Thermodynamic analysis of Kerr-Newman black holes
In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy cons...
- Autores:
-
Ruiz, O
Molina, U
Viloria, P
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6160
- Acceso en línea:
- https://hdl.handle.net/11323/6160
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hawking temperature
Kerr-Newman
Thermodynamic analysis
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_6b76e399673ae4c1d0ebbe4d32a9efad |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6160 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Thermodynamic analysis of Kerr-Newman black holes |
title |
Thermodynamic analysis of Kerr-Newman black holes |
spellingShingle |
Thermodynamic analysis of Kerr-Newman black holes Hawking temperature Kerr-Newman Thermodynamic analysis |
title_short |
Thermodynamic analysis of Kerr-Newman black holes |
title_full |
Thermodynamic analysis of Kerr-Newman black holes |
title_fullStr |
Thermodynamic analysis of Kerr-Newman black holes |
title_full_unstemmed |
Thermodynamic analysis of Kerr-Newman black holes |
title_sort |
Thermodynamic analysis of Kerr-Newman black holes |
dc.creator.fl_str_mv |
Ruiz, O Molina, U Viloria, P |
dc.contributor.author.spa.fl_str_mv |
Ruiz, O Molina, U Viloria, P |
dc.subject.spa.fl_str_mv |
Hawking temperature Kerr-Newman Thermodynamic analysis |
topic |
Hawking temperature Kerr-Newman Thermodynamic analysis |
description |
In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy conservation through a relationship between the mass M, the charge Q and the angular momentum J, then we implement the Hawking's theorem of areas by setting an upper bound to the energy and we get finally the surface gravity of the black hole. In addition, we study the relationship between the black hole parameters (mass M, angular momentum J, electric charge Q) and the Hawking temperature. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-12T18:35:25Z |
dc.date.available.none.fl_str_mv |
2020-04-12T18:35:25Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1742-6588 1742-6596 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6160 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.1088/1742-6596/1219/1/012016 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1742-6588 1742-6596 doi:10.1088/1742-6596/1219/1/012016 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6160 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Hawking S W 1974 Black Hole Explosions? Nature 248 30 [2] Hawking S W 1975 Particle Creation by Black Holes Comm. Math. Phys. 43 199 [3] Pankovic V 2009 Black Holes - A Simplified Theory for Quantum Gravity Non-Specialists, arXiv:0911.1026v1 [physics.gen-ph] [4] Belgiorno F, Caciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino V G and Faccion D 2010 Hawking Radiation from Ultrashort Laser Pulse Filaments Phys. Rev. Lett. 105 203901 [5] Miranda C, Molina U and Viloria P 2014 Retardo temporal en las lentes por galaxias en el contexto de Reissner - Nordstrom Revista Mexicana de Física 60(3) 190 [6] Newman E, Couch R, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a rotating charged mass J. Math. Phys. 6 918 [7] Hawking S W 1971 Gravitational radiation from colliding black holes Phys. Rev. Lett. 26 1344 [8] Hawking S W 1972 Black Holes in General Relativity Commun. Math. Phys. 25 152 [9] Christodoulou D 1970 Reversible and irreversible transformations in black hole physics Phys. Rev. Lett. 25 1596 [10] Christodoulou D, Ruffini R 1971 Reversible transformations of a charged black hole Phys. Rev. D. 4 3552 [11] Misner C, Thorne K and Wheeler J 1973 Gravitation (San Francisco: W.H. Freeman & Co) [12] Bardeen J M, Carter B and Hawking S W 1973, The Four laws of black hole mechanics Commun. Math. Phys. 31 161 [13] Bekenstein J 1972 Black holes and the second law Lett. Nuo. Cim. 4 737 [14] Bekenstein J 1974 Generalized Second Law of Thermodynamics in Black Hole Physics Phys. Rev. D. 9 3292 [15] Bekenstein J 1973 Black Holes and Entropy Phys. Rev. D 7 2333 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d38c7031-bb17-4924-915a-1acb4f3d52fa/download https://repositorio.cuc.edu.co/bitstreams/8c05714e-1ed1-4da1-98ff-b4f21e510634/download https://repositorio.cuc.edu.co/bitstreams/f7389ebb-d8e6-4384-bc4b-1885e1462e82/download https://repositorio.cuc.edu.co/bitstreams/05005a90-6312-4c7f-a855-1e0a286bd33d/download https://repositorio.cuc.edu.co/bitstreams/e5dcf86d-3541-4314-8a7b-2bb52b969b31/download |
bitstream.checksum.fl_str_mv |
ad659414bf390b79e4ef1e2fcb019e2c 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 007557c4c7471dbd34fc11873ec6cb19 2df8822a430b6a8656d1c1920142bf1f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166835337428992 |
spelling |
Ruiz, OMolina, UViloria, P2020-04-12T18:35:25Z2020-04-12T18:35:25Z20191742-65881742-6596https://hdl.handle.net/11323/6160doi:10.1088/1742-6596/1219/1/012016Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper we calculate the Hawking temperature of a black hole described by the Kerr-Newman metric, starting from the surface gravity, the area of the event horizon and the angular velocity of the black hole. To do this we apply the laws of black hole thermodynamics: we first set the energy conservation through a relationship between the mass M, the charge Q and the angular momentum J, then we implement the Hawking's theorem of areas by setting an upper bound to the energy and we get finally the surface gravity of the black hole. In addition, we study the relationship between the black hole parameters (mass M, angular momentum J, electric charge Q) and the Hawking temperature.Ruiz, OMolina, UViloria, PengJournal of Physics: Conference SeriesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hawking temperatureKerr-NewmanThermodynamic analysisThermodynamic analysis of Kerr-Newman black holesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Hawking S W 1974 Black Hole Explosions? Nature 248 30[2] Hawking S W 1975 Particle Creation by Black Holes Comm. Math. Phys. 43 199[3] Pankovic V 2009 Black Holes - A Simplified Theory for Quantum Gravity Non-Specialists, arXiv:0911.1026v1 [physics.gen-ph][4] Belgiorno F, Caciatori S L, Clerici M, Gorini V, Ortenzi G, Rizzi L, Rubino V G and Faccion D 2010 Hawking Radiation from Ultrashort Laser Pulse Filaments Phys. Rev. Lett. 105 203901[5] Miranda C, Molina U and Viloria P 2014 Retardo temporal en las lentes por galaxias en el contexto de Reissner - Nordstrom Revista Mexicana de Física 60(3) 190[6] Newman E, Couch R, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a rotating charged mass J. Math. Phys. 6 918[7] Hawking S W 1971 Gravitational radiation from colliding black holes Phys. Rev. Lett. 26 1344[8] Hawking S W 1972 Black Holes in General Relativity Commun. Math. Phys. 25 152[9] Christodoulou D 1970 Reversible and irreversible transformations in black hole physics Phys. Rev. Lett. 25 1596[10] Christodoulou D, Ruffini R 1971 Reversible transformations of a charged black hole Phys. Rev. D. 4 3552[11] Misner C, Thorne K and Wheeler J 1973 Gravitation (San Francisco: W.H. Freeman & Co)[12] Bardeen J M, Carter B and Hawking S W 1973, The Four laws of black hole mechanics Commun. Math. Phys. 31 161[13] Bekenstein J 1972 Black holes and the second law Lett. Nuo. Cim. 4 737[14] Bekenstein J 1974 Generalized Second Law of Thermodynamics in Black Hole Physics Phys. Rev. D. 9 3292[15] Bekenstein J 1973 Black Holes and Entropy Phys. Rev. D 7 2333PublicationORIGINALThermodynamic analysis of Kerr-Newman black holes.pdfThermodynamic analysis of Kerr-Newman black holes.pdfapplication/pdf677034https://repositorio.cuc.edu.co/bitstreams/d38c7031-bb17-4924-915a-1acb4f3d52fa/downloadad659414bf390b79e4ef1e2fcb019e2cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/8c05714e-1ed1-4da1-98ff-b4f21e510634/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f7389ebb-d8e6-4384-bc4b-1885e1462e82/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILThermodynamic analysis of Kerr-Newman black holes.pdf.jpgThermodynamic analysis of Kerr-Newman black holes.pdf.jpgimage/jpeg26901https://repositorio.cuc.edu.co/bitstreams/05005a90-6312-4c7f-a855-1e0a286bd33d/download007557c4c7471dbd34fc11873ec6cb19MD54TEXTThermodynamic analysis of Kerr-Newman black holes.pdf.txtThermodynamic analysis of Kerr-Newman black holes.pdf.txttext/plain19706https://repositorio.cuc.edu.co/bitstreams/e5dcf86d-3541-4314-8a7b-2bb52b969b31/download2df8822a430b6a8656d1c1920142bf1fMD5511323/6160oai:repositorio.cuc.edu.co:11323/61602024-09-17 14:15:52.152http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |