A new approach to three-phase asynchronous motor model for electric power system analysis

In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model...

Full description

Autores:
Collazo Solar, Laura
Costa Montiel, Angel A.
Vilaragut Llanes, Miriam
Sousa Santos, Vladimir
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9016
Acceso en línea:
https://hdl.handle.net/11323/9016
http://doi.org/10.11591/ijpeds.v12.i4.pp2083-2094
https://repositorio.cuc.edu.co/
Palabra clave:
Electrical power systems
Equivalent circuit
Load modeling
Mechanical load drive
Three-phase asynchronous motors
ZIP model
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_6adab598f084e8a9fd989a96ec93df28
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9016
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A new approach to three-phase asynchronous motor model for electric power system analysis
title A new approach to three-phase asynchronous motor model for electric power system analysis
spellingShingle A new approach to three-phase asynchronous motor model for electric power system analysis
Electrical power systems
Equivalent circuit
Load modeling
Mechanical load drive
Three-phase asynchronous motors
ZIP model
title_short A new approach to three-phase asynchronous motor model for electric power system analysis
title_full A new approach to three-phase asynchronous motor model for electric power system analysis
title_fullStr A new approach to three-phase asynchronous motor model for electric power system analysis
title_full_unstemmed A new approach to three-phase asynchronous motor model for electric power system analysis
title_sort A new approach to three-phase asynchronous motor model for electric power system analysis
dc.creator.fl_str_mv Collazo Solar, Laura
Costa Montiel, Angel A.
Vilaragut Llanes, Miriam
Sousa Santos, Vladimir
dc.contributor.author.spa.fl_str_mv Collazo Solar, Laura
Costa Montiel, Angel A.
Vilaragut Llanes, Miriam
Sousa Santos, Vladimir
dc.subject.spa.fl_str_mv Electrical power systems
Equivalent circuit
Load modeling
Mechanical load drive
Three-phase asynchronous motors
ZIP model
topic Electrical power systems
Equivalent circuit
Load modeling
Mechanical load drive
Three-phase asynchronous motors
ZIP model
description In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-28T21:18:39Z
dc.date.available.none.fl_str_mv 2022-01-28T21:18:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2088-8694
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9016
dc.identifier.doi.spa.fl_str_mv http://doi.org/10.11591/ijpeds.v12.i4.pp2083-2094
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2088-8694
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9016
http://doi.org/10.11591/ijpeds.v12.i4.pp2083-2094
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] J. J. Grainger and W. D. Stevenson, “Power system analysis,” New York: McGraw Hill, 1994.
[2] P. S. Kundur, “Power System Stability and Control, Third Edition. McGraw Hill,” Inc., 1993.
[3] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo and D. Zhao, “Load Modeling-A Review,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986-5999, 2018, doi: 10.1109/TSG.2017.2700436.
[4] M. J. S. Zuberi, A. Tijdink, and M. K. Patel, “Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry,” Applied Energy, vol. 205, no. January, pp. 85-104, 2017, doi: 10.1016/j.apenergy.2017.07.121.
[5] Ç. Acar, O. C. Soygenc, and L. T. Ergene, “Increasing the Efficiency to IE4 Class for 5.5 kW Induction Motor Used in Industrial Applications,” International Review of Electrical Engineering, vol. 14, no. 1, p. 67, 2019, doi: 10.15866/iree.v14i1.16307.
[6] E. C. Quispe, V. S. Santos, I. D. López, J. R. Gómez, and P. R. Viego, “Theoretical Analysis of the Voltage Unbalance Factor to Characterize Unbalance Problems in Induction Motors,” Int. Rev. Electr. Eng., vol. 16, no. 1, pp. 1-8, 2021, doi: 10.15866/iree.v16i1.18881.
[7] J. R. Gómez et al., “Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors,” Energy, vol. 239, p. 121877, 2022, doi: 10.1016/j.energy.2021.121877.
[8] A. De Almeida, J. Fong, C. U. Brunner, R. Werle, and M. Van Werkhoven, “New technology trends and policy needs in energy efficient motor systems - A major opportunity for energy and carbon savings,” Renewable and Sustainable Energy Reviews, vol. 115, p. 109384, 2019, doi: 10.1016/j.rser.2019.109384.
[9] P. R. Viego, V. Sousa, J. R. Gómez, and E. C. Quispe, “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” Int. J. Electr. Comput. Eng., vol. 10, no. 1, p. 651, 2020, doi: 10.11591/ijece.v10i1.pp651-659.
[10] A. Trianni, E. Cagno, and D. Accordini, “Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption,” Applied Energy, vol. 252, p. 113481, 2019, doi: 10.1016/j.apenergy.2019.113481.
[11] J. C. Travieso-Torres et al., “New Adaptive High Starting Torque Scalar Control Scheme for Induction Motors Based on Passivity,” Energies, vol. 13, no. 5, p. 1-15, 2020, doi: 10.3390/en13051276.
[12] F. J. T. E. Ferreira and A. T. de Almeida, “Reducing Energy Costs in Electric-Motor-Driven Systems: Savings Through Output Power Reduction and Energy Regeneration,” IEEE Industry Applications Magazine, vol. 24, no. 1, pp. 84-97, 2018, doi: 10.1109/MIAS.2016.2600685.
[13] C. P. Salomon, W. C. Sant’Ana, G. L. Torres, L. E. B. D. Silva, E. L. Bonaldi, and L. E. D. L. D. Oliveira, “Comparison among methods for induction motor low-intrusive efficiency evaluation including a new AGT approach with a modified stator resistance,” Energies, vol. 11, no. 4, pp. 1-21, 2018, doi: 10.3390/en11040691.
[14] V. S. Santos, J. J. C. Eras, A. S. Gutierrez, and M. J. Cabello Ulloa, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237-247, 2019, doi: 10.1016/j.measurement.2018.12.080.
[15] D. Wang, X. Yuan, and M. Zhang, “Power-Balancing Based Induction Machine Model for Power System Dynamic Analysis in Electromechanical Timescale,” Energies, vol. 11, no. 2, pp. 161-164, 2018, doi: 10.3390/en11020438.
[16] D. Kosterev and D. Davies, “System model validation studies in WECC,” IEEE PES General Meeting, 2010, pp. 1- 4, doi: 10.1109/PES.2010.5589797.
[17] J. C. Sánchez, T. I. A. Olivares, G. R. Ortiz and D. Ruiz-Vega, “Induction motor static models for power flow and voltage stability studies,” IEEE Power and Energy Society General Meeting, 2012, pp. 1-8, doi: 10.1109/PESGM.2012.6345618.
[18] B. T. Ooi, J. Guo and X. Wang, “Nonlinear negative damping caused August 10, 1996-WECC blackout,” IEEE Power & Energy Society General Meeting PESGM, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281819.
[19] J. V. Milanovic, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokic and L. M. Korunović, “International Industry Practice on Power System Load Modeling,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3038-3046, Aug. 2013, doi: 10.1109/TPWRS.2012.2231969.
[20] Z. Y. Dong, A. Borghetti, K. Yamashita, A. Gaikwad, P. Pourbeik, and J. V. Milanović, “CIGRE WG C4 . 065 Recommendations on Measurement Based and Component Based Load Modelling Practice,” CIGRE SC C4 2012 Hakodate Colloquium, no. June 2014, pp. 1-6, 2012.
[21] R. Balanathan, N. C. Pahalawaththa, and U. D. Annakkage, “Modelling induction motor loads for voltage stability analysis,” International Journal of Electrical Power & Energy Systems, vol. 24, no. 6, pp. 469-480, 2002, doi: 10.1016/S0142-0615(01)00059-X.
[22] B. K. Choi, H. D. Chiang, Y. Li, Y. T. Chen, D. H. Huang and M. G. Lauby, “Development of composite load models of power systems using on-line measurement data,” IEEE Power Engineering Society General Meeting, 2006, pp. 8, doi: 10.1109/PES.2006.1709013.
[23] P. Aree, “Load flow solution with induction motor,” Songklanakarin J. Sci. Technol, vol. 28, no. 1, pp. 157-168, 2006.
[24] S. D. Umans, “Fitzgerald and Kingsley’s Electric machinery,” 2014.
[25] L. Pereira, D. Kosterev, P. Mackin, D. Davies, J. Undrill and Wenchun Zhu, “An interim dynamic induction motor model for stability studies in the WSCC,” IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1108-1115, 2002, doi: 10.1109/TPWRS.2002.804960.
[26] MATLAB, “MATLAB R2019a.” 2019.
[27] DIgSILENT, “DIgSILENT PowerFactory 15.1.7 (x86).” 2014.
[28] S. Rönnberg and M. Bollen, “Power quality issues in the electric power system of the future,” The Electricity Journal, vol. 29, no. 10, pp. 49-61, 2016, doi: 10.1016/j.tej.2016.11.006.
[29] M. Hasanuzzaman, N. A. Rahim, R. Saidur, and S. N. Kazi, “Energy savings and emissions reductions for rewinding and replacement of industrial motor,” Energy, vol. 36, no. 1, pp. 233-40, 2011, doi: 10.1016/j.energy.2010.10.046.
[30] A. J. Collin, J. L. Acosta, B. P. Hayes, and S. Z. Djokic, “Component-based aggregate load models for combined power flow and harmonic analysis,” 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, 2010.
[31] J. Carmona-Sánchez and D. Ruiz-Vega, “Review of static induction motor models,” North American Power Symposium, 2010, pp. 1-8, doi: 10.1109/NAPS.2010.5619613.
[32] H. Renmu, Ma Jin and D. J. Hill, “Composite load modeling via measurement approach,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 663-672, 2006, doi: 10.1109/TPWRS.2006.873130.
[33] E. O. Kontis et al., “Development of measurement-based load models for the dynamic simulation of distribution grids,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1-6, doi: 10.1109/ISGTEurope.2017.8260251.
[34] L. C. Solar, A. A. C. Montiel, M. V. Llanes, V. S. Santos, and A. C. Colina, “A new exact equivalent circuit of the medium voltage three-phase induction motor,” International Journal of Electrical and Computer Engineering, vol. 10, no. 6, pp. 6164-6171, 2020, doi: 10.11591/ijece.v10i6.pp6164-6171.
[35] D. R. Q. Sarmiento, J. R. García, and W. M. López, “Methodology to Measure Electric Discharge Machining ( EDM ) Bearing Currents in Induction Motors with Supply from a Variable Speed Drive (VSD),” INGE CUC, vol. 9, no. 2, pp. 83-93, 2014.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv International Journal of Power Electronics and Drive Systems
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://ijpeds.iaescore.com/index.php/IJPEDS/article/view/21486
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/1132d5b0-0da3-4ba8-ac51-dc1706bc3fd5/download
https://repositorio.cuc.edu.co/bitstreams/aa4d6b95-3f58-49c4-b9c0-31a127a73030/download
https://repositorio.cuc.edu.co/bitstreams/e0aa747c-c414-494f-93c6-693177b36e1a/download
https://repositorio.cuc.edu.co/bitstreams/05133938-0c2c-4469-a89c-3ddce1c8ca57/download
https://repositorio.cuc.edu.co/bitstreams/cb2bd4e1-c460-4a18-b181-18e3a05aac2d/download
bitstream.checksum.fl_str_mv 5ee5bba02f92a29f622fa8f5209fa3f7
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
ecef06b14673759e9c83f238d853e325
da159d979f70afd648ce8d06a37838c3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760816344530944
spelling Collazo Solar, LauraCosta Montiel, Angel A.Vilaragut Llanes, MiriamSousa Santos, Vladimir2022-01-28T21:18:39Z2022-01-28T21:18:39Z20212088-8694https://hdl.handle.net/11323/9016http://doi.org/10.11591/ijpeds.v12.i4.pp2083-2094Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, a new steady-state model of a three-phase asynchronous motor is proposed to be used in the studies of electrical power systems. The model allows for obtaining the response of the demand for active and reactive power as a function of voltage and frequency. The contribution of the model is the integration of the characteristics of the mechanical load that can drive motors, either constant or variable load. The model was evaluated on a 2500 kW and 6000 V motor, for the two types of mechanical load, in a wide range of voltage and frequency, as well as four load factors. As a result of the evaluation, it was possible to verify that, for the nominal frequency and voltage variation, the type of load does not influence the behavior of the powers and that the reactive power is very sensitive to the voltage variation. In the nominal voltage and frequency deviation scenario, it was found that the type of load influences the behavior of the active and reactive power, especially in the variable load. The results demonstrate the importance of considering the model proposed in the simulation software of electrical power systems.Collazo Solar, Laura-will be generated-orcid-0000-0003-1139-4917-600Costa Montiel, Angel A.-will be generated-orcid-0000-0002-5347-8257-600Vilaragut Llanes, Miriam-will be generated-orcid-0000-0002-5453-1136-600Sousa Santos, Vladimir-will be generated-orcid-0000-0001-8808-1914-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Power Electronics and Drive Systemshttp://ijpeds.iaescore.com/index.php/IJPEDS/article/view/21486Electrical power systemsEquivalent circuitLoad modelingMechanical load driveThree-phase asynchronous motorsZIP modelA new approach to three-phase asynchronous motor model for electric power system analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] J. J. Grainger and W. D. Stevenson, “Power system analysis,” New York: McGraw Hill, 1994.[2] P. S. Kundur, “Power System Stability and Control, Third Edition. McGraw Hill,” Inc., 1993.[3] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo and D. Zhao, “Load Modeling-A Review,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5986-5999, 2018, doi: 10.1109/TSG.2017.2700436.[4] M. J. S. Zuberi, A. Tijdink, and M. K. Patel, “Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry,” Applied Energy, vol. 205, no. January, pp. 85-104, 2017, doi: 10.1016/j.apenergy.2017.07.121.[5] Ç. Acar, O. C. Soygenc, and L. T. Ergene, “Increasing the Efficiency to IE4 Class for 5.5 kW Induction Motor Used in Industrial Applications,” International Review of Electrical Engineering, vol. 14, no. 1, p. 67, 2019, doi: 10.15866/iree.v14i1.16307.[6] E. C. Quispe, V. S. Santos, I. D. López, J. R. Gómez, and P. R. Viego, “Theoretical Analysis of the Voltage Unbalance Factor to Characterize Unbalance Problems in Induction Motors,” Int. Rev. Electr. Eng., vol. 16, no. 1, pp. 1-8, 2021, doi: 10.15866/iree.v16i1.18881.[7] J. R. Gómez et al., “Assessment criteria of the feasibility of replacement standard efficiency electric motors with high-efficiency motors,” Energy, vol. 239, p. 121877, 2022, doi: 10.1016/j.energy.2021.121877.[8] A. De Almeida, J. Fong, C. U. Brunner, R. Werle, and M. Van Werkhoven, “New technology trends and policy needs in energy efficient motor systems - A major opportunity for energy and carbon savings,” Renewable and Sustainable Energy Reviews, vol. 115, p. 109384, 2019, doi: 10.1016/j.rser.2019.109384.[9] P. R. Viego, V. Sousa, J. R. Gómez, and E. C. Quispe, “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” Int. J. Electr. Comput. Eng., vol. 10, no. 1, p. 651, 2020, doi: 10.11591/ijece.v10i1.pp651-659.[10] A. Trianni, E. Cagno, and D. Accordini, “Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption,” Applied Energy, vol. 252, p. 113481, 2019, doi: 10.1016/j.apenergy.2019.113481.[11] J. C. Travieso-Torres et al., “New Adaptive High Starting Torque Scalar Control Scheme for Induction Motors Based on Passivity,” Energies, vol. 13, no. 5, p. 1-15, 2020, doi: 10.3390/en13051276.[12] F. J. T. E. Ferreira and A. T. de Almeida, “Reducing Energy Costs in Electric-Motor-Driven Systems: Savings Through Output Power Reduction and Energy Regeneration,” IEEE Industry Applications Magazine, vol. 24, no. 1, pp. 84-97, 2018, doi: 10.1109/MIAS.2016.2600685.[13] C. P. Salomon, W. C. Sant’Ana, G. L. Torres, L. E. B. D. Silva, E. L. Bonaldi, and L. E. D. L. D. Oliveira, “Comparison among methods for induction motor low-intrusive efficiency evaluation including a new AGT approach with a modified stator resistance,” Energies, vol. 11, no. 4, pp. 1-21, 2018, doi: 10.3390/en11040691.[14] V. S. Santos, J. J. C. Eras, A. S. Gutierrez, and M. J. Cabello Ulloa, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237-247, 2019, doi: 10.1016/j.measurement.2018.12.080.[15] D. Wang, X. Yuan, and M. Zhang, “Power-Balancing Based Induction Machine Model for Power System Dynamic Analysis in Electromechanical Timescale,” Energies, vol. 11, no. 2, pp. 161-164, 2018, doi: 10.3390/en11020438.[16] D. Kosterev and D. Davies, “System model validation studies in WECC,” IEEE PES General Meeting, 2010, pp. 1- 4, doi: 10.1109/PES.2010.5589797.[17] J. C. Sánchez, T. I. A. Olivares, G. R. Ortiz and D. Ruiz-Vega, “Induction motor static models for power flow and voltage stability studies,” IEEE Power and Energy Society General Meeting, 2012, pp. 1-8, doi: 10.1109/PESGM.2012.6345618.[18] B. T. Ooi, J. Guo and X. Wang, “Nonlinear negative damping caused August 10, 1996-WECC blackout,” IEEE Power & Energy Society General Meeting PESGM, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9281819.[19] J. V. Milanovic, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokic and L. M. Korunović, “International Industry Practice on Power System Load Modeling,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3038-3046, Aug. 2013, doi: 10.1109/TPWRS.2012.2231969.[20] Z. Y. Dong, A. Borghetti, K. Yamashita, A. Gaikwad, P. Pourbeik, and J. V. Milanović, “CIGRE WG C4 . 065 Recommendations on Measurement Based and Component Based Load Modelling Practice,” CIGRE SC C4 2012 Hakodate Colloquium, no. June 2014, pp. 1-6, 2012.[21] R. Balanathan, N. C. Pahalawaththa, and U. D. Annakkage, “Modelling induction motor loads for voltage stability analysis,” International Journal of Electrical Power & Energy Systems, vol. 24, no. 6, pp. 469-480, 2002, doi: 10.1016/S0142-0615(01)00059-X.[22] B. K. Choi, H. D. Chiang, Y. Li, Y. T. Chen, D. H. Huang and M. G. Lauby, “Development of composite load models of power systems using on-line measurement data,” IEEE Power Engineering Society General Meeting, 2006, pp. 8, doi: 10.1109/PES.2006.1709013.[23] P. Aree, “Load flow solution with induction motor,” Songklanakarin J. Sci. Technol, vol. 28, no. 1, pp. 157-168, 2006.[24] S. D. Umans, “Fitzgerald and Kingsley’s Electric machinery,” 2014.[25] L. Pereira, D. Kosterev, P. Mackin, D. Davies, J. Undrill and Wenchun Zhu, “An interim dynamic induction motor model for stability studies in the WSCC,” IEEE Transactions on Power Systems, vol. 17, no. 4, pp. 1108-1115, 2002, doi: 10.1109/TPWRS.2002.804960.[26] MATLAB, “MATLAB R2019a.” 2019.[27] DIgSILENT, “DIgSILENT PowerFactory 15.1.7 (x86).” 2014.[28] S. Rönnberg and M. Bollen, “Power quality issues in the electric power system of the future,” The Electricity Journal, vol. 29, no. 10, pp. 49-61, 2016, doi: 10.1016/j.tej.2016.11.006.[29] M. Hasanuzzaman, N. A. Rahim, R. Saidur, and S. N. Kazi, “Energy savings and emissions reductions for rewinding and replacement of industrial motor,” Energy, vol. 36, no. 1, pp. 233-40, 2011, doi: 10.1016/j.energy.2010.10.046.[30] A. J. Collin, J. L. Acosta, B. P. Hayes, and S. Z. Djokic, “Component-based aggregate load models for combined power flow and harmonic analysis,” 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion, 2010.[31] J. Carmona-Sánchez and D. Ruiz-Vega, “Review of static induction motor models,” North American Power Symposium, 2010, pp. 1-8, doi: 10.1109/NAPS.2010.5619613.[32] H. Renmu, Ma Jin and D. J. Hill, “Composite load modeling via measurement approach,” IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 663-672, 2006, doi: 10.1109/TPWRS.2006.873130.[33] E. O. Kontis et al., “Development of measurement-based load models for the dynamic simulation of distribution grids,” IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1-6, doi: 10.1109/ISGTEurope.2017.8260251.[34] L. C. Solar, A. A. C. Montiel, M. V. Llanes, V. S. Santos, and A. C. Colina, “A new exact equivalent circuit of the medium voltage three-phase induction motor,” International Journal of Electrical and Computer Engineering, vol. 10, no. 6, pp. 6164-6171, 2020, doi: 10.11591/ijece.v10i6.pp6164-6171.[35] D. R. Q. Sarmiento, J. R. García, and W. M. López, “Methodology to Measure Electric Discharge Machining ( EDM ) Bearing Currents in Induction Motors with Supply from a Variable Speed Drive (VSD),” INGE CUC, vol. 9, no. 2, pp. 83-93, 2014.PublicationORIGINALA new approach to three-phase asynchronous motor model for electric power system analysis.pdfA new approach to three-phase asynchronous motor model for electric power system analysis.pdfapplication/pdf482367https://repositorio.cuc.edu.co/bitstreams/1132d5b0-0da3-4ba8-ac51-dc1706bc3fd5/download5ee5bba02f92a29f622fa8f5209fa3f7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/aa4d6b95-3f58-49c4-b9c0-31a127a73030/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e0aa747c-c414-494f-93c6-693177b36e1a/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILA new approach to three-phase asynchronous motor model for electric power system analysis.pdf.jpgA new approach to three-phase asynchronous motor model for electric power system analysis.pdf.jpgimage/jpeg64104https://repositorio.cuc.edu.co/bitstreams/05133938-0c2c-4469-a89c-3ddce1c8ca57/downloadecef06b14673759e9c83f238d853e325MD54TEXTA new approach to three-phase asynchronous motor model for electric power system analysis.pdf.txtA new approach to three-phase asynchronous motor model for electric power system analysis.pdf.txttext/plain42096https://repositorio.cuc.edu.co/bitstreams/cb2bd4e1-c460-4a18-b181-18e3a05aac2d/downloadda159d979f70afd648ce8d06a37838c3MD5511323/9016oai:repositorio.cuc.edu.co:11323/90162024-09-17 12:49:30.447http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==