Sadeghian, Dongsheng, … Fang, L. (2018). Heavy metals and their source identification in particulate matter (PM 2.5 ) in Isfahan City, Iran. Journal of Environmental Sciences (China), 72, 166–175. https://doi.org/10.1016/j.jes.2018.01.002
Ni, M., Huang, J., Lu, S., Li, X., Yan, J., & Cen, K. (2014). A review on black carbon emissions, worldwide and in China. Chemosphere, 107, 83–93. https://doi.org/10.1016/j.chemosphere.2014.02.052
OMS. (2005). Actualización mundial 2005. 1–21.
OPS. (2005). Evaluación de los Efectos de la Contaminación del Aire en la Salud de Améric Latina y el Caribe. In Organización Panamericana de la Salud.
Ordóñez-Aquino, C., & Sánchez-Ccoyllo, O. (2017). Characterization of the PM2,5 chemical - morphological in Lima metropolitan with scanning electronic microscopy (SEM) (In Spanish). Acta Nova, 8, 397–420.
Ordoñez-Sánchez, Y. C., Reinosa-Valladares, M., Hernández-Garces, A., & CancianoFernández, J. (2018). Aplicación de modelos simplificados para la dispersión de contaminantes atmosféricos. Caso de estudio. Revista Cubana de Química, 30(1), 90–103.
Otero, P. A. (2011). Documento de Economia Regional. El puerto de Brranquilla: retos y recomendaciones. Banco de La Republica, 141, 20–48.
Pachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., … Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049
Palomino, G. G. (2019). Capítulo 4. Motores Lineales de Imanes Permanentes, 79–124. https://doi.org/10.2307/j.ctvckq874.7
Paper, C. (2015). Caracterización de emisiones atmosféricas por fuentes fijas industriales del Distrito de. (August 2013). https://doi.org/10.13140/RG.2.1.1941.1047
Parra, A. Q., & Monica Juliana Quijano Vargas Jose Antonio Martínez. (2010). Physicochemical carácter of the suspended particles and matter fractioned in the air (PM 2.5) in Pamplona, ( Northern Santander, Colombia) the city’s air.
Paull, B., & Nesterenko, P. N. (2013). Ion Chromatography. In Liquid Chromatography: Fundamentals and Instrumentation. https://doi.org/10.1016/B978-0-12-415807-8.00008-0
Pedro, J., Márgez, F., Sukla, M. K., Wang, J., & Arratia, C. H. (2011). Material particulado dispersado al aire por vehículos en caminos agrícolas no pavimentados. Terra Latinoamericana, 29(1), 23–34.
Perrone, M. G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., … Belis, C. A. (2018). Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Science of the Total Environment, 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092
Pey, J. (2007). CARACTERIZACIÓN FISICO-QUÍMICA DE LOS AEROSOLES ATMOSFÉRICOS EN EL MEDITERRÁNEO OCCIDENTAL.
Pillai, P. S., Suresh Babu, S., & Krishna Moorthy, K. (2002). A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmospheric Research, 61(2), 149–167. https://doi.org/10.1016/S0169-8095(01)00136-3
Police, S., Sahu, S. K., Tiwari, M., & Pandit, G. G. (2018). Chemical composition and source apportionment of PM 2.5 and PM 2.5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology, 37, 143–153. https://doi.org/10.1016/j.partic.2017.09.006
Puliafito, S. E., Castro, F., & Allende, D. (2011). Air-quality impact of PM10 emission in urban centres. International Journal of Environment and Pollution, 46(3/4), 127. https://doi.org/10.1504/IJEP.2011.045476
Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., … Raes, F. (2010). A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44(10), 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011
Qiao, T., Zhao, M., Xiu, G., & Yu, J. (2016). Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Science of the Total Environment, 557–558, 386–394. https://doi.org/10.1016/j.scitotenv.2016.03.095
Qu, C., Gri, P., & Duk, P. R. (2006). Material Particulado Pm10 De La. Querol, X., Alastuey, A., De La Rosa, J., Sánchez-De-La-Campa, A., Plana, F., & Ruiz, C. R. (2002). Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmospheric Environment, 36(19), 3113–3125. https://doi.org/10.1016/S1352-2310(02)00257-1
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C. R., Cots, N., … Puig, O. (2001). PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment, 35(36), 6407–6419. https://doi.org/10.1016/S1352- 2310(01)00361-2
Ramírez, O; Sánchez, A; Amato, F; Catacolí, R; Rojas, N; De la Rosa, J. (2018). Chemical composition and source apportionment of PM 10 at an urban background site in a high– altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142– 155. https://doi.org/10.1016/j.envpol.2017.10.045
Ramírez, M. C., Berdejo, J., & Saltarín, M. (2018). Informe Anual De Calidad de Aire de Barranquilla, 2018.
Ramírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(August 2017), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006
Rauda L. Mariani, W. Z. de M. (2007). PM2.5-10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmospheric Environment, 41(13), 2887–2892. https://doi.org/10.1016/j.atmosenv.2006.12.009
Reff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air and Waste Management Association, 57(2), 146–154. https://doi.org/10.1080/10473289.2007.10465319
Richardson, Calire; Rutherford, Shannon; Agranovski, I. (2016). Characterisation of particulate emissions from Australian open cut coal mines: towards improved emission estimates. Journal of the Air & Waste Management Association, 9129(November), 0–31. https://doi.org/10.1080/87559129.2016.1261298
Rocha, P. (1994). Conceptos básicos, modelos y simulación. Modelos Digitales Del Terreno, 122. Retrieved from http://www6.uniovi.es/~feli/CursoMDT/CursoMDT.html
Rojano, R., Arregoces, H., & Restrepo, G. (2014). Composición elemental y fuentes de origen de partículas respirables (PM10) y Partículas Suspendidas Totales (PST) en el Área Urbana de la Ciudad de Riohacha, Colombia. Informacion Tecnologica, 25(6), 3–12. https://doi.org/10.4067/S0718-07642014000600002
Rugeles Ahumada, S. R., & Silva Tibabija, A. S. (2017). Estimación de la contribución de las fuentes emisoras de material particulado pm 10 empleando modelos receptores en la zona atmosférica de la universidad de la costa cuc. 111. Retrieved from http://repositorio.cuc.edu.co/bitstream/handle/11323/342/1044429575 - 1140871213.pdf?sequence=1&isAllowed=y
Salvador, P, & Artiñano, B. (2000). Evaluación de la contaminación atmosférica producida por partículas en suspensión en las redes de calidad del aire de la Comunidad de Madrid. Informes Tecnicos Ciemat, 921, 146. Retrieved from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/106/38106963.pdf
Salvador, Pedro, Artíñano, B., Querol, X., Alastuey, A., & Costoya, M. (2007). Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmospheric Environment, 41(1), 1–17. https://doi.org/10.1016/j.atmosenv.2006.08.007
Santos J. (2012). Diganostico Nacional de Salud Ambiental, República de Colombia Ministerio de Ambiente y Desarrollo Sostenible. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnosti co de salud Ambiental compilado.pdf
Saraga, D. E., Tolis, E. I., Maggos, T., Vasilakos, C., & Bartzis, J. G. (2019). PM2.5 source apportionment for the port city of Thessaloniki, Greece. Science of the Total Environment, 650, 2337–2354. https://doi.org/10.1016/j.scitotenv.2018.09.250
Scerri, M. M., Kandler, K., & Weinbruch, S. (2016). Disentangling the contribution of Saharan dust and marine aerosol to PM10 levels in the Central Mediterranean. Atmospheric Environment, 147, 395–408. https://doi.org/10.1016/j.atmosenv.2016.10.028
Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., & Bartonova, A. (2017). Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environment International, 106(May), 234–247. https://doi.org/10.1016/j.envint.2017.05.005
Shi, G. L., Tian, Y. Z., Ma, T., Song, D. L., Zhou, L. D., Han, B., … Russell, A. G. (2017). Size distribution, directional source contributions and pollution status of PM from Chengdu, China during a long-term sampling campaign. Journal of Environmental Sciences (China), 56, 1–11. https://doi.org/10.1016/j.jes.2016.08.017
Silva, A., & Arcos, D. (2011). Aplicación del programa AERMOD para modelar dispersión de PM10 emitido por equipos de calefacción a leña en la ciudad de Constitución. Obras y Proyectos, (9), 4–10. https://doi.org/10.4067/s0718-28132011000100001
Simioni, D. (2003). Contaminación Atmosférica y conciencia ciudadana. Retrieved from https://repositorio.cepal.org/bitstream/handle/11362/2351/1/S02121026_es.pdf
Song, X., Yang, S., Shao, L., Fan, J., & Liu, Y. (2016). PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Science of the Total Environment, 571, 1155–1163. https://doi.org/10.1016/j.scitotenv.2016.07.115
Taghvaee, S., Sowlat, M. H., Mousavi, A., Hassanvand, M. S., Yunesian, M., Naddafi, K., & Sioutas, C. (2018). Source apportionment of ambient PM2.5 in two locations in central
Tehran using the Positive Matrix Factorization (PMF) model. Science of the Total Environment, 628–629(1547), 672–686. https://doi.org/10.1016/j.scitotenv.2018.02.096
Tan, J., Duan, J., Zhen, N., He, K., & Hao, J. (2016). Chemical characteristics and source of sizefractionated atmospheric particle in haze episode in Beijing. Atmospheric Research, 167, 24–33. https://doi.org/10.1016/j.atmosres.2015.06.015
Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., … Hsu, S. C. (2014). PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmospheric Chemistry and Physics, 14(16), 8679–8699. https://doi.org/10.5194/acp-14-8679-2014
Tao, Jun, Zhang, L., Zhang, R., Wu, Y., Zhang, Z., Zhang, X., … Zhang, Y. (2016). Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis - a case study in Beijing, China. Science of the Total Environment, 543(7), 326–335. https://doi.org/10.1016/j.scitotenv.2015.11.057
Tasić, M., Mijić, Z., Rajić, S., Stojić, A., Radenković, M., & Joksić, J. (2009). Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization. Journal of Physics: Conference Series, 162. https://doi.org/10.1088/1742-6596/162/1/012018
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., & Samara, C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric Environment, 44(18), 2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019
Thermo Scientific. (2015). Partisol 2000 i Air Sampler / Partisol 2000 i -D Dichotomous Air Sampler. (110735).
Tsyro, S. G. (2004). To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5? Atmospheric Chemistry and Physics Discussions, 4(5), 6025–6066. https://doi.org/10.5194/acpd-4-6025-2004
UNED. (2001). ESPECTROMETRÍA DE FLUORESCENCIA DE RAYOS X.
US-EPA. (2014). EPA Positive M atrix Factorization ( PM F ) 5 . 0 Fundamentals and. 136. Retrieved from https://www.epa.gov/sites/production/files/2015- 02/documents/pmf_5.0_user_guide.pdf
Valencia, A, Castaño, R., Sánchez, A., Bonilla, M., & Buitrago, C. (2010). Gestión de la contaminación ambiental : cuestión de corresponsabilidad. Revista de Ingeniería, 30, 90–99. https://doi.org/10.1200/JCO.2003.01.143
Valencia, Alexander, Castaño, R. S., Sánchez, A., & Bonilla, M. (2010). Gestión de la contaminación ambiental : cuestión de corresponsabilidad. Revista de Ingeniería, 30, 90–99.
Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., & Pekkanen, J. (2003). Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615–623. https://doi.org/10.1016/S1352-2310(02)00925-1
Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., & De Baets, B. (2015). Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmospheric Environment, 105, 148–161. https://doi.org/10.1016/j.atmosenv.2015.01.017
Vélez-Pereira, A. M., & Vergara, E. (2013). Caracterización de emisiones atmosféricas por fuentes fijas industriales del distrito de Barranquilla, Colombia. Memorias Del IV Congreso Colombiano y Conferencia Internacional de Calidad Del Aire y Salud Pública, (July), 1176– 1187. https://doi.org/978-958-8572-90-
Vélez, A., Mejía, M., Salcedo, Y., & Y., C. (2009). Emisiones atmosféricas de origen biológico: generalidades , impactos asociados y medidas de control de aerosoles fungi. Re´Takvn, II(1), 19–32.
Vengoechea, A. M., Rojano, R. E., & Arregoces, H. A. (2018). Dispersión y Concentración de Aerosoles Marinos PM 10 en una Ciudad Costera del Caribe. Información Tecnológica, 29(6), 123–130. https://doi.org/10.4067/s0718-07642018000600123
Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., … Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 39(10), 827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007
Viana, M., Querol, X., Alastuey, A., Gil, J. I., & Menéndez, M. (2006). Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 65(11), 2411–2418. https://doi.org/10.1016/j.chemosphere.2006.04.060
Vivar, E. (2014). CUANTIFICACIÓN DE MATERIAL PARTICULADO PM10 Y SU EFECTO TOXICOLÓGICO-AMBIENTAL, EN LA CIUDAD DE AZOGUES.
Wang, W., Yu, J., Cui, Y., He, J., Xue, P., Cao, W., … Wang, Y. (2018). Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmospheric Research, 203, 105–117. https://doi.org/10.1016/j.atmosres.2017.11.033
Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119(1– 3), 425–439. https://doi.org/10.1007/s10661-005-9034-3
Wang, Y., Zhuang, G., Sun, Y., & An, Z. (2006). The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmospheric Environment, 40(34), 6579–6591. https://doi.org/10.1016/j.atmosenv.2006.05.066
Wu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., & Cen, K. (2018). Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 189, 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025
X. Querol, A. Alastuey, T. Moreno, M.M. Viana, S. Castillo, J. Pey, S. Rodríguez, A. Cristóbal, S. Jiménez, M. Pallarés, J. de la Rosa, B. Artíñano, P. Salvador, M. Sánchez, S. García Dos Santos, M.D. Herce Garraleta, R. Fernández-Patier, S. Moreno-Grau, L. N., & M.C. Minguillón, E. Monfort, M.J. Sanz, R. Palomo-Marín, E. Pinilla-Gil, E. C. (2006). Material Particulado En España : Niveles , Composición. 41.
Xue, F., Kikumoto, H., Li, X., & Ooka, R. (2018). Bayesian source term estimation of atmospheric releases in urban areas using LES approach. Journal of Hazardous Materials, 349(January), 68–78. https://doi.org/10.1016/j.jhazmat.2018.01.050
Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., … Wang, W. (2016). Sources apportionment of PM 2.5 in a background site in the North China Plain. Science of the Total Environment, 541, 590–598. https://doi.org/10.1016/j.scitotenv.2015.09.123
Yin, J., & Harrison, R. M. (2008). Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmospheric Environment, 42(5), 980–988. https://doi.org/10.1016/j.atmosenv.2007.10.005
Zafra Mejía, C. A., Rodríguez Chitiva, L. G., & Torres Cabrera, Y. A. (2013). Metales pesados asociados con las partículas atmosféricas y sedimentadas de superficies viales: Soacha (Colombia). Revista Científica, 1(17), 113. https://doi.org/10.14483/23448350.4571
Zárate, E., Belalcázar, L., Clappier, A., Manzi, V., & Van den Bergh, H. (2007). Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment, 41(29), 6302–6318. https://doi.org/10.1016/j.atmosenv.2007.03.011
Zhou, W., Wang, Q., Zhao, X., Xu, W., Chen, C., Du, W., … Sun, Y. (2018). Characterization and source apportionment of organic aerosol at 260gm on a meteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 18(6), 3951–3968. https://doi.org/10.5194/acp-18-3951-2018
Zhu, Y., Huang, L., Li, J., Ying, Q., Zhang, H., Liu, X., … Hu, J. (2018). Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 115(December 2017), 343–357. https://doi.org/10.1016/j.envint.2018.03.037
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Maestría de Investigación en Desarrollo Sostenible MIDES
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/6017/1/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia.pdf
https://repositorio.cuc.edu.co/bitstream/11323/6017/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/6017/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/6017/5/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia_0001.jpg
https://repositorio.cuc.edu.co/bitstream/11323/6017/7/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/6017/8/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia.pdf.txt
bitstream.checksum.fl_str_mv c7b859f4e10ff997bd5fd2c4bd20f195
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
f353062339366a65568dfaf3c2d9bd15
775674b4ccbb63ed877019686b9acc70
07c1499446c5390b5ee9fe814431e0cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400200465645568
spelling Silva Oliveira, Luis Felipe615225808861349d2b8b4aa0934855d9-1Schneider, Ismael Luis4268f39b2d5f41ed7b2901634c4e2cb7-1Núñez Blanco, Yuleisy Paola2a3502cb3740d8ef5b1c9a8017c0eba42020-02-08T15:41:11Z2020-02-08T15:41:11Z2019http://hdl.handle.net/11323/6017Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution has become a major problem in urban areas due to increasing industrialization and urbanization. In this study, the source contribution of particulate material (PM10 and PM2.5) in Barranquilla was quantified. Samples were recolected for periods of 48 hours, at the Universidad de la Costa, with the Partisol 2000-iD equipment and 47 mm Teflon filters. Major and trace elements were quantified using X-ray fluorescence, ionic species with ion chromatography and black Carbon (BC) with the reflectance method. The Positive Matrix Factorization (PMF) model estimated the PM sources contributions. The average concentration of PM10 was 46.6 µg/m3 and 12.0 µg/m3 for PM2.5. The greatest contributions for PM10 were BC, Cl and Ca, and for PM2.5 were BC, S and Cl. Similar sources were obtained for both PM fractions: marine spray (Cl and Na+), resuspended soil (Al, Si, Ti, Fe) and vehicular traffic (BC, Mn and Zn). In addition, PM2.5 was associated with two mixed sources: fuel combustion and fertilizer industry (S, V, P, K+ and SO42-), and a secondary source and civil works (Ca2+ and NO3-). The PM10 was also associated with civil works and resuspended soil (Ti, Mn, Fe) as well with the metallurgical industry (S, Zn and Cu). These results are fundamental to the knowledge about the sources that can have the greatest source contributions and strategies can be implement for the continuous improvement of the city's air quality.La contaminación atmosférica se ha convertido en un problema de gran afectación en áreas urbanas debido a la creciente industrialización y urbanización. En este estudio, se cuantificó la contribución de fuentes de material particulado (PM10 y PM2.5) en Barranquilla. Se efectuaron muestreos por períodos de 48 horas, en la Universidad de la Costa, con el equipo Partisol 2000-iD y filtros de teflón de 47 mm. Fueron determinados los elementos mayores y traza utilizando fluorescencia de rayos-X, especies iónicas con cromatografía iónica y Black Carbon (BC) con el método de reflectancia. El modelo Positive Matrix Factorization (PMF) estimó los aportes de fuentes emisoras el PM. La concentración promedio de PM10 fue 46,6 µg/m3 y 12,0 µg/m3 para PM2.5. Los mayores aportes para PM10 fueron BC, Cl y Ca, para PM2.5 fueron BC, S y Cl. Se obtuvieron fuentes similares para ambas fracciones de PM: aerosol marino (Cl y Na+), suelo resuspendido (Al, Si, Ti, Fe) y tráfico vehicular (BC, Mn y Zn). Adicionalmente, el PM2.5 estuvo asociado a dos fuentes mixtas: combustión de combustible e industria de fertilizantes (S, V, P, K+ y SO42-), y otra fuente secundarios y obras civiles (Ca2+ y NO3-). El PM10, también estuvo asociado a obras civiles y suelo resuspendido (Ti, Mn, Fe) así como a industria metalúrgica (S, Zn y Cu). Estos resultados son fundamentales para que se pueda conocer las fuentes que generan los mayores aportes y se puedan implementar estrategias de mejoría continua de la calidad del aire de la ciudad.spaUniversidad de la CostaMaestría de Investigación en Desarrollo Sostenible MIDESAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Urban air pollutionParticulate materialChemical compositionEmission sourcesPMFContaminación atmosférica urbanoMaterial particuladoComposición químicaFuentes de emisiónEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, ColombiaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAlastuey, A., Mantilla, E., Querol, X., & Rodríguez, S. (2000). Estudio y evaluación de la contaminación atmosférica por material particulado en España: necesidades derivadas de la propuesta de la directiva del consejo relativa a partículas PM10 y PM2.5 e implicaciones en la industria cerámica. Boletín de La Sociedad Española de Cerámica y Vidrio, 39(1), 135–148. https://doi.org/10.3989/cyv.2000.v39.i1.882Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., … Santamaría, J. M. (2011). Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmospheric Research, 102(1–2), 191–205. https://doi.org/10.1016/j.atmosres.2011.07.003Aluanlli, P. (2008). Aportes De Fuentes Al Material Particulado Fino Y Grueso En Santiago Usando Factorización De Matrices Positivas ( Pmf ).Álvarez, C. (2014). Cromatografia de intercambio ionico.Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., … Sciare, J. (2016). Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmospheric Environment, 129, 114–124. https://doi.org/10.1016/j.atmosenv.2016.01.022Arana, A. (2014). AEROSSÓIS ATMOSFÉRICOS NA AMAZÔNIA: COMPOSIÇÃO ORGÂNICA E INORGÂNICA EM REGIÕES COM DIFERENTES USOS DO SOLO.Arana, Andréa, & Artaxo, P. (2014). Composição elementar do aerossol atmosférico na região central da bacia amazônica. Quimica Nova, 37(2), 268–276. https://doi.org/10.5935/0100- 4042.20140046Arciniégas, C. (2015). Diagnóstico Y Control De Material Particulado: Partículas Suspendidas Totales Y Fracción Respirable Pm10. Luna Azul, (34), 195–213. https://doi.org/10.17151/luaz.2012.34.12Argumedo, C. D., & Castillo, J. F. (2016). Chemical characterization of particulated atmospheric matter PM10 in Guajira, Colombia. Revista Colombiana de Quimica, 45(2), 19–29. https://doi.org/10.15446/rev.colomb.quim.v45n2.56991Arjona, A. (2006). Determinación de la calidad del aire en interiores por PM10.Barranquilla Verde. (2016). Inventario de Emisiones Atmosféricas Barranquilla, Atlántico. Retrieved from http://barranquillaverde.gov.co/storage/app/media/calidadaire/inv_emisiones_atmosfericas_v4.pdfBhuyan, P., Deka, P., Prakash, A., Balachandran, S., & Hoque, R. R. (2018). Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environmental Pollution, 234, 997–1010. https://doi.org/10.1016/j.envpol.2017.12.009Blanco-Becerra, L. C., Gáfaro-Rojas, A. I., & Rojas-Roa, N. Y. (2015). Influence of precipitation scavenging on the PM2.5/PM10 ratio at the Kennedy locality of Bogotá, Colombia. Revista Facultad de Ingenieria, 2015(76), 58–65. https://doi.org/10.17533/udea.redin.n76a07Brito, J., Rizzo, L. V., Herckes, P., Vasconcellos, P. C., Caumo, S. E. S., Fornaro, A., … Andrade, M. F. (2013). Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmospheric Chemistry and Physics, 13(24), 12199–12213. https://doi.org/10.5194/acp-13-12199-2013Bruno, R. L., Almeida, A. F., Nascimento Filho, V., Aguiar, M. L., Gonçalves, J. A. S., & Coury, J. R. (2004). Atmospheric particulate matter in the city of São Carlos/SP, Brazil. International Journal of Environment and Pollution, 22(4), 476–489. https://doi.org/10.1504/IJEP.2004.005682Canales-Rodríguez, M. A., Quintero-Núñez, M., Castro-Romero, T. G., & García-Cuento, R. O. (2014). Las partículas respirables PM10 y su composición química en la zona Urbana y rural de Mexicali, Baja California en México. Informacion Tecnologica, 25(6), 13–22. https://doi.org/10.4067/S0718-07642014000600003Carolina, A., & Cifuentes, B. (2009). Evaluación de iones presentes en PM2.5, de las localidades de Fontibón y Kennedy en ambientes intra y extramurales.Carvalho, R. B., Rhoden, C. R., Amantéa, S. L., Barbosa, F., Batista, B. L., Simonetti, J., & Carneiro, M. F. H. (2018). The impact of occupational exposure to traffic-related air pollution among professional motorcyclists from Porto Alegre, Brazil, and its association with genetic and oxidative damage. Environmental Science and Pollution Research, 25(19), 18620–18631. https://doi.org/10.1007/s11356-018-2007-1César, J., Molina, S., & Echeverri, C. A. (2004). Partículas suspendidas ( PST ) y partículas respirables ( PM 10 ) en el Valle de Aburrá , Colombia Total suspended particles ( TSP ) and breathable particles ( PM 10 ) in Aburra Valley , Colombia. (December 2014), 7–16.Cesari, D., De Benedetto, G. E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., … Contini, D. (2018). Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Science of the Total Environment, 612, 202–213. https://doi.org/10.1016/j.scitotenv.2017.08.230Chen, P., Wang, T., Lu, X., Yu, Y., Kasoar, M., Xie, M., & Zhuang, B. (2017). Source apportionment of size-fractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing, China. Science of the Total Environment, 579, 860–870. https://doi.org/10.1016/j.scitotenv.2016.11.014Cheung, K. L., Ntziachristos, L., Tzamkiozis, T., Schauer, J. J., Samaras, Z., Moore, K. F., & Sioutas, C. (2010). Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Science and Technology, 44(7), 500–513. https://doi.org/10.1080/02786821003758294CIOH. (2007). Climatologia De Los Principales Puertos Del Caribe Colombiano Barranquilla. Retrieved from https://www.cioh.org.co/derrotero/images/PDFExternos/Climatologia_Barranquilla.pdfContini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M. C., & Guascito, M. R. (2010). Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmospheric Research, 95(1), 40–54. https://doi.org/10.1016/j.atmosres.2009.07.010Contini, Daniele, Cesari, D., Conte, M., & Donateo, A. (2016). Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Science of the Total Environment, 560–561, 131–140. https://doi.org/10.1016/j.scitotenv.2016.04.031CRA. (2005). Diagnostico Integral Sector De fundición en el Dpto del Atlantico.D’Angiola, A., Dawidowski, L. E., Gómez, D. R., & Osses, M. (2010). On-road traffic emissions in a megacity. Atmospheric Environment, 44(4), 483–493. https://doi.org/10.1016/j.atmosenv.2009.11.004Damasceno, M. V. A. (2009). EMISSÕES VEICULARES EM SÃO PAULO: QUANTIFICAÇÃO DE FONTES COM MODELOS RECEPTORES E CARACTERIZAÇÃO DO MATERIAL CARBONÁCEO. 174.Davidson, C. I., Phalen, R. F., & Solomon, P. A. (2005). Airborne particulate matter and human health: A review. Aerosol Science and Technology, 39(8), 737–749. https://doi.org/10.1080/02786820500191348De, M. D. E. L. P., & Handbook, P. (2015). Manual del Puerto de Barranquilla. de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S., Artaxo, P., … de Castro Vasconcellos, P. (2015). Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment, 120, 277– 285. https://doi.org/10.1016/j.atmosenv.2015.08.059Del, A., & Urbano, C. (2017). Caracterización Química Del Material Particulado Atmosférico Del Centro Urbano De Huancayo, Perú. Revista de La Sociedad Química Del Perú, 83(2), 187–199. Echeverri Londoño, C., & Maya Vasco, G. (2008). Relación entre las partículas finas (PM 2.5) y respirables PM 10) en la ciudad de Medellín. Revista de Ingenierías: Universidad de Medellín, 7(12), 23–42.El-Zanan, H. S., Zielinska, B., Mazzoleni, L. R., & Hansen, D. A. (2009). Analytical determination of the aerosol organic mass-to-organic carbon ratio. Journal of the Air and Waste Management Association, 59(1), 58–69. https://doi.org/10.3155/1047-3289.59.1.58Fang, C., Zhong, S., & Cai, W. (2015). The pancreatic surgery in the era of digital medical science. Digital Medicine, 1(1), 17. https://doi.org/10.4103/2226-8561.166365 Farahmandkia, Z., Moattar, F., Zayeri, F., Sadegh Sekhavatjou, M., & Mansouri, N. (2017). Contribution of point and small-scaled sources to the PM10 emission using positive matrix factorization model. Journal of Environmental Health Science and Engineering, 15(1), 1– 11. https://doi.org/10.1186/s40201-016-0265-8Fine, P. M., Cass, G. R., & Simoneit, B. R. T. (2004). Chemical Characterization of Fine Particle Emissions from the Fireplace Combustion of Wood Types Grown in the Midwestern and Western United States. Environmental Engineering Science, 21(3), 387–409. https://doi.org/10.1089/109287504323067021Galán Madruga, D., & Fernández Patier, R. (2006). Implicación de los NOx en la Química Atmosférica. M+A, Revista Electrónica y de Medioambiente, (2), 6. https://doi.org/10.5209/MARE.16109Galvão, E. S., Reis, N. C., Lima, A. T., Stuetz, R. M., D’Azeredo Orlando, M. T., & Santos, J. M. (2019). Use of inorganic and organic markers associated with their directionality for the apportionment of highly correlated sources of particulate matter. Science of the Total Environment, 651, 1332–1343. https://doi.org/10.1016/j.scitotenv.2018.09.263Gao, J., Peng, X., Chen, G., Xu, J., Shi, G. L., Zhang, Y. C., & Feng, Y. C. (2016). Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution. Science of the Total Environment, 542, 162–171. https://doi.org/10.1016/j.scitotenv.2015.10.082Gonzalez, L. T. (2018). CARACTERIZACIÓN QUÍMICA Y MORFOLÓGICA DEL MATERIAL PARTICULADO SUSPENDIDO DEL ÁREA METROPOLITANA DE MONTERREY Y SUS POSIBLES FUENTES DE EMISIÓN.González, Y. (2012). Caracterización físico-química del material particulado atmosférico de origen industrial en Andalucía.Gozzi, F, Ventura, G. Della, Marcelli, A., & Lucci, F. (2017). 201-JMES-2584-Gozzi. 8(6), 1901–1909.Gozzi, Fernando, Della Ventura, G., & Marcelli, A. (2016). Mobile monitoring of particulate matter: State of art and perspectives. Atmospheric Pollution Research, 7(2), 228–234. https://doi.org/10.1016/j.apr.2015.09.007Gu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., … Bai, Z. P. (2014). Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Quality, Atmosphere and Health, 7(3), 251–262. https://doi.org/10.1007/s11869-013-0232-9Hadley, O. L. (2017). Background PM2.5 source apportionment in the remote Northwestern United States. Atmospheric Environment, 167, 298–308. https://doi.org/10.1016/j.atmosenv.2017.08.030Hao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., … Xie, S. (2018). Characteristics of trace elements in PM 2.5 and PM 10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmospheric Research, 213(June), 550–561. https://doi.org/10.1016/j.atmosres.2018.07.006Health Effects Institute. (2017). State of Global Air 2017. Retrieved from https://www.stateofglobalair.org/sites/default/files/soga_2019_report.pdfHeimann, I., Bright, V. B., McLeod, M. W., Mead, M. I., Popoola, O. A. M., Stewart, G. B., & Jones, R. L. (2015). Source attribution of air pollution by spatial scale separation using high spatial density networks of low cost air quality sensors. Atmospheric Environment, 113, 10–19. https://doi.org/10.1016/j.atmosenv.2015.04.057Holgado, F. R. (2015). TESIS DOCTORAL DESARROLLO Y APLICACIÓN DE METODOLOGÍAS DEPOSICIONES ATMOSFÉRICAS Fernando Rueda Holgado Departamento de Química Analítica , 2015 Conformidad de los directores :IPCC. (2013). 7: Clouds and Aerosols BT - Climate Change 2013: The Physical Science Basis. Climate Change 2013: The Physical Science Basis, (January 2014), 1–149. Retrieved from papers3://publication/uuid/E639F41C-F434-44A7-8BF5-328433DDAF9BJain, S., Sharma, S. K., Mandal, T. K., & Saxena, M. (2018). Source apportionment of PM 10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology, 37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009Jaiprakash, & Habib, G. (2017). Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Science of the Total Environment, 586, 900– 916. https://doi.org/10.1016/j.scitotenv.2017.02.070Jerónimo, E. (2012). CAPA LIMITE, REFLECTANCIA Y ESPESOR OPTICO DE AEROSOLES SOBRE SANTIAGO PROYECTO.Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087Kholod, N., & Evans, M. (2016). Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environmental Science and Policy, 56, 1–8. https://doi.org/10.1016/j.envsci.2015.10.017Kirchstetter, T. W., Aguiar, J., Tonse, S., Fairley, D., & Novakov, T. (2008). Black carbon concentrations and diesel vehicle emission factors derived from coefficient of haze measurements in California: 1967-2003. Atmospheric Environment, 42(3), 480–491. https://doi.org/10.1016/j.atmosenv.2007.09.063Lenschow, P., Abraham, H., Kutzner, K., Lutz, M., Preub, J., & Reichenbficher, W. (2010). ENVIRONMENT Some ideas about the sources of PM10. 0(0 1), 23–33.Levy, I., Mihele, C., Lu, G., Narayan, J., & Brook, J. R. (2014). Evaluating multipollutant exposure and urban air quality: Pollutant interrelationships, neighborhood variability, and nitrogen dioxide as a proxy pollutant. Environmental Health Perspectives, 122(1), 65–72. https://doi.org/10.1289/ehp.1306518Li, J., Chen, B., de la Campa, A. M. S., Alastuey, A., Querol, X., & de la Rosa, J. D. (2018). 2005–2014 trends of PM10 source contributions in an industrialized area of southern Spain. Environmental Pollution, 236, 570–579. https://doi.org/10.1016/j.envpol.2018.01.101Li, T. C., Yuan, C. S., Huang, H. C., Lee, C. L., Wu, S. P., & Tong, C. (2016). Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Scientific Reports, 6(November 2015), 1– 16. https://doi.org/10.1038/srep22956Liu, B., Song, N., Dai, Q., Mei, R., Sui, B., Bi, X., & Feng, Y. (2016). Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmospheric Research, 170, 23–33. https://doi.org/10.1016/j.atmosres.2015.11.002Liu, Y., Xing, J., Wang, S., Fu, X., & Zheng, H. (2018). Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environmental Pollution, 239, 544–553. https://doi.org/10.1016/j.envpol.2018.04.047López, M. L., Ceppi, S., Palancar, G. G., Olcese, L. E., Tirao, G., & Toselli, B. M. (2011). Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmospheric Environment, 45(31), 5450–5457. https://doi.org/10.1016/j.atmosenv.2011.07.003Lowenthal, D. H., El-Zanan, H. S., Zielinska, B., Chow, J. C., & Kumar, N. (2004). Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples {PRIVATE}. Regional and Global Perspectives on Haze, 134 VIP, 721–724. https://doi.org/10.1016/j.chemosphere.2005.01.005Lu, Z., Liu, Q., Xiong, Y., Huang, F., Zhou, J., & Schauer, J. J. (2018). A hybrid source apportionment strategy using positive matrix factorization (PMF) and molecular marker chemical mass balance (MM-CMB) models. Environmental Pollution, 238, 39–51. https://doi.org/10.1016/j.envpol.2018.02.091Luís, I., Calesso, E., Agudelo-castañeda, D. M., Silva, G., Balzaretti, N., Ferreira, M., … Oliveira, S. (2016). Science of the Total Environment FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM 1 . 0. Science of the Total Environment, The, 541, 1151–1160. https://doi.org/10.1016/j.scitotenv.2015.09.142Ma, Y., Cheng, Y., Qiu, X., Lin, Y., Cao, J., & Hu, D. (2016). A quantitative assessment of source contributions to fine particulate matter (PM2.5)-bound polycyclic aromatic hydrocarbons (PAHs) and their nitrated and hydroxylated derivatives in Hong Kong. Environmental Pollution, 219, 742–749. https://doi.org/10.1016/j.envpol.2016.07.034 Madrazo, J., Clappier, A., Belalcazar, L. C., Cuesta, O., Contreras, H., & Golay, F. (2018). Screening differences between a local inventory and the Emissions Database for Global Atmospheric Research (EDGAR). Science of the Total Environment, 631–632, 934–941. https://doi.org/10.1016/j.scitotenv.2018.03.094Maldonado, M. J. (2012). Caracterización del material particulado suspendido PM10 de la red de monitoreo de aire de la ciudad de Quito de los años 2009 y 2010 por Espectroscopía de Absorción Atómica. (Vol. 5).Manjarrés García, G., Manjarrés Pinzón, G., & Linero Cueto, J. (2005). Composition and concentration of aerial particulate material in a sector of santa marta city (Magdalena, Colombia). Intropica, 23–33.Manousakas, M., Diapouli, E., Papaefthymiou, H., Kantarelou, V., Zarkadas, C., Kalogridis, A. C., … Eleftheriadis, K. (2018). XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-Ray Spectrometry, 47(3), 190–200. https://doi.org/10.1002/xrs.2817Marino, D. (2009). Aerosoles. Características. Transporte de partículas. 30–107.Minambiente. (2019). Empresas registradas fertilizantes junio 11 de 2019.Ministerio de Ambiente Vivivenda y Desarrollo Territorial. (2010). Manual de diseño de sistemas de vigilancia de la calidad del aire. Protocolo Para El Monitoreo y Seguimiento de La Calidad Del Aire, 137.Morales, M. (2018). Contribución de fuentes particulares a Material Particulado en el corregimiento la Loma , Zona Minera del Cesar Marjolyne Morales Fontalvo Trabajo Final de Maestría para optar el título de : Magister en Ingeniería Ambiental Director : Néstor Y . Rojas , P.Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., & Santamaría, J. M. (2018a). Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmospheric Environment, 192(July), 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., & Santamaría, J. M. (2018b). Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmospheric Environment, 192, 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., … Alcántara, E. (2009). PM composition and source reconciliation in Mexico City. Atmospheric Environment, 43(32), 5068–5074. https://doi.org/10.1016/j.atmosenv.2009.06.051Murillo, J. H., Roman, S. R., Rojas Marin, J. F., Ramos, A. C., Jimenez, S. B., Gonzalez, B. C., & Baumgardner, D. G. (2013). Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmospheric Pollution Research, 4(2), 181–190. https://doi.org/10.5094/APR.2013.018Nasibeh, Mohsen, S., Amini, Babak, Sadeghian, Dongsheng, … Fang, L. (2018). Heavy metals and their source identification in particulate matter (PM 2.5 ) in Isfahan City, Iran. Journal of Environmental Sciences (China), 72, 166–175. https://doi.org/10.1016/j.jes.2018.01.002Ni, M., Huang, J., Lu, S., Li, X., Yan, J., & Cen, K. (2014). A review on black carbon emissions, worldwide and in China. Chemosphere, 107, 83–93. https://doi.org/10.1016/j.chemosphere.2014.02.052OMS. (2005). Actualización mundial 2005. 1–21.OPS. (2005). Evaluación de los Efectos de la Contaminación del Aire en la Salud de Améric Latina y el Caribe. In Organización Panamericana de la Salud.Ordóñez-Aquino, C., & Sánchez-Ccoyllo, O. (2017). Characterization of the PM2,5 chemical - morphological in Lima metropolitan with scanning electronic microscopy (SEM) (In Spanish). Acta Nova, 8, 397–420.Ordoñez-Sánchez, Y. C., Reinosa-Valladares, M., Hernández-Garces, A., & CancianoFernández, J. (2018). Aplicación de modelos simplificados para la dispersión de contaminantes atmosféricos. Caso de estudio. Revista Cubana de Química, 30(1), 90–103.Otero, P. A. (2011). Documento de Economia Regional. El puerto de Brranquilla: retos y recomendaciones. Banco de La Republica, 141, 20–48.Pachón, J. E., Galvis, B., Lombana, O., Carmona, L. G., Fajardo, S., Rincón, A., … Henderson, B. (2018). Development and evaluation of a comprehensive atmospheric emission inventory for air quality modeling in the megacity of Bogotá. Atmosphere, 9(2), 1–17. https://doi.org/10.3390/atmos9020049Palomino, G. G. (2019). Capítulo 4. Motores Lineales de Imanes Permanentes, 79–124. https://doi.org/10.2307/j.ctvckq874.7Paper, C. (2015). Caracterización de emisiones atmosféricas por fuentes fijas industriales del Distrito de. (August 2013). https://doi.org/10.13140/RG.2.1.1941.1047Parra, A. Q., & Monica Juliana Quijano Vargas Jose Antonio Martínez. (2010). Physicochemical carácter of the suspended particles and matter fractioned in the air (PM 2.5) in Pamplona, ( Northern Santander, Colombia) the city’s air.Paull, B., & Nesterenko, P. N. (2013). Ion Chromatography. In Liquid Chromatography: Fundamentals and Instrumentation. https://doi.org/10.1016/B978-0-12-415807-8.00008-0Pedro, J., Márgez, F., Sukla, M. K., Wang, J., & Arratia, C. H. (2011). Material particulado dispersado al aire por vehículos en caminos agrícolas no pavimentados. Terra Latinoamericana, 29(1), 23–34.Perrone, M. G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., … Belis, C. A. (2018). Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Science of the Total Environment, 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092Pey, J. (2007). CARACTERIZACIÓN FISICO-QUÍMICA DE LOS AEROSOLES ATMOSFÉRICOS EN EL MEDITERRÁNEO OCCIDENTAL.Pillai, P. S., Suresh Babu, S., & Krishna Moorthy, K. (2002). A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmospheric Research, 61(2), 149–167. https://doi.org/10.1016/S0169-8095(01)00136-3Police, S., Sahu, S. K., Tiwari, M., & Pandit, G. G. (2018). Chemical composition and source apportionment of PM 2.5 and PM 2.5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology, 37, 143–153. https://doi.org/10.1016/j.partic.2017.09.006Puliafito, S. E., Castro, F., & Allende, D. (2011). Air-quality impact of PM10 emission in urban centres. International Journal of Environment and Pollution, 46(3/4), 127. https://doi.org/10.1504/IJEP.2011.045476Putaud, J. P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., … Raes, F. (2010). A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 44(10), 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011Qiao, T., Zhao, M., Xiu, G., & Yu, J. (2016). Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Science of the Total Environment, 557–558, 386–394. https://doi.org/10.1016/j.scitotenv.2016.03.095Qu, C., Gri, P., & Duk, P. R. (2006). Material Particulado Pm10 De La. Querol, X., Alastuey, A., De La Rosa, J., Sánchez-De-La-Campa, A., Plana, F., & Ruiz, C. R. (2002). Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmospheric Environment, 36(19), 3113–3125. https://doi.org/10.1016/S1352-2310(02)00257-1Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C. R., Cots, N., … Puig, O. (2001). PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmospheric Environment, 35(36), 6407–6419. https://doi.org/10.1016/S1352- 2310(01)00361-2Ramírez, O; Sánchez, A; Amato, F; Catacolí, R; Rojas, N; De la Rosa, J. (2018). Chemical composition and source apportionment of PM 10 at an urban background site in a high– altitude Latin American megacity (Bogota, Colombia). Environmental Pollution, 233, 142– 155. https://doi.org/10.1016/j.envpol.2017.10.045Ramírez, M. C., Berdejo, J., & Saltarín, M. (2018). Informe Anual De Calidad de Aire de Barranquilla, 2018.Ramírez, O., Sánchez de la Campa, A. M., & de la Rosa, J. (2018). Characteristics and temporal variations of organic and elemental carbon aerosols in a high–altitude, tropical Latin American megacity. Atmospheric Research, 210(August 2017), 110–122. https://doi.org/10.1016/j.atmosres.2018.04.006Rauda L. Mariani, W. Z. de M. (2007). PM2.5-10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmospheric Environment, 41(13), 2887–2892. https://doi.org/10.1016/j.atmosenv.2006.12.009Reff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air and Waste Management Association, 57(2), 146–154. https://doi.org/10.1080/10473289.2007.10465319Richardson, Calire; Rutherford, Shannon; Agranovski, I. (2016). Characterisation of particulate emissions from Australian open cut coal mines: towards improved emission estimates. Journal of the Air & Waste Management Association, 9129(November), 0–31. https://doi.org/10.1080/87559129.2016.1261298Rocha, P. (1994). Conceptos básicos, modelos y simulación. Modelos Digitales Del Terreno, 122. Retrieved from http://www6.uniovi.es/~feli/CursoMDT/CursoMDT.htmlRojano, R., Arregoces, H., & Restrepo, G. (2014). Composición elemental y fuentes de origen de partículas respirables (PM10) y Partículas Suspendidas Totales (PST) en el Área Urbana de la Ciudad de Riohacha, Colombia. Informacion Tecnologica, 25(6), 3–12. https://doi.org/10.4067/S0718-07642014000600002Rugeles Ahumada, S. R., & Silva Tibabija, A. S. (2017). Estimación de la contribución de las fuentes emisoras de material particulado pm 10 empleando modelos receptores en la zona atmosférica de la universidad de la costa cuc. 111. Retrieved from http://repositorio.cuc.edu.co/bitstream/handle/11323/342/1044429575 - 1140871213.pdf?sequence=1&isAllowed=ySalvador, P, & Artiñano, B. (2000). Evaluación de la contaminación atmosférica producida por partículas en suspensión en las redes de calidad del aire de la Comunidad de Madrid. Informes Tecnicos Ciemat, 921, 146. Retrieved from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/38/106/38106963.pdfSalvador, Pedro, Artíñano, B., Querol, X., Alastuey, A., & Costoya, M. (2007). Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmospheric Environment, 41(1), 1–17. https://doi.org/10.1016/j.atmosenv.2006.08.007Santos J. (2012). Diganostico Nacional de Salud Ambiental, República de Colombia Ministerio de Ambiente y Desarrollo Sostenible. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/IGUB/Diagnosti co de salud Ambiental compilado.pdfSaraga, D. E., Tolis, E. I., Maggos, T., Vasilakos, C., & Bartzis, J. G. (2019). PM2.5 source apportionment for the port city of Thessaloniki, Greece. Science of the Total Environment, 650, 2337–2354. https://doi.org/10.1016/j.scitotenv.2018.09.250Scerri, M. M., Kandler, K., & Weinbruch, S. (2016). Disentangling the contribution of Saharan dust and marine aerosol to PM10 levels in the Central Mediterranean. Atmospheric Environment, 147, 395–408. https://doi.org/10.1016/j.atmosenv.2016.10.028Schneider, P., Castell, N., Vogt, M., Dauge, F. R., Lahoz, W. A., & Bartonova, A. (2017). Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environment International, 106(May), 234–247. https://doi.org/10.1016/j.envint.2017.05.005Shi, G. L., Tian, Y. Z., Ma, T., Song, D. L., Zhou, L. D., Han, B., … Russell, A. G. (2017). Size distribution, directional source contributions and pollution status of PM from Chengdu, China during a long-term sampling campaign. Journal of Environmental Sciences (China), 56, 1–11. https://doi.org/10.1016/j.jes.2016.08.017Silva, A., & Arcos, D. (2011). Aplicación del programa AERMOD para modelar dispersión de PM10 emitido por equipos de calefacción a leña en la ciudad de Constitución. Obras y Proyectos, (9), 4–10. https://doi.org/10.4067/s0718-28132011000100001Simioni, D. (2003). Contaminación Atmosférica y conciencia ciudadana. Retrieved from https://repositorio.cepal.org/bitstream/handle/11362/2351/1/S02121026_es.pdfSong, X., Yang, S., Shao, L., Fan, J., & Liu, Y. (2016). PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Science of the Total Environment, 571, 1155–1163. https://doi.org/10.1016/j.scitotenv.2016.07.115Taghvaee, S., Sowlat, M. H., Mousavi, A., Hassanvand, M. S., Yunesian, M., Naddafi, K., & Sioutas, C. (2018). Source apportionment of ambient PM2.5 in two locations in centralTehran using the Positive Matrix Factorization (PMF) model. Science of the Total Environment, 628–629(1547), 672–686. https://doi.org/10.1016/j.scitotenv.2018.02.096Tan, J., Duan, J., Zhen, N., He, K., & Hao, J. (2016). Chemical characteristics and source of sizefractionated atmospheric particle in haze episode in Beijing. Atmospheric Research, 167, 24–33. https://doi.org/10.1016/j.atmosres.2015.06.015Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., … Hsu, S. C. (2014). PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmospheric Chemistry and Physics, 14(16), 8679–8699. https://doi.org/10.5194/acp-14-8679-2014Tao, Jun, Zhang, L., Zhang, R., Wu, Y., Zhang, Z., Zhang, X., … Zhang, Y. (2016). Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis - a case study in Beijing, China. Science of the Total Environment, 543(7), 326–335. https://doi.org/10.1016/j.scitotenv.2015.11.057Tasić, M., Mijić, Z., Rajić, S., Stojić, A., Radenković, M., & Joksić, J. (2009). Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization. Journal of Physics: Conference Series, 162. https://doi.org/10.1088/1742-6596/162/1/012018Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., & Samara, C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric Environment, 44(18), 2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019Thermo Scientific. (2015). Partisol 2000 i Air Sampler / Partisol 2000 i -D Dichotomous Air Sampler. (110735).Tsyro, S. G. (2004). To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5? Atmospheric Chemistry and Physics Discussions, 4(5), 6025–6066. https://doi.org/10.5194/acpd-4-6025-2004UNED. (2001). ESPECTROMETRÍA DE FLUORESCENCIA DE RAYOS X.US-EPA. (2014). EPA Positive M atrix Factorization ( PM F ) 5 . 0 Fundamentals and. 136. Retrieved from https://www.epa.gov/sites/production/files/2015- 02/documents/pmf_5.0_user_guide.pdfValencia, A, Castaño, R., Sánchez, A., Bonilla, M., & Buitrago, C. (2010). Gestión de la contaminación ambiental : cuestión de corresponsabilidad. Revista de Ingeniería, 30, 90–99. https://doi.org/10.1200/JCO.2003.01.143Valencia, Alexander, Castaño, R. S., Sánchez, A., & Bonilla, M. (2010). Gestión de la contaminación ambiental : cuestión de corresponsabilidad. Revista de Ingeniería, 30, 90–99.Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., & Pekkanen, J. (2003). Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment, 37(5), 615–623. https://doi.org/10.1016/S1352-2310(02)00925-1Van den Bossche, J., Peters, J., Verwaeren, J., Botteldooren, D., Theunis, J., & De Baets, B. (2015). Mobile monitoring for mapping spatial variation in urban air quality: Development and validation of a methodology based on an extensive dataset. Atmospheric Environment, 105, 148–161. https://doi.org/10.1016/j.atmosenv.2015.01.017Vélez-Pereira, A. M., & Vergara, E. (2013). Caracterización de emisiones atmosféricas por fuentes fijas industriales del distrito de Barranquilla, Colombia. Memorias Del IV Congreso Colombiano y Conferencia Internacional de Calidad Del Aire y Salud Pública, (July), 1176– 1187. https://doi.org/978-958-8572-90-Vélez, A., Mejía, M., Salcedo, Y., & Y., C. (2009). Emisiones atmosféricas de origen biológico: generalidades , impactos asociados y medidas de control de aerosoles fungi. Re´Takvn, II(1), 19–32.Vengoechea, A. M., Rojano, R. E., & Arregoces, H. A. (2018). Dispersión y Concentración de Aerosoles Marinos PM 10 en una Ciudad Costera del Caribe. Información Tecnológica, 29(6), 123–130. https://doi.org/10.4067/s0718-07642018000600123Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., … Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 39(10), 827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007Viana, M., Querol, X., Alastuey, A., Gil, J. I., & Menéndez, M. (2006). Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere, 65(11), 2411–2418. https://doi.org/10.1016/j.chemosphere.2006.04.060Vivar, E. (2014). CUANTIFICACIÓN DE MATERIAL PARTICULADO PM10 Y SU EFECTO TOXICOLÓGICO-AMBIENTAL, EN LA CIUDAD DE AZOGUES.Wang, W., Yu, J., Cui, Y., He, J., Xue, P., Cao, W., … Wang, Y. (2018). Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmospheric Research, 203, 105–117. https://doi.org/10.1016/j.atmosres.2017.11.033Wang, X., Bi, X., Sheng, G., & Fu, J. (2006). Chemical composition and sources of PM10 and PM2.5 aerosols in Guangzhou, China. Environmental Monitoring and Assessment, 119(1– 3), 425–439. https://doi.org/10.1007/s10661-005-9034-3Wang, Y., Zhuang, G., Sun, Y., & An, Z. (2006). The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmospheric Environment, 40(34), 6579–6591. https://doi.org/10.1016/j.atmosenv.2006.05.066Wu, X., Vu, T. V., Shi, Z., Harrison, R. M., Liu, D., & Cen, K. (2018). Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmospheric Environment, 189, 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025X. Querol, A. Alastuey, T. Moreno, M.M. Viana, S. Castillo, J. Pey, S. Rodríguez, A. Cristóbal, S. Jiménez, M. Pallarés, J. de la Rosa, B. Artíñano, P. Salvador, M. Sánchez, S. García Dos Santos, M.D. Herce Garraleta, R. Fernández-Patier, S. Moreno-Grau, L. N., & M.C. Minguillón, E. Monfort, M.J. Sanz, R. Palomo-Marín, E. Pinilla-Gil, E. C. (2006). Material Particulado En España : Niveles , Composición. 41.Xue, F., Kikumoto, H., Li, X., & Ooka, R. (2018). Bayesian source term estimation of atmospheric releases in urban areas using LES approach. Journal of Hazardous Materials, 349(January), 68–78. https://doi.org/10.1016/j.jhazmat.2018.01.050Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., … Wang, W. (2016). Sources apportionment of PM 2.5 in a background site in the North China Plain. Science of the Total Environment, 541, 590–598. https://doi.org/10.1016/j.scitotenv.2015.09.123Yin, J., & Harrison, R. M. (2008). Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmospheric Environment, 42(5), 980–988. https://doi.org/10.1016/j.atmosenv.2007.10.005Zafra Mejía, C. A., Rodríguez Chitiva, L. G., & Torres Cabrera, Y. A. (2013). Metales pesados asociados con las partículas atmosféricas y sedimentadas de superficies viales: Soacha (Colombia). Revista Científica, 1(17), 113. https://doi.org/10.14483/23448350.4571Zárate, E., Belalcázar, L., Clappier, A., Manzi, V., & Van den Bergh, H. (2007). Air quality modelling over Bogota, Colombia: Combined techniques to estimate and evaluate emission inventories. Atmospheric Environment, 41(29), 6302–6318. https://doi.org/10.1016/j.atmosenv.2007.03.011Zhou, W., Wang, Q., Zhao, X., Xu, W., Chen, C., Du, W., … Sun, Y. (2018). Characterization and source apportionment of organic aerosol at 260gm on a meteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 18(6), 3951–3968. https://doi.org/10.5194/acp-18-3951-2018Zhu, Y., Huang, L., Li, J., Ying, Q., Zhang, H., Liu, X., … Hu, J. (2018). Sources of particulate matter in China: Insights from source apportionment studies published in 1987–2017. Environment International, 115(December 2017), 343–357. https://doi.org/10.1016/j.envint.2018.03.037ORIGINALEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.pdfEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.pdfapplication/pdf2037398https://repositorio.cuc.edu.co/bitstream/11323/6017/1/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia.pdfc7b859f4e10ff997bd5fd2c4bd20f195MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstream/11323/6017/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/6017/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia_0001.jpgEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia_0001.jpgimage/jpeg145436https://repositorio.cuc.edu.co/bitstream/11323/6017/5/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia_0001.jpgf353062339366a65568dfaf3c2d9bd15MD55open accessEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.pdf.jpgEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.pdf.jpgimage/jpeg27929https://repositorio.cuc.edu.co/bitstream/11323/6017/7/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia.pdf.jpg775674b4ccbb63ed877019686b9acc70MD57open accessTEXTEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.pdf.txtEstimación de fuentes de material particulado atmosférico (PM10 y PM2.5) en la ciudad de Barranquilla, Colombia.pdf.txttext/plain176233https://repositorio.cuc.edu.co/bitstream/11323/6017/8/Estimaci%c3%b3n%20de%20fuentes%20de%20material%20particulado%20%20atmosf%c3%a9rico%20%28PM10%20y%20PM2.5%29%20en%20la%20ciudad%20de%20Barranquilla%2c%20%20Colombia.pdf.txt07c1499446c5390b5ee9fe814431e0cdMD58open access11323/6017oai:repositorio.cuc.edu.co:11323/60172023-12-14 16:36:56.715Attribution-NonCommercial-ShareAlike 4.0 International|||http://creativecommons.org/licenses/by-nc-sa/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=