Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water
Activated carbon prepared from grape branches was used as a remarkable adsorbent to uptake naproxen and treat a synthetic mixture from aqueous solutions. The material presented a highly porous texture, a surface area of 938 m2 g−1 , and certain functional groups, which were key factors to uptake nap...
- Autores:
-
georgin, jordana
Netto, Matias S.
P. Franco, Dison S.
A. Piccilli, Daniel G.
DA BOIT MARTINELLO, KATIA
O. Silva, Luis F.
Foletto, Edson
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9215
- Acceso en línea:
- https://hdl.handle.net/11323/9215
https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-0
https://repositorio.cuc.edu.co/
- Palabra clave:
- Activated carbon
Vitis vinífera
Adsorption
Naproxen
Mechanism
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_6d0600c24a20023133942bc579753a17 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9215 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
title |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
spellingShingle |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water Activated carbon Vitis vinífera Adsorption Naproxen Mechanism |
title_short |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
title_full |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
title_fullStr |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
title_full_unstemmed |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
title_sort |
Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water |
dc.creator.fl_str_mv |
georgin, jordana Netto, Matias S. P. Franco, Dison S. A. Piccilli, Daniel G. DA BOIT MARTINELLO, KATIA O. Silva, Luis F. Foletto, Edson Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
georgin, jordana Netto, Matias S. P. Franco, Dison S. A. Piccilli, Daniel G. DA BOIT MARTINELLO, KATIA O. Silva, Luis F. Foletto, Edson Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Activated carbon Vitis vinífera Adsorption Naproxen Mechanism |
topic |
Activated carbon Vitis vinífera Adsorption Naproxen Mechanism |
description |
Activated carbon prepared from grape branches was used as a remarkable adsorbent to uptake naproxen and treat a synthetic mixture from aqueous solutions. The material presented a highly porous texture, a surface area of 938 m2 g−1 , and certain functional groups, which were key factors to uptake naproxen from effluents. The maximum adsorption capacity predicted by the Langmuir model for naproxen was 176 mg g−1. The thermodynamic study revealed that the adsorption process was endothermic and spontaneous. The linear driving force (LDF) model presented a good statistical adjustment to the experimental decay data. A suitable interaction pathway of naproxen adsorption onto activated carbon was proposed. The adsorbent material was highly efficient to treat a synthetic mixture containing several drugs and salts, reaching 95.63% removal. Last, it was found that the adsorbent can be regenerated up to 7 times using an HCl solution. Overall, the results proved that the activated carbon derived from grape branches could be an effective and sustainable adsorbent to treat wastewaters containing drugs. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-16 |
dc.date.accessioned.none.fl_str_mv |
2022-06-07T17:59:49Z |
dc.date.available.none.fl_str_mv |
2022-10-16 2022-06-07T17:59:49Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Georgin, J., Netto, M.S., Franco, D.S.P. et al. Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water. Environ Sci Pollut Res 29, 16988–17000 (2022). https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-0 |
dc.identifier.issn.spa.fl_str_mv |
1614-7499 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9215 |
dc.identifier.url.spa.fl_str_mv |
https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-0 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s11356-021-16792-0 |
dc.identifier.eissn.spa.fl_str_mv |
1614-7499 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Georgin, J., Netto, M.S., Franco, D.S.P. et al. Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water. Environ Sci Pollut Res 29, 16988–17000 (2022). https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-0 1614-7499 10.1007/s11356-021-16792-0 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9215 https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-0 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Environmental Science and Pollution Research |
dc.relation.references.spa.fl_str_mv |
Afolabi IC, Popoola SI, Bello OS. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemom Intell Lab Syst. 2020;203:104053. Available from: https://doi.org/10.1016/j.chemolab.2020.104053 Al Bahri M, Calvo L, Gilarranz MA, et al. (2012) Activated carbon from grape seeds upon chemical activation with phosphoric acid: application to the adsorption of diuron from water. Chem Eng J 203:348– 356. Available from: https://doi.org/10.1016/j.cej.2012.07.053 Bartoli M, Rosi L, Giovannelli A, et al. (2018) Microwave assisted pyrolysis of crop residues from Vitis vinifera. J Anal Appl Pyrolysis. 130:249–255. Available from: https://doi.org/10.1016/j.jaap.2017. 12.018 Bello OS, Adegoke KA, Sarumi OO, et al. (2019) Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal. Heliyon;5:e02323. Available from: https://doi.org/10. 1016/j.heliyon.2019.e02323 Benvenuti J, Fisch A, Dos Santos JHZ, et al. (2019) Silica-based adsorbent material with grape bagasse encapsulated by the sol-gel method for the adsorption of Basic Blue 41 dye. J Environ Chem Eng.;7: 103342. Available from: https://doi.org/10.1016/j.jece.2019.103342 Benyekkou N, Ghezzar MR, Abdelmalek F, et al. (2020) Elimination of paracetamol from water by a spent coffee grounds biomaterial. Environ Nanotechnology, Monit Manag 14:100396. Available from: https://doi.org/10.1016/j.enmm.2020.100396 Cruz G, Santiago PA, Braz CEM, Seleghim P Jr, Crnkovic PM (2018) Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. J Therm Anal Calorim. 132:1039–1053 Cuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential lowcost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater. 177:1046–1053 Cunha MR, Lima EC, Lima DR, et al. (2020) Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng;8:104506. Available from: https://doi.org/10. 1016/j.jece.2020.104506 Czech B, Shirvanimoghaddam K, Trojanowska E, naebe M (2020) Sorption of pharmaceuticals and personal care products (PPCPs) onto a sustainable cotton based adsorbent. Sustain Chem Pharm. 18:100324 Davarnejad R, Afshar S, Etehadfar P (2020) Activated carbon blended with grape stalks powder: properties modification and its application in a dye adsorption. Arab J Chem. 13:5463–5473. Available from. https://doi.org/10.1016/j.arabjc.2020.03.02 De Conti L, Ceretta CA, Melo GWB et al (2019) Intercropping of young grapevines with native grasses for phytoremediation of Cucontaminated soils. Chemosphere. 216:147–156 Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod. 124:103–113 Demiral I, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol. 102:3946–3951 Díaz E, Stozek S, Patiño Y et al (2019) Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Sci Technol. 79:480–488 Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci. 20: 3–7 Available from: https://link.springer.com/article/10.1007/ BF00849307 Elovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/ BF00908017 Feng X, Qiu B, Dang Y, Sun D (2021) Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chem Eng J. 412:128710 Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U Available from: http://www.degruyter.com/view/ j/zpch.1907.57.issue-1/zpch-1907-5723/zpch-1907-5723.xml Gao Y, Deshusses MA (2011) Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter. Environ Technol. 32:1719–1727 Georgin J, de O. Salomón YL, Franco DSP et al (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676 Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches. Environ Sci Pollut Res. 27:25727– 25739 Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography Trans Faraday Soc. 51:1540–1551 Available from: https:// linkinghub.elsevier.com/retrieve/pii/B9780080571782500054 Hasan Z, Choi EJ, Jhung SH. Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem Eng J. 2013;219:537–544. Available from: https://doi.org/10.1016/j.cej.2013.01.002, 2013. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/ S0032-9592(98)00112-5 Husein DZ, Hassanien R, Al-hakkani MF (2019) Heliyon Greensynthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon; 5:e02339. Available from: https://doi.org/10.1016/j.heliyon.2019.e02339 Husin NA, Muhamad M, Yahaya N, et al. (2021) Application of a new choline-imidazole based deep eutectic solvents i n hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Mater Chem Phys. ;261:124228. Available from: https://doi.org/10.1016/j. matchemphys.2021.124228 Jawad AH, Abdulhameed AS (2020) Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecol Environ;5:456–469. Available from: https://doi.org/ 10.1007/s40974-020-00177-z Jawad AH, Ismail K, Ishak MAM, et al. (2019a) Conversion of Malaysian low-rank coal to mesoporous activated carbon: structure characterization and adsorption properties. Chinese J Chem Eng. ;27:1716–1727. Available from: https://doi.org/10.1016/j.cjche. 2018.12.006 Jawad AH, Razuan R, Appaturi JN, et al. (2019b) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surfaces and Interfaces.;16:76–84. Available from: https://doi.org/10.1016/j.surfin.2019.04.012. Jin Q, Wang Z, Feng Y, et al. (2020) Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water. Environ Res. ;186:109442. Available from: https://doi.org/10.1016/j.envres.2020.109442 Karami A, Sabouni R, Ghommem M (2020). Experimental investigation of competitive co-adsorption of naproxen and diclofenac from water by an aluminum-based metal-organic framework. J Mol Liq.;305: 112808. Available from: https://doi.org/10.1016/j.molliq.2020. 112808 Kasperiski FM, Lima EC, Umpierres CS, et al. (2018) Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions. J Clean Prod 197:919–929. Available from: https://doi.org/10.1016/j. jclepro.2018.06.146 Kurczewska J, Cegłowski M, Schroeder G (2020) PAMAM-halloysite Dunino hybrid as an effective adsorbent of ibuprofen and naproxen from aqueous solutions. Appl Clay Sci. 2020;190:105603. Available from: https://doi.org/10.1016/j.clay.2020.105603 Kurtulbaş E, Bilgin M, Şahin S, et al. (2017) Comparison of different polymeric resins for naproxen removal from wastewater. J Mol Liq. 241:633–637. Available from: https://doi.org/10.1016/j.molliq. 2017.06.070 Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kung Svenska Vetenskap Handlingar. 24:1–39 Langmuir I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc;40:1361–1403. Available from: https://doi.org/10.1021/ja02242a004 Le Van K, Luong Thi TT (2014) Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog Nat Sci Mater Int 24:191–198. Available from: https://doi.org/10.1016/j. pnsc.2014.05.012 Leite AB, Saucier C, Lima EC, dos Reis GS, Umpierres CS, Mello BL, Shirmardi M, Dias SLP, Sampaio CH (2018) Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds. Environ Sci Pollut Res 25: 7647–7661. https://doi.org/10.1007/s11356-017-1105-9 Li Y, Wang Y, He L, et al. (2020) Preparation of poly(4-vinylpyridine)- functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. J Hazard Mater ;383:121144. Available from: https://doi.org/10.1016/j.jhazmat.2019.121144 Li Z, Jin Y, Chen T, et al. (2021) Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity. Sep Purif Technol 272:118659. Available from: https://doi.org/10.1016/j. seppur.2021.118659 Lima DR, Hosseini-Bandegharaei A, Thue PS, et al. (2019a) Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surfaces A Physicochem Eng Asp 583:123966. Available from: https://doi.org/10.1016/j.colsurfa.2019.123966 Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, et al. (2019b) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 2019;273:425–434. Available from: https://doi.org/10.1016/j.molliq.2018.10.048 Lima EC, Gomes AA, Tran HN (2020) Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS° and ΔH°). J Mol Liq 311:113315. https://doi.org/10.1016/j.molliq.2020.113315 Martínez M, Miralles N, Hidalgo S et al (2006) Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J Hazard Mater. 133:203–211 Mohamed AK, Mahmoud ME (2020) Nanoscale Pisum sativum pods biochar encapsulated starch hydrogel: a novel nanosorbent for efficient chromium (VI) ions and naproxen drug removal. Bioresour Technol. 308:123263. Available from: https://doi.org/10.1016/j. biortech.2020.123263 Nurchi VM, Crespo-Alonso M, Pilo MI, et al. (2019) Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater. Arab J Chem 12:1141–1147. Available from: https://doi.org/10.1016/j. arabjc.2015.01.006 Omorogie MO, Babalola JO, Ismaeel MO, et al. (2021) Activated carbon from Nauclea diderrichii agricultural waste–a promising adsorbent for ibuprofen, methylene blue and CO2. Adv Powder Technol 32: 866–874. Available from: https://doi.org/10.1016/j.apt.2021.01. 031. Önal Y, Akmil-Başar C, Sarici-Özdemir Ç et al (2007a) Textural development of sugar beet bagasse activated with ZnCl2. J Hazard Mater. 142:138–143 Önal Y, Akmil-Başar C, Sarici-Özdemir Ç (2007b) Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization. J Hazard Mater. 148:727–734 Phasuphan W, Praphairaksit N, Imyim A (2019) Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J Mol Liq. 294:111554. Available from: https:// doi.org/10.1016/j.molliq.2019.111554 Portinho R, Zanella O, Féris LA (2017) Grape stalk application for caffeine removal through adsorption. J Environ Manage. 202:178–187 Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application—a review. Ind Crops Prod 128:405–423. Available from: https://doi.org/10.1016/j.indcrop. 2018.11.041 Salomón YLDO, Georgin J, Franco DSP et al (2021) High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng. 9:104911 Shao Y, Chen Z, Hollert H, et al. (2019) Toxicity of 10 organic micropollutants and their mixture: implications for aquatic risk assessment. Sci Total Environ 666:1273–1282. Available from: https://doi.org/10.1016/j.scitotenv.2019.02.047 Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 57:603–619 Available from: https://www.degruyter.com/document/doi/10. 1351/pac198557040603/html Smiljanić D, de Gennaro B, Daković A, Galzerano B, Germinario C, Izzo F, Rottinghaus GE, Langella A (2021) Removal of non-steroidal anti-inflammatory drugs from water by zeolite-rich composites: the interference of inorganic anions on the ibuprofen and naproxen adsorption. J Environ Manage. 286:112168 Stefanello LO, Schwalbert R, Schwalbert RA, et al. (2021) Ideal nitrogen concentration in leaves for the production of high-quality grapes cv ‘Alicante Bouschet’ (Vitis vinifera L.) subjected to modes of application and nitrogen doses. Eur J Agron. 123:126200. Available from: https://doi.org/10.1016/j.eja.2020.126200 Stefanello LO, Schwalbert R, Schwalbert RA, et al. (2020) Nitrogen supply method affects growth, yield and must composition of young grape vines (Vitis vinifera L. cv Alicante Bouschet) in southern Brazil. Sci Hortic (Amsterdam) 261:108910. Available from: https://doi.org/10.1016/j.scienta.2019.108910 Subedi B, Du B, Chambliss CK et al (2012) Occurrence of pharmaceuticals and personal care products in German fish tissue: a national study. Environ Sci Technol. 46:9047–9054 Sun W, Li H, Li H, Li S, Cao X (2019) Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation. Chem Eng J. 360:645–653 Temkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. Jour Phys Chem (USSR) 13:851–867 Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 87:1051–1069 Thue PS, Lima EC, Sieliechi JM, Saucier C, Dias SLP, Vaghetti JCP, Rodembusch FS, Pavan FA (2017) Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J Colloid Interface Sci 486:163–175. https://doi.org/10.1016/j.jcis. 2016.09.070 Tomul F, Arslan Y, Kabak B, Trak D, Kendüzler E, Lima EC, Tran HN (2020) Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Sci Total Environ. 726:137828 Tran HN, Wang YF, You SJ, et al. (2017) Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of Π–Π interactions. Process Saf Environ Prot.107:168–180. Available from: https://doi.org/10.1016/j.psep.2017.02.010 Üner O, Bayrak Y (2018) The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater. 268:225–234. Available from: https://doi.org/10.1016/j. micromeso.2018.04.037 Üner O. (2019) Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Mater Chem Phys 237:121858. Available from: https://doi.org/10. 1016/j.matchemphys.2019.121858 Villaescusa I, Fiol N, Martínez M et al (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 38:992–1002 Wang Y, Wang S Ling, Xie T, et al. (2020) Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresour Technol. 316: 123929. Available from: https://doi.org/10.1016/j.biortech.2020. 123929 Xue S, Tu B, Li Z, et al. (2021) Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments. Colloids Surfaces A Physicochem Eng Asp 618:126489. Available from: https://doi. org/10.1016/j.colsurfa.2021.126489 Yönten V, Sanyürek NK, Kivanç MR (2020) A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces. 20:1–8 Yoshizawa N, Maruyama K, Yamada Y, Ishikawa E, Kobayashi M, Toda Y, Shiraishi M (2002) XRD evaluation of KOH activation process and influence of coal rank. Fuel. 81:1717–1722 Zailuddin NLI, Husseinsyah S, Hahary FN et al (2016) Treatment of oil palm empty fruit bunch regenerated cellulose biocomposite films using methacrylic acid. BioResources. 11:873–885 Zazycki MA, Godinho M, Perondi D, et al. (2018) New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J Clean Prod 171:57–65. Available from: https://doi.org/10.1016/j.jclepro.2017.10.007 Zubrik A, Matik M, Hredzák S, Lovás M, Danková Z, Kováčová M, Briančin J (2017) Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J Clean Prod. 143:643–653 |
dc.relation.citationendpage.spa.fl_str_mv |
17000 |
dc.relation.citationstartpage.spa.fl_str_mv |
16988 |
dc.relation.citationissue.spa.fl_str_mv |
12 |
dc.relation.citationvolume.spa.fl_str_mv |
29 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
13 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Science + Business Media |
dc.publisher.place.spa.fl_str_mv |
Germany |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link-springer-com.ezproxy.cuc.edu.co/article/10.1007/s11356-021-16792-0 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/38a7f69b-95e6-4a0f-bc61-1d8ad8d521fa/download https://repositorio.cuc.edu.co/bitstreams/c6d28fad-b627-42ce-9b5c-5ea6600dab01/download https://repositorio.cuc.edu.co/bitstreams/a380204b-38b5-4a83-a1bc-9b9ce6b78185/download https://repositorio.cuc.edu.co/bitstreams/fae16831-ae16-418b-8b5d-76028befa831/download |
bitstream.checksum.fl_str_mv |
0189e2216ad7b4eb3ad2ed2b53bb051c e30e9215131d99561d40d6b0abbe9bad 9cb0c6f2dc12f7aa499156f97175d1b5 624b7bd81b9390f4c1c3d2287234ae51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760701778165760 |
spelling |
georgin, jordanaNetto, Matias S.P. Franco, Dison S.A. Piccilli, Daniel G.DA BOIT MARTINELLO, KATIAO. Silva, Luis F.Foletto, EdsonDotto, Guilherme Luiz2022-06-07T17:59:49Z2022-10-162022-06-07T17:59:49Z2021-10-16Georgin, J., Netto, M.S., Franco, D.S.P. et al. Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water. Environ Sci Pollut Res 29, 16988–17000 (2022). https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-01614-7499https://hdl.handle.net/11323/9215https://doi-org.ezproxy.cuc.edu.co/10.1007/s11356-021-16792-010.1007/s11356-021-16792-01614-7499Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Activated carbon prepared from grape branches was used as a remarkable adsorbent to uptake naproxen and treat a synthetic mixture from aqueous solutions. The material presented a highly porous texture, a surface area of 938 m2 g−1 , and certain functional groups, which were key factors to uptake naproxen from effluents. The maximum adsorption capacity predicted by the Langmuir model for naproxen was 176 mg g−1. The thermodynamic study revealed that the adsorption process was endothermic and spontaneous. The linear driving force (LDF) model presented a good statistical adjustment to the experimental decay data. A suitable interaction pathway of naproxen adsorption onto activated carbon was proposed. The adsorbent material was highly efficient to treat a synthetic mixture containing several drugs and salts, reaching 95.63% removal. Last, it was found that the adsorbent can be regenerated up to 7 times using an HCl solution. Overall, the results proved that the activated carbon derived from grape branches could be an effective and sustainable adsorbent to treat wastewaters containing drugs.13 páginasapplication/pdfengSpringer Science + Business MediaGermany© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer NatureAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfWoody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from waterArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://link-springer-com.ezproxy.cuc.edu.co/article/10.1007/s11356-021-16792-0Environmental Science and Pollution ResearchAfolabi IC, Popoola SI, Bello OS. Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemom Intell Lab Syst. 2020;203:104053. Available from: https://doi.org/10.1016/j.chemolab.2020.104053Al Bahri M, Calvo L, Gilarranz MA, et al. (2012) Activated carbon from grape seeds upon chemical activation with phosphoric acid: application to the adsorption of diuron from water. Chem Eng J 203:348– 356. Available from: https://doi.org/10.1016/j.cej.2012.07.053Bartoli M, Rosi L, Giovannelli A, et al. (2018) Microwave assisted pyrolysis of crop residues from Vitis vinifera. J Anal Appl Pyrolysis. 130:249–255. Available from: https://doi.org/10.1016/j.jaap.2017. 12.018Bello OS, Adegoke KA, Sarumi OO, et al. (2019) Functionalized locust bean pod (Parkia biglobosa) activated carbon for Rhodamine B dye removal. Heliyon;5:e02323. Available from: https://doi.org/10. 1016/j.heliyon.2019.e02323Benvenuti J, Fisch A, Dos Santos JHZ, et al. (2019) Silica-based adsorbent material with grape bagasse encapsulated by the sol-gel method for the adsorption of Basic Blue 41 dye. J Environ Chem Eng.;7: 103342. Available from: https://doi.org/10.1016/j.jece.2019.103342Benyekkou N, Ghezzar MR, Abdelmalek F, et al. (2020) Elimination of paracetamol from water by a spent coffee grounds biomaterial. Environ Nanotechnology, Monit Manag 14:100396. Available from: https://doi.org/10.1016/j.enmm.2020.100396Cruz G, Santiago PA, Braz CEM, Seleghim P Jr, Crnkovic PM (2018) Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. J Therm Anal Calorim. 132:1039–1053Cuerda-Correa EM, Domínguez-Vargas JR, Olivares-Marín FJ, de Heredia JB (2010) On the use of carbon blacks as potential lowcost adsorbents for the removal of non-steroidal anti-inflammatory drugs from river water. J Hazard Mater. 177:1046–1053Cunha MR, Lima EC, Lima DR, et al. (2020) Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: use of activated carbon derived from Butia catarinensis. J Environ Chem Eng;8:104506. Available from: https://doi.org/10. 1016/j.jece.2020.104506Czech B, Shirvanimoghaddam K, Trojanowska E, naebe M (2020) Sorption of pharmaceuticals and personal care products (PPCPs) onto a sustainable cotton based adsorbent. Sustain Chem Pharm. 18:100324Davarnejad R, Afshar S, Etehadfar P (2020) Activated carbon blended with grape stalks powder: properties modification and its application in a dye adsorption. Arab J Chem. 13:5463–5473. Available from. https://doi.org/10.1016/j.arabjc.2020.03.02De Conti L, Ceretta CA, Melo GWB et al (2019) Intercropping of young grapevines with native grasses for phytoremediation of Cucontaminated soils. Chemosphere. 216:147–156Demiral H, Güngör C (2016) Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod. 124:103–113Demiral I, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol. 102:3946–3951Díaz E, Stozek S, Patiño Y et al (2019) Electrochemical degradation of naproxen from water by anodic oxidation with multiwall carbon nanotubes glassy carbon electrode. Water Sci Technol. 79:480–488Dubinin MM, Astakhov VA (1971) Development of the concepts of volume filling of micropores in the adsorption of gases and vapors by microporous adsorbents. Bull Acad Sci USSR Div Chem Sci. 20: 3–7 Available from: https://link.springer.com/article/10.1007/ BF00849307Elovich SY, Larionov OG (1962) Theory of adsorption from nonelectrolyte solutions on solid adsorbents - 2. Experimental verification of the equation for the adsorption isotherm from solutions. Bull Acad Sci USSR Div Chem Sci 11:198–203. https://doi.org/10.1007/ BF00908017Feng X, Qiu B, Dang Y, Sun D (2021) Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chem Eng J. 412:128710Freundlich H (1907) Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie 57U Available from: http://www.degruyter.com/view/ j/zpch.1907.57.issue-1/zpch-1907-5723/zpch-1907-5723.xmlGao Y, Deshusses MA (2011) Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter. Environ Technol. 32:1719–1727Georgin J, de O. Salomón YL, Franco DSP et al (2021) Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen. J Environ Chem Eng 9:105676Georgin J, Franco DSP, Netto MS, Allasia D, Oliveira MLS, Dotto GL (2020) Evaluation of Ocotea puberula bark powder (OPBP) as an effective adsorbent to uptake crystal violet from colored effluents: alternative kinetic approaches. Environ Sci Pollut Res. 27:25727– 25739Glueckauf E (1955) Theory of chromatography. Part 10.—Formulæ for diffusion into spheres and their application to chromatography Trans Faraday Soc. 51:1540–1551 Available from: https:// linkinghub.elsevier.com/retrieve/pii/B9780080571782500054Hasan Z, Choi EJ, Jhung SH. Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups. Chem Eng J. 2013;219:537–544. Available from: https://doi.org/10.1016/j.cej.2013.01.002, 2013.Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/ S0032-9592(98)00112-5Husein DZ, Hassanien R, Al-hakkani MF (2019) Heliyon Greensynthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon; 5:e02339. Available from: https://doi.org/10.1016/j.heliyon.2019.e02339Husin NA, Muhamad M, Yahaya N, et al. (2021) Application of a new choline-imidazole based deep eutectic solvents i n hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples. Mater Chem Phys. ;261:124228. Available from: https://doi.org/10.1016/j. matchemphys.2021.124228Jawad AH, Abdulhameed AS (2020) Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecol Environ;5:456–469. Available from: https://doi.org/ 10.1007/s40974-020-00177-zJawad AH, Ismail K, Ishak MAM, et al. (2019a) Conversion of Malaysian low-rank coal to mesoporous activated carbon: structure characterization and adsorption properties. Chinese J Chem Eng. ;27:1716–1727. Available from: https://doi.org/10.1016/j.cjche. 2018.12.006Jawad AH, Razuan R, Appaturi JN, et al. (2019b) Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus)rind prepared via one-step liquid phase H 2 SO 4 activation. Surfaces and Interfaces.;16:76–84. Available from: https://doi.org/10.1016/j.surfin.2019.04.012.Jin Q, Wang Z, Feng Y, et al. (2020) Grape pomace and its secondary waste management: biochar production for a broad range of lead (Pb) removal from water. Environ Res. ;186:109442. Available from: https://doi.org/10.1016/j.envres.2020.109442Karami A, Sabouni R, Ghommem M (2020). Experimental investigation of competitive co-adsorption of naproxen and diclofenac from water by an aluminum-based metal-organic framework. J Mol Liq.;305: 112808. Available from: https://doi.org/10.1016/j.molliq.2020. 112808Kasperiski FM, Lima EC, Umpierres CS, et al. (2018) Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: highly efficient removal of captopril from aqueous solutions. J Clean Prod 197:919–929. Available from: https://doi.org/10.1016/j. jclepro.2018.06.146Kurczewska J, Cegłowski M, Schroeder G (2020) PAMAM-halloysite Dunino hybrid as an effective adsorbent of ibuprofen and naproxen from aqueous solutions. Appl Clay Sci. 2020;190:105603. Available from: https://doi.org/10.1016/j.clay.2020.105603Kurtulbaş E, Bilgin M, Şahin S, et al. (2017) Comparison of different polymeric resins for naproxen removal from wastewater. J Mol Liq. 241:633–637. Available from: https://doi.org/10.1016/j.molliq. 2017.06.070Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kung Svenska Vetenskap Handlingar. 24:1–39Langmuir I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc;40:1361–1403. Available from: https://doi.org/10.1021/ja02242a004Le Van K, Luong Thi TT (2014) Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor. Prog Nat Sci Mater Int 24:191–198. Available from: https://doi.org/10.1016/j. pnsc.2014.05.012Leite AB, Saucier C, Lima EC, dos Reis GS, Umpierres CS, Mello BL, Shirmardi M, Dias SLP, Sampaio CH (2018) Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds. Environ Sci Pollut Res 25: 7647–7661. https://doi.org/10.1007/s11356-017-1105-9Li Y, Wang Y, He L, et al. (2020) Preparation of poly(4-vinylpyridine)- functionalized magnetic Al-MOF for the removal of naproxen from aqueous solution. J Hazard Mater ;383:121144. Available from: https://doi.org/10.1016/j.jhazmat.2019.121144Li Z, Jin Y, Chen T, et al. (2021) Trimethylchlorosilane modified activated carbon for the adsorption of VOCs at high humidity. Sep Purif Technol 272:118659. Available from: https://doi.org/10.1016/j. seppur.2021.118659Lima DR, Hosseini-Bandegharaei A, Thue PS, et al. (2019a) Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surfaces A Physicochem Eng Asp 583:123966. Available from: https://doi.org/10.1016/j.colsurfa.2019.123966Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, et al. (2019b) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 2019;273:425–434. Available from: https://doi.org/10.1016/j.molliq.2018.10.048Lima EC, Gomes AA, Tran HN (2020) Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS° and ΔH°). J Mol Liq 311:113315. https://doi.org/10.1016/j.molliq.2020.113315Martínez M, Miralles N, Hidalgo S et al (2006) Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. J Hazard Mater. 133:203–211Mohamed AK, Mahmoud ME (2020) Nanoscale Pisum sativum pods biochar encapsulated starch hydrogel: a novel nanosorbent for efficient chromium (VI) ions and naproxen drug removal. Bioresour Technol. 308:123263. Available from: https://doi.org/10.1016/j. biortech.2020.123263Nurchi VM, Crespo-Alonso M, Pilo MI, et al. (2019) Sorption of ofloxacin and chrysoidine by grape stalk. A representative case of biomass removal of emerging pollutants from wastewater. Arab J Chem 12:1141–1147. Available from: https://doi.org/10.1016/j. arabjc.2015.01.006Omorogie MO, Babalola JO, Ismaeel MO, et al. (2021) Activated carbon from Nauclea diderrichii agricultural waste–a promising adsorbent for ibuprofen, methylene blue and CO2. Adv Powder Technol 32: 866–874. Available from: https://doi.org/10.1016/j.apt.2021.01. 031.Önal Y, Akmil-Başar C, Sarici-Özdemir Ç et al (2007a) Textural development of sugar beet bagasse activated with ZnCl2. J Hazard Mater. 142:138–143Önal Y, Akmil-Başar C, Sarici-Özdemir Ç (2007b) Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: kinetic, equilibrium and thermodynamic characterization. J Hazard Mater. 148:727–734Phasuphan W, Praphairaksit N, Imyim A (2019) Removal of ibuprofen, diclofenac, and naproxen from water using chitosan-modified waste tire crumb rubber. J Mol Liq. 294:111554. Available from: https:// doi.org/10.1016/j.molliq.2019.111554Portinho R, Zanella O, Féris LA (2017) Grape stalk application for caffeine removal through adsorption. J Environ Manage. 202:178–187Rangabhashiyam S, Balasubramanian P (2019) The potential of lignocellulosic biomass precursors for biochar production: performance, mechanism and wastewater application—a review. Ind Crops Prod 128:405–423. Available from: https://doi.org/10.1016/j.indcrop. 2018.11.041Salomón YLDO, Georgin J, Franco DSP et al (2021) High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana). J Environ Chem Eng. 9:104911Shao Y, Chen Z, Hollert H, et al. (2019) Toxicity of 10 organic micropollutants and their mixture: implications for aquatic risk assessment. Sci Total Environ 666:1273–1282. Available from: https://doi.org/10.1016/j.scitotenv.2019.02.047Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem. 57:603–619 Available from: https://www.degruyter.com/document/doi/10. 1351/pac198557040603/htmlSmiljanić D, de Gennaro B, Daković A, Galzerano B, Germinario C, Izzo F, Rottinghaus GE, Langella A (2021) Removal of non-steroidal anti-inflammatory drugs from water by zeolite-rich composites: the interference of inorganic anions on the ibuprofen and naproxen adsorption. J Environ Manage. 286:112168Stefanello LO, Schwalbert R, Schwalbert RA, et al. (2021) Ideal nitrogen concentration in leaves for the production of high-quality grapes cv ‘Alicante Bouschet’ (Vitis vinifera L.) subjected to modes of application and nitrogen doses. Eur J Agron. 123:126200. Available from: https://doi.org/10.1016/j.eja.2020.126200Stefanello LO, Schwalbert R, Schwalbert RA, et al. (2020) Nitrogen supply method affects growth, yield and must composition of young grape vines (Vitis vinifera L. cv Alicante Bouschet) in southern Brazil. Sci Hortic (Amsterdam) 261:108910. Available from: https://doi.org/10.1016/j.scienta.2019.108910Subedi B, Du B, Chambliss CK et al (2012) Occurrence of pharmaceuticals and personal care products in German fish tissue: a national study. Environ Sci Technol. 46:9047–9054Sun W, Li H, Li H, Li S, Cao X (2019) Adsorption mechanisms of ibuprofen and naproxen to UiO-66 and UiO-66-NH2: batch experiment and DFT calculation. Chem Eng J. 360:645–653Temkin M, Pyzhev V (1939) Kinetics of the synthesis of ammonia on promoted iron catalysts. Jour Phys Chem (USSR) 13:851–867Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 87:1051–1069Thue PS, Lima EC, Sieliechi JM, Saucier C, Dias SLP, Vaghetti JCP, Rodembusch FS, Pavan FA (2017) Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J Colloid Interface Sci 486:163–175. https://doi.org/10.1016/j.jcis. 2016.09.070Tomul F, Arslan Y, Kabak B, Trak D, Kendüzler E, Lima EC, Tran HN (2020) Peanut shells-derived biochars prepared from different carbonization processes: comparison of characterization and mechanism of naproxen adsorption in water. Sci Total Environ. 726:137828Tran HN, Wang YF, You SJ, et al. (2017) Insights into the mechanism of cationic dye adsorption on activated charcoal: the importance of Π–Π interactions. Process Saf Environ Prot.107:168–180. Available from: https://doi.org/10.1016/j.psep.2017.02.010Üner O, Bayrak Y (2018) The effect of carbonization temperature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater. 268:225–234. Available from: https://doi.org/10.1016/j. micromeso.2018.04.037Üner O. (2019) Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Mater Chem Phys 237:121858. Available from: https://doi.org/10. 1016/j.matchemphys.2019.121858Villaescusa I, Fiol N, Martínez M et al (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res. 38:992–1002Wang Y, Wang S Ling, Xie T, et al. (2020) Activated carbon derived from waste tangerine seed for the high-performance adsorption of carbamate pesticides from water and plant. Bioresour Technol. 316: 123929. Available from: https://doi.org/10.1016/j.biortech.2020. 123929Xue S, Tu B, Li Z, et al. (2021) Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments. Colloids Surfaces A Physicochem Eng Asp 618:126489. Available from: https://doi. org/10.1016/j.colsurfa.2021.126489Yönten V, Sanyürek NK, Kivanç MR (2020) A thermodynamic and kinetic approach to adsorption of methyl orange from aqueous solution using a low cost activated carbon prepared from Vitis vinifera L. Surfaces and Interfaces. 20:1–8Yoshizawa N, Maruyama K, Yamada Y, Ishikawa E, Kobayashi M, Toda Y, Shiraishi M (2002) XRD evaluation of KOH activation process and influence of coal rank. Fuel. 81:1717–1722Zailuddin NLI, Husseinsyah S, Hahary FN et al (2016) Treatment of oil palm empty fruit bunch regenerated cellulose biocomposite films using methacrylic acid. BioResources. 11:873–885Zazycki MA, Godinho M, Perondi D, et al. (2018) New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions. J Clean Prod 171:57–65. Available from: https://doi.org/10.1016/j.jclepro.2017.10.007Zubrik A, Matik M, Hredzák S, Lovás M, Danková Z, Kováčová M, Briančin J (2017) Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J Clean Prod. 143:643–65317000169881229Activated carbonVitis viníferaAdsorptionNaproxenMechanismPublicationORIGINALGeorgin2022_Article_WoodyResiduesOfTheGrapeProduct.pdfGeorgin2022_Article_WoodyResiduesOfTheGrapeProduct.pdfapplication/pdf1517126https://repositorio.cuc.edu.co/bitstreams/38a7f69b-95e6-4a0f-bc61-1d8ad8d521fa/download0189e2216ad7b4eb3ad2ed2b53bb051cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c6d28fad-b627-42ce-9b5c-5ea6600dab01/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTGeorgin2022_Article_WoodyResiduesOfTheGrapeProduct.pdf.txtGeorgin2022_Article_WoodyResiduesOfTheGrapeProduct.pdf.txttext/plain52024https://repositorio.cuc.edu.co/bitstreams/a380204b-38b5-4a83-a1bc-9b9ce6b78185/download9cb0c6f2dc12f7aa499156f97175d1b5MD53THUMBNAILGeorgin2022_Article_WoodyResiduesOfTheGrapeProduct.pdf.jpgGeorgin2022_Article_WoodyResiduesOfTheGrapeProduct.pdf.jpgimage/jpeg14873https://repositorio.cuc.edu.co/bitstreams/fae16831-ae16-418b-8b5d-76028befa831/download624b7bd81b9390f4c1c3d2287234ae51MD5411323/9215oai:repositorio.cuc.edu.co:11323/92152024-09-17 10:18:21.326https://creativecommons.org/licenses/by/4.0/© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Natureopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |