Thermodynamic analysis of Kerr-Newman black holes

In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy cons...

Full description

Autores:
Ruiz, O
Molina, U
Viloria, P
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6160
Acceso en línea:
https://hdl.handle.net/11323/6160
https://repositorio.cuc.edu.co/
Palabra clave:
Hawking temperature
Kerr-Newman
Thermodynamic analysis
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_6b76e399673ae4c1d0ebbe4d32a9efad
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6160
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Thermodynamic analysis of Kerr-Newman black holes
title Thermodynamic analysis of Kerr-Newman black holes
spellingShingle Thermodynamic analysis of Kerr-Newman black holes
Hawking temperature
Kerr-Newman
Thermodynamic analysis
title_short Thermodynamic analysis of Kerr-Newman black holes
title_full Thermodynamic analysis of Kerr-Newman black holes
title_fullStr Thermodynamic analysis of Kerr-Newman black holes
title_full_unstemmed Thermodynamic analysis of Kerr-Newman black holes
title_sort Thermodynamic analysis of Kerr-Newman black holes
dc.creator.fl_str_mv Ruiz, O
Molina, U
Viloria, P
dc.contributor.author.spa.fl_str_mv Ruiz, O
Molina, U
Viloria, P
dc.subject.spa.fl_str_mv Hawking temperature
Kerr-Newman
Thermodynamic analysis
topic Hawking temperature
Kerr-Newman
Thermodynamic analysis
description In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy conservation through a relationship between the mass M, the charge Q and the angular momentum J, then we implement the Hawking's theorem of areas by setting an upper bound to the energy and we get finally the surface gravity of the black hole. In addition, we study the relationship between the black hole parameters (mass M, angular momentum J, electric charge Q) and the Hawking temperature.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-04-12T18:35:25Z
dc.date.available.none.fl_str_mv 2020-04-12T18:35:25Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6160
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1742-6596/1219/1/012016
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
doi:10.1088/1742-6596/1219/1/012016
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6160
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Hawking S W 1974 Black Hole Explosions? Nature 248 30
[2] Hawking S W 1975 Particle Creation by Black Holes Comm. Math. Phys. 43 199
[3] Pankovic V 2009 Black Holes - A Simplified Theory for Quantum Gravity Non-Specialists, arXiv:0911.1026v1 [physics.gen-ph]
[4] Belgiorno F, Caciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino V G and Faccion D 2010 Hawking Radiation from Ultrashort Laser Pulse Filaments Phys. Rev. Lett. 105 203901
[5] Miranda C, Molina U and Viloria P 2014 Retardo temporal en las lentes por galaxias en el contexto de Reissner - Nordstrom Revista Mexicana de Física 60(3) 190
[6] Newman E, Couch R, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a rotating charged mass J. Math. Phys. 6 918
[7] Hawking S W 1971 Gravitational radiation from colliding black holes Phys. Rev. Lett. 26 1344
[8] Hawking S W 1972 Black Holes in General Relativity Commun. Math. Phys. 25 152
[9] Christodoulou D 1970 Reversible and irreversible transformations in black hole physics Phys. Rev. Lett. 25 1596
[10] Christodoulou D, Ruffini R 1971 Reversible transformations of a charged black hole Phys. Rev. D. 4 3552
[11] Misner C, Thorne K and Wheeler J 1973 Gravitation (San Francisco: W.H. Freeman & Co)
[12] Bardeen J M, Carter B and Hawking S W 1973, The Four laws of black hole mechanics Commun. Math. Phys. 31 161
[13] Bekenstein J 1972 Black holes and the second law Lett. Nuo. Cim. 4 737
[14] Bekenstein J 1974 Generalized Second Law of Thermodynamics in Black Hole Physics Phys. Rev. D. 9 3292
[15] Bekenstein J 1973 Black Holes and Entropy Phys. Rev. D 7 2333
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/6160/1/Thermodynamic%20analysis%20of%20Kerr-Newman%20black%20holes.pdf
https://repositorio.cuc.edu.co/bitstream/11323/6160/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/6160/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/6160/4/Thermodynamic%20analysis%20of%20Kerr-Newman%20black%20holes.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/6160/5/Thermodynamic%20analysis%20of%20Kerr-Newman%20black%20holes.pdf.txt
bitstream.checksum.fl_str_mv ad659414bf390b79e4ef1e2fcb019e2c
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
007557c4c7471dbd34fc11873ec6cb19
2df8822a430b6a8656d1c1920142bf1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400215709843456
spelling Ruiz, O73a792c773691fcd634083f72d3d9e2bMolina, Ub944ee9a56a4ec61c12d0049003957c7Viloria, Pb187f29ffbb66e21e38836ef35de4f4e2020-04-12T18:35:25Z2020-04-12T18:35:25Z20191742-65881742-6596https://hdl.handle.net/11323/6160doi:10.1088/1742-6596/1219/1/012016Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy conservation through a relationship between the mass M, the charge Q and the angular momentum J, then we implement the Hawking's theorem of areas by setting an upper bound to the energy and we get finally the surface gravity of the black hole. In addition, we study the relationship between the black hole parameters (mass M, angular momentum J, electric charge Q) and the Hawking temperature.engJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hawking temperatureKerr-NewmanThermodynamic analysisThermodynamic analysis of Kerr-Newman black holesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Hawking S W 1974 Black Hole Explosions? Nature 248 30[2] Hawking S W 1975 Particle Creation by Black Holes Comm. Math. Phys. 43 199[3] Pankovic V 2009 Black Holes - A Simplified Theory for Quantum Gravity Non-Specialists, arXiv:0911.1026v1 [physics.gen-ph][4] Belgiorno F, Caciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino V G and Faccion D 2010 Hawking Radiation from Ultrashort Laser Pulse Filaments Phys. Rev. Lett. 105 203901[5] Miranda C, Molina U and Viloria P 2014 Retardo temporal en las lentes por galaxias en el contexto de Reissner - Nordstrom Revista Mexicana de Física 60(3) 190[6] Newman E, Couch R, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a rotating charged mass J. Math. Phys. 6 918[7] Hawking S W 1971 Gravitational radiation from colliding black holes Phys. Rev. Lett. 26 1344[8] Hawking S W 1972 Black Holes in General Relativity Commun. Math. Phys. 25 152[9] Christodoulou D 1970 Reversible and irreversible transformations in black hole physics Phys. Rev. Lett. 25 1596[10] Christodoulou D, Ruffini R 1971 Reversible transformations of a charged black hole Phys. Rev. D. 4 3552[11] Misner C, Thorne K and Wheeler J 1973 Gravitation (San Francisco: W.H. Freeman & Co)[12] Bardeen J M, Carter B and Hawking S W 1973, The Four laws of black hole mechanics Commun. Math. Phys. 31 161[13] Bekenstein J 1972 Black holes and the second law Lett. Nuo. Cim. 4 737[14] Bekenstein J 1974 Generalized Second Law of Thermodynamics in Black Hole Physics Phys. Rev. D. 9 3292[15] Bekenstein J 1973 Black Holes and Entropy Phys. Rev. D 7 2333ORIGINALThermodynamic analysis of Kerr-Newman black holes.pdfThermodynamic analysis of Kerr-Newman black holes.pdfapplication/pdf677034https://repositorio.cuc.edu.co/bitstream/11323/6160/1/Thermodynamic%20analysis%20of%20Kerr-Newman%20black%20holes.pdfad659414bf390b79e4ef1e2fcb019e2cMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/6160/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/6160/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILThermodynamic analysis of Kerr-Newman black holes.pdf.jpgThermodynamic analysis of Kerr-Newman black holes.pdf.jpgimage/jpeg26901https://repositorio.cuc.edu.co/bitstream/11323/6160/4/Thermodynamic%20analysis%20of%20Kerr-Newman%20black%20holes.pdf.jpg007557c4c7471dbd34fc11873ec6cb19MD54open accessTEXTThermodynamic analysis of Kerr-Newman black holes.pdf.txtThermodynamic analysis of Kerr-Newman black holes.pdf.txttext/plain19706https://repositorio.cuc.edu.co/bitstream/11323/6160/5/Thermodynamic%20analysis%20of%20Kerr-Newman%20black%20holes.pdf.txt2df8822a430b6a8656d1c1920142bf1fMD55open access11323/6160oai:repositorio.cuc.edu.co:11323/61602023-12-14 16:59:26.193CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=