Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash
This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20%...
- Autores:
-
Simões, B.
Raposeiro da Silva, Pedro
Silva, Rui
Avila, Yoleimy
Forero Valencia, Javier Andres
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7963
- Acceso en línea:
- https://hdl.handle.net/11323/7963
https://repositorio.cuc.edu.co/
- Palabra clave:
- Self-compacting concrete
Fly ash
Municipal solid waste
Bottom ash
Incineration
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_6b5df521407aa6de55f4d0785ea87507 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7963 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
title |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
spellingShingle |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash Self-compacting concrete Fly ash Municipal solid waste Bottom ash Incineration |
title_short |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
title_full |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
title_fullStr |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
title_full_unstemmed |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
title_sort |
Ternary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ash |
dc.creator.fl_str_mv |
Simões, B. Raposeiro da Silva, Pedro Silva, Rui Avila, Yoleimy Forero Valencia, Javier Andres |
dc.contributor.author.spa.fl_str_mv |
Simões, B. Raposeiro da Silva, Pedro Silva, Rui Avila, Yoleimy Forero Valencia, Javier Andres |
dc.subject.spa.fl_str_mv |
Self-compacting concrete Fly ash Municipal solid waste Bottom ash Incineration |
topic |
Self-compacting concrete Fly ash Municipal solid waste Bottom ash Incineration |
description |
This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20% MIBA, 20% FA + 10% MIBA, 20% FA + 40% MIBA and 40% FA + 20% MIBA, apart from the reference concrete) were considered. Compressive and tensile strengths, Young’s modulus, ultra-sonic pulse velocity, shrinkage, water absorption by immersion, chloride diffusion coefficient and electrical resistivity were evaluated for all concrete mixes. The results showed a considerable decline in both mechanical and durability-related performances of self-compacting concrete with 60% of substitution by MIBA mainly due to the aluminium corrosion chemical reaction. However, workability properties were not significantly affected, exhibiting values similar to those of the control mix. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-03-04T21:07:24Z |
dc.date.available.none.fl_str_mv |
2021-03-04T21:07:24Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2076-3417 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7963 |
dc.identifier.doi.spa.fl_str_mv |
DOI: 10.3390/app11010107 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2076-3417 DOI: 10.3390/app11010107 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7963 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cementbased materials industry. Cem. Concr. Res. 2018, 114, 2–26. [CrossRef] 2. Claisse, P.A. Chapter 18—Cements and cement replacement materials. In Civil Engineering Materials; Claisse, P.A., Ed.; ButterworthHeinemann: Boston, MA, USA, 2016; pp. 163–176. 3. Hemalatha, M.S.; Santhanam, M. Characterizing supplementary cementing materials in blended mortars. Constr. Build. Mater. 2018, 191, 440–459. [CrossRef] 4. Franco de Carvalho, J.M.; Melo, T.V.d.; Fontes, W.C.; Batista, J.O.d.S.; Brigolini, G.J.; Peixoto, R.A.F. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Constr. Build. Mater. 2019, 206, 397–409. [CrossRef] 5. Rahla, K.M.; Mateus, R.; Bragança, L. Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 2019, 220, 445–459. [CrossRef] 6. Sandhu, R.K.; Siddique, R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review. Constr. Build. Mater. 2017, 153, 751–764. [CrossRef] 7. Moretti, J.P.; Nunes, S.; Sales, A. Self-compacting concrete incorporating sugarcane bagasse ash. Constr. Build. Mater. 2018, 172, 635–649. [CrossRef] 8. Dinakar, P.; Sethy, K.P.; Sahoo, U.C. Design of self-compacting concrete with ground granulated blast furnace slag. Mater. Des. 2013, 43, 161–169. [CrossRef] 9. Tang, P.; Florea, M.; Spiesz, P.; Brouwers, H. The application of treated bottom ash in mortar as cement replacement. In Proceedings of the EurAsia Waste Management Symposium 2014, Istanbul, Turkey, 26–28 October 2014; pp. 1077–1082. 10. Lynn, C.J.; Dhir, R.K.; Ghataora, G.S. Municipal incinerated bottom ash use as a cement component in concrete. Mag. Concr. Res. 2017, 69, 512–525. [CrossRef] 11. Dwivedi, A.; Jain, M.K. Fly ash—Waste management and overview: A Review. Recent Res. Sci. Technol. 2014, 6, 30–35. 12. Siddique, R. Properties of self-compacting concrete containing class F fly ash. Mater. Des. 2011, 32, 1501–1507. [CrossRef] 13. Dinakar, P.; Kartik Reddy, M.; Sharma, M. Behaviour of self compacting concrete using Portland pozzolana cement with different levels of fly ash. Mater. Des. 2013, 46, 609–616. [CrossRef] 14. Bouzoubaâ, N.; Lachemi, M. Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cem. Concr. Res. 2001, 31, 413–420. [CrossRef] 15. ¸Sahmaran, M.; Yaman, Ö.; Tokyay, M. Development of high-volume low-lime and high-lime fly-ash-incorporated selfconsolidating concrete. Mag. Concr. Res. 2007, 59, 97–106. [CrossRef] 16. ¸Sahmaran, M.; Yaman, I.O.; Tokyay, M. Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem. Concr. Compos. 2009, 31, 99–106. [CrossRef] 17. Deilami, S.; Aslani, F.; Elchalakani, M. Durability assessment of self-compacting concrete with fly ash. Comput. Concr. 2017, 19, 489–499. [CrossRef] 18. Xuan, D.; Tang, P.; Poon, C.S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications—A review. Constr. Build. Mater. 2018, 190, 1091–1102. [CrossRef] 19. Liu, Y.; Sidhu, K.S.; Chen, Z.; Yang, E.-H. Alkali-treated incineration bottom ash as supplementary cementitious materials. Constr. Build. Mater. 2018, 179, 371–378. [CrossRef] 20. EN-12620:2002+A1:2008 Aggregates for Concrete; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2008; p. 56. 21. EN-934-1 Admixtures for Concrete, Mortar and Grout. Common Requirements; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2008; p. 14. 22. EN-934-2 Admixtures for Concrete, Mortar and Grout. Concrete Admixtures. Definitions, Requirements, Conformity, Marking and Labelling; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012; p. 28. 23. CEU Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Communities 1998, 330, 32–54. 24. Nepomuceno, M.; Oliveira, L.; Lopes, S.M.R. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Constr. Build. Mater. 2012, 26, 317–326. [CrossRef] 25. Ferraz, E.; Andrejkoviˇcová, S.; Hajjaji, W.; Velosa, A.L.; Silva, A.S.; Rocha, F. Pozzolanic activity of metakaolins by the French Standard of the modified Chapelle Test: A direct methodology. Acta Geodyn. Geometer. Aspects 2015, 289–298. [CrossRef] 26. NBR-15895 Materiais Pozolânicos—Determinação do Teor de Hidróxido de Cálcio Fixado—Método de Chapelle Modificado; Brazilian Association for Technical Norms (Associação Brasileira de Normas Técnicas—ABNT): Rio de Janeiro, Brasil, 2010; p. 10. 27. EN-12350-8 Testing Fresh Concrete. Self-Compacting Concrete. Slump-Flow Test; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2019; p. 14. 28. EN-12390-3 Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009; p. 22. 29. EN-12390-6 Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009; p. 14. 30. LNEC-E397 Concrete: Determination of the Modulus of Elasticity under Compression; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese) 31. EN-12504-4 Testing Concrete. Determination of Ultrasonic Pulse Velocity; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2004; p. 18. 32. LNEC-E398 Concrete: Determination of Drying Shrinkage and Expansion; National Laboratory in Civil Engineering (LNEC— Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese) 33. LNEC-E391 Concrete: Determination of Carbonation Resistance; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese) 34. LNEC-E394 Concrete: Determination of Water Absorption by Immersion—Testing at Atmospheric Pressure; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese) 35. LNEC-E463 Concrete: Determination of the Chloride ion Diffusion Coefficient by Non-Steady State Migration; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 2004; p. 8. (In Portuguese) 36. Luping, T. Guidelines for Practical Use of Methods for Testing the Resistance of Concrete to Chloride Ingress; CHLORTEST—EU Funded Research Project under 5FP GROWTH Programme; SP Swedish National, Testing and Research Institute: Boras, Sweden, 2005; p. 271. 37. EN-197-1 Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2011; p. 50. 38. EN-450-1 Fly Ash for Concrete. Definition, Specifications and Conformity Criteria; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012; p. 34. 39. ASTM-C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015; p. 5. 40. Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Use of municipal solid waste incineration bottom ashes in alkali activated materials, ceramics and granular applications: A review. Waste Manag. 2017, 68, 207–220. [CrossRef] 41. Tang, P. Municipal Solid Waste Incineration (MSWI) Bottom Ash—From Waste to Value; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2017. 42. EN-206:2013+A1:2016 Concrete—Specification, Performance, Production and Conformity; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2016; p. 98. 43. Amat, R.C.; Ismail, K.N.; Noor, N.M.; Ibrahim, N.M. The effects of bottom ash from MSWI used as mineral additions in concrete. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017. [CrossRef] 44. Juriˇc, B.; Hanžiˇc, L.; Ili´c, R.; Samec, N. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag. 2006, 26, 1436–1442. [CrossRef] [PubMed] 45. Lin, K.; Lin, D. Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cem. Concr. Compos. 2006, 28, 817–823. [CrossRef] 46. Cheng, A. Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars. Mater. Des. 2012, 36, 859–864. [CrossRef] 47. Li, X.-G.; Lv, Y.; Ma, B.-G.; Chen, Q.-B.; Yin, X.-B.; Jian, S.-W. Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 2012, 32, 96–100. [CrossRef] 48. Kanehira, S.; Kanamori, S.; Nagashima, K.; Saeki, T.; Visbal, H.; Fukui, T.; Hirao, K. Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions. J. Asian Ceram. Soc. 2013, 1, 296–303. [CrossRef] 49. Shinzato, M.; Hypolito, R. Solid waste from aluminum recycling process: Characterization and reuse of its economically valuable constituents. Waste Manag. 2005, 25, 37–46. [CrossRef] 50. Ho, C.-Y.; Huang, C.-H. Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int. J. Hydrog. Energy 2016, 41, 3741–3747. [CrossRef] 51. Liu, H.; Yang, F.; Yang, B.; Zhang, Q.; Chai, Y.; Wang, N. Rapid hydrogen generation through aluminum-water reaction in alkali solution. Catal. Today 2018, 318, 52–58. [CrossRef] 52. Ghorbel, H.; Samet, B. Effect of iron on pozzolanic activity of kaolin. Constr. Build. Mater. 2013, 44, 185–191. [CrossRef] 53. Chakchouk, A.; Samet, B.; Bouaziz, S. Difference in pozzolanic behaviour of Tunisian clays with lime and cement. Adv. Cem. Res. 2012, 24, 11–22. [CrossRef] 54. Lizarazo-Marriaga, J.; Claisse, P.; Ganjian, E. Effect of steel slag and Portland cement in the rate of hydration and strength of blast furnace slag pastes. J. Mater. Civ. Eng. 2011, 23, 153–160. [CrossRef] 55. Bertolini, L.; Carsana, M.; Cassago, D.; Curzio, A.Q.; Collepardi, M. MSWI ashes as mineral additions in concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [CrossRef] 56. EN-1992-1-1:2004+A1:2014 Eurocode 2—Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2014; p. 259. 57. Kuder, K.; Lehman, D.; Berman, J.; Hannesson, G.; Shogren, R. Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Constr. Build. Mater. 2012, 34, 285–295. [CrossRef] 58. Breysse, D. Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques: State-of-the-Art Report of the RILEM Technical Committee 207-INR; Springer Science & Business Media: Berlin, Germany, 2012; p. 374. 59. Silva, P.M.S.R. Avaliação da Durabilidade de Betões Autocompactáveis (BAC); Instituto Superior Técnico: Lisbon, Portugal, 2013. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Applied Sciences |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2076-3417/11/1/107 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b907c35e-6ad6-4a4a-a7ad-5a726c6a46f8/download https://repositorio.cuc.edu.co/bitstreams/c3a138a8-141f-4003-9fcb-a4ffb2409237/download https://repositorio.cuc.edu.co/bitstreams/95fc99bb-9318-439a-85ba-e73ac11c9818/download https://repositorio.cuc.edu.co/bitstreams/fecb4f67-4c67-4d74-b1af-3b8b975cf4ee/download https://repositorio.cuc.edu.co/bitstreams/e9292149-ce9a-4303-8972-df7787821a07/download |
bitstream.checksum.fl_str_mv |
a14ee0e31347bdd29b9b8828c3694b73 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad c4b6b3246b89010e39bf3430ac712d57 fd226d71ae091f9101441490779fd44e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760752445358080 |
spelling |
Simões, B.Raposeiro da Silva, PedroSilva, RuiAvila, YoleimyForero Valencia, Javier Andres2021-03-04T21:07:24Z2021-03-04T21:07:24Z20202076-3417https://hdl.handle.net/11323/7963DOI: 10.3390/app11010107Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study aims to evaluate the potential of incorporating fly ash (FA) and municipal solid waste incinerator bottom ash (MIBA) as a partial substitute of cement in the production of self-compacting concrete mixes through an experimental campaign in which four replacement levels (i.e., 10% FA + 20% MIBA, 20% FA + 10% MIBA, 20% FA + 40% MIBA and 40% FA + 20% MIBA, apart from the reference concrete) were considered. Compressive and tensile strengths, Young’s modulus, ultra-sonic pulse velocity, shrinkage, water absorption by immersion, chloride diffusion coefficient and electrical resistivity were evaluated for all concrete mixes. The results showed a considerable decline in both mechanical and durability-related performances of self-compacting concrete with 60% of substitution by MIBA mainly due to the aluminium corrosion chemical reaction. However, workability properties were not significantly affected, exhibiting values similar to those of the control mix.Simões, B.Raposeiro da Silva, Pedro-will be generated-orcid-0000-0001-8770-8439-600Silva, RuiAvila, Yoleimy-will be generated-orcid-0000-0001-9023-8909-600Forero Valencia, Javier Andresapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Applied Scienceshttps://www.mdpi.com/2076-3417/11/1/107Self-compacting concreteFly ashMunicipal solid wasteBottom ashIncinerationTernary mixes of self-compacting concrete with fly ash and municipal solid waste incinerator bottom ashArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cementbased materials industry. Cem. Concr. Res. 2018, 114, 2–26. [CrossRef]2. Claisse, P.A. Chapter 18—Cements and cement replacement materials. In Civil Engineering Materials; Claisse, P.A., Ed.; ButterworthHeinemann: Boston, MA, USA, 2016; pp. 163–176.3. Hemalatha, M.S.; Santhanam, M. Characterizing supplementary cementing materials in blended mortars. Constr. Build. Mater. 2018, 191, 440–459. [CrossRef]4. Franco de Carvalho, J.M.; Melo, T.V.d.; Fontes, W.C.; Batista, J.O.d.S.; Brigolini, G.J.; Peixoto, R.A.F. More eco-efficient concrete: An approach on optimization in the production and use of waste-based supplementary cementing materials. Constr. Build. Mater. 2019, 206, 397–409. [CrossRef]5. Rahla, K.M.; Mateus, R.; Bragança, L. Comparative sustainability assessment of binary blended concretes using Supplementary Cementitious Materials (SCMs) and Ordinary Portland Cement (OPC). J. Clean. Prod. 2019, 220, 445–459. [CrossRef]6. Sandhu, R.K.; Siddique, R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review. Constr. Build. Mater. 2017, 153, 751–764. [CrossRef]7. Moretti, J.P.; Nunes, S.; Sales, A. Self-compacting concrete incorporating sugarcane bagasse ash. Constr. Build. Mater. 2018, 172, 635–649. [CrossRef]8. Dinakar, P.; Sethy, K.P.; Sahoo, U.C. Design of self-compacting concrete with ground granulated blast furnace slag. Mater. Des. 2013, 43, 161–169. [CrossRef]9. Tang, P.; Florea, M.; Spiesz, P.; Brouwers, H. The application of treated bottom ash in mortar as cement replacement. In Proceedings of the EurAsia Waste Management Symposium 2014, Istanbul, Turkey, 26–28 October 2014; pp. 1077–1082.10. Lynn, C.J.; Dhir, R.K.; Ghataora, G.S. Municipal incinerated bottom ash use as a cement component in concrete. Mag. Concr. Res. 2017, 69, 512–525. [CrossRef]11. Dwivedi, A.; Jain, M.K. Fly ash—Waste management and overview: A Review. Recent Res. Sci. Technol. 2014, 6, 30–35.12. Siddique, R. Properties of self-compacting concrete containing class F fly ash. Mater. Des. 2011, 32, 1501–1507. [CrossRef]13. Dinakar, P.; Kartik Reddy, M.; Sharma, M. Behaviour of self compacting concrete using Portland pozzolana cement with different levels of fly ash. Mater. Des. 2013, 46, 609–616. [CrossRef]14. Bouzoubaâ, N.; Lachemi, M. Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results. Cem. Concr. Res. 2001, 31, 413–420. [CrossRef]15. ¸Sahmaran, M.; Yaman, Ö.; Tokyay, M. Development of high-volume low-lime and high-lime fly-ash-incorporated selfconsolidating concrete. Mag. Concr. Res. 2007, 59, 97–106. [CrossRef]16. ¸Sahmaran, M.; Yaman, I.O.; Tokyay, M. Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem. Concr. Compos. 2009, 31, 99–106. [CrossRef]17. Deilami, S.; Aslani, F.; Elchalakani, M. Durability assessment of self-compacting concrete with fly ash. Comput. Concr. 2017, 19, 489–499. [CrossRef]18. Xuan, D.; Tang, P.; Poon, C.S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications—A review. Constr. Build. Mater. 2018, 190, 1091–1102. [CrossRef]19. Liu, Y.; Sidhu, K.S.; Chen, Z.; Yang, E.-H. Alkali-treated incineration bottom ash as supplementary cementitious materials. Constr. Build. Mater. 2018, 179, 371–378. [CrossRef]20. EN-12620:2002+A1:2008 Aggregates for Concrete; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2008; p. 56.21. EN-934-1 Admixtures for Concrete, Mortar and Grout. Common Requirements; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2008; p. 14.22. EN-934-2 Admixtures for Concrete, Mortar and Grout. Concrete Admixtures. Definitions, Requirements, Conformity, Marking and Labelling; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012; p. 28.23. CEU Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Communities 1998, 330, 32–54.24. Nepomuceno, M.; Oliveira, L.; Lopes, S.M.R. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Constr. Build. Mater. 2012, 26, 317–326. [CrossRef]25. Ferraz, E.; Andrejkoviˇcová, S.; Hajjaji, W.; Velosa, A.L.; Silva, A.S.; Rocha, F. Pozzolanic activity of metakaolins by the French Standard of the modified Chapelle Test: A direct methodology. Acta Geodyn. Geometer. Aspects 2015, 289–298. [CrossRef]26. NBR-15895 Materiais Pozolânicos—Determinação do Teor de Hidróxido de Cálcio Fixado—Método de Chapelle Modificado; Brazilian Association for Technical Norms (Associação Brasileira de Normas Técnicas—ABNT): Rio de Janeiro, Brasil, 2010; p. 10.27. EN-12350-8 Testing Fresh Concrete. Self-Compacting Concrete. Slump-Flow Test; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2019; p. 14.28. EN-12390-3 Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009; p. 22.29. EN-12390-6 Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2009; p. 14.30. LNEC-E397 Concrete: Determination of the Modulus of Elasticity under Compression; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)31. EN-12504-4 Testing Concrete. Determination of Ultrasonic Pulse Velocity; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2004; p. 18.32. LNEC-E398 Concrete: Determination of Drying Shrinkage and Expansion; National Laboratory in Civil Engineering (LNEC— Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)33. LNEC-E391 Concrete: Determination of Carbonation Resistance; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)34. LNEC-E394 Concrete: Determination of Water Absorption by Immersion—Testing at Atmospheric Pressure; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 1993; p. 2. (In Portuguese)35. LNEC-E463 Concrete: Determination of the Chloride ion Diffusion Coefficient by Non-Steady State Migration; National Laboratory in Civil Engineering (LNEC—Laboratório Nacional de Engenharia Civil): Lisbon, Portugal, 2004; p. 8. (In Portuguese)36. Luping, T. Guidelines for Practical Use of Methods for Testing the Resistance of Concrete to Chloride Ingress; CHLORTEST—EU Funded Research Project under 5FP GROWTH Programme; SP Swedish National, Testing and Research Institute: Boras, Sweden, 2005; p. 271.37. EN-197-1 Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2011; p. 50.38. EN-450-1 Fly Ash for Concrete. Definition, Specifications and Conformity Criteria; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2012; p. 34.39. ASTM-C618 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2015; p. 5.40. Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Use of municipal solid waste incineration bottom ashes in alkali activated materials, ceramics and granular applications: A review. Waste Manag. 2017, 68, 207–220. [CrossRef]41. Tang, P. Municipal Solid Waste Incineration (MSWI) Bottom Ash—From Waste to Value; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2017.42. EN-206:2013+A1:2016 Concrete—Specification, Performance, Production and Conformity; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2016; p. 98.43. Amat, R.C.; Ismail, K.N.; Noor, N.M.; Ibrahim, N.M. The effects of bottom ash from MSWI used as mineral additions in concrete. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2017. [CrossRef]44. Juriˇc, B.; Hanžiˇc, L.; Ili´c, R.; Samec, N. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag. 2006, 26, 1436–1442. [CrossRef] [PubMed]45. Lin, K.; Lin, D. Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cem. Concr. Compos. 2006, 28, 817–823. [CrossRef]46. Cheng, A. Effect of incinerator bottom ash properties on mechanical and pore size of blended cement mortars. Mater. Des. 2012, 36, 859–864. [CrossRef]47. Li, X.-G.; Lv, Y.; Ma, B.-G.; Chen, Q.-B.; Yin, X.-B.; Jian, S.-W. Utilization of municipal solid waste incineration bottom ash in blended cement. J. Clean. Prod. 2012, 32, 96–100. [CrossRef]48. Kanehira, S.; Kanamori, S.; Nagashima, K.; Saeki, T.; Visbal, H.; Fukui, T.; Hirao, K. Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions. J. Asian Ceram. Soc. 2013, 1, 296–303. [CrossRef]49. Shinzato, M.; Hypolito, R. Solid waste from aluminum recycling process: Characterization and reuse of its economically valuable constituents. Waste Manag. 2005, 25, 37–46. [CrossRef]50. Ho, C.-Y.; Huang, C.-H. Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int. J. Hydrog. Energy 2016, 41, 3741–3747. [CrossRef]51. Liu, H.; Yang, F.; Yang, B.; Zhang, Q.; Chai, Y.; Wang, N. Rapid hydrogen generation through aluminum-water reaction in alkali solution. Catal. Today 2018, 318, 52–58. [CrossRef]52. Ghorbel, H.; Samet, B. Effect of iron on pozzolanic activity of kaolin. Constr. Build. Mater. 2013, 44, 185–191. [CrossRef]53. Chakchouk, A.; Samet, B.; Bouaziz, S. Difference in pozzolanic behaviour of Tunisian clays with lime and cement. Adv. Cem. Res. 2012, 24, 11–22. [CrossRef]54. Lizarazo-Marriaga, J.; Claisse, P.; Ganjian, E. Effect of steel slag and Portland cement in the rate of hydration and strength of blast furnace slag pastes. J. Mater. Civ. Eng. 2011, 23, 153–160. [CrossRef]55. Bertolini, L.; Carsana, M.; Cassago, D.; Curzio, A.Q.; Collepardi, M. MSWI ashes as mineral additions in concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [CrossRef]56. EN-1992-1-1:2004+A1:2014 Eurocode 2—Design of Concrete Structures: Part 1-1: General Rules and Rules for Buildings; Comité Européen de Normalisation (CEN): Brussels, Belgium, 2014; p. 259.57. Kuder, K.; Lehman, D.; Berman, J.; Hannesson, G.; Shogren, R. Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Constr. Build. Mater. 2012, 34, 285–295. [CrossRef]58. Breysse, D. Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques: State-of-the-Art Report of the RILEM Technical Committee 207-INR; Springer Science & Business Media: Berlin, Germany, 2012; p. 374.59. Silva, P.M.S.R. Avaliação da Durabilidade de Betões Autocompactáveis (BAC); Instituto Superior Técnico: Lisbon, Portugal, 2013.PublicationORIGINALTernary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash.pdfTernary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash.pdfapplication/pdf4990049https://repositorio.cuc.edu.co/bitstreams/b907c35e-6ad6-4a4a-a7ad-5a726c6a46f8/downloada14ee0e31347bdd29b9b8828c3694b73MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/c3a138a8-141f-4003-9fcb-a4ffb2409237/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/95fc99bb-9318-439a-85ba-e73ac11c9818/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILTernary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash.pdf.jpgTernary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash.pdf.jpgimage/jpeg74160https://repositorio.cuc.edu.co/bitstreams/fecb4f67-4c67-4d74-b1af-3b8b975cf4ee/downloadc4b6b3246b89010e39bf3430ac712d57MD54TEXTTernary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash.pdf.txtTernary Mixes of Self-Compacting Concrete with Fly Ash and Municipal Solid Waste Incinerator Bottom Ash.pdf.txttext/plain69683https://repositorio.cuc.edu.co/bitstreams/e9292149-ce9a-4303-8972-df7787821a07/downloadfd226d71ae091f9101441490779fd44eMD5511323/7963oai:repositorio.cuc.edu.co:11323/79632024-09-17 10:58:40.574http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |