VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software
Introducción: Académicos, desarrolladores y empresas enfocadas en el desarrollo tecnológico, buscan conocer lo que ya existe y lo que aún falta en este campo. Una de las formas que utilizan, es realizar revisiones sobre fuentes bibliográficas (estado del arte). En este sentido, se desarrolló una her...
- Autores:
-
Hidalgo-Suarez, Carlos Giovanny
Bucheli-Guerrero , Victor Andres
Ordoñez-Eraso , Hugo Armando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12353
- Palabra clave:
- Mining Software Repositories
Technology Forecasting
Review of technologies
Technological maps
GitHub
Minería de Repositorios de Software
Vigilancia Tecnológica
Revisión del estado de la técnica
Mapas tecnológicos
GitHub
- Rights
- openAccess
- License
- INGE CUC - 2021
id |
RCUC2_6a780dbc84dd1bf021676040e26b1aac |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12353 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
dc.title.translated.eng.fl_str_mv |
VIGHUB: a Technology Forecasting Tool based on Mining Software Repositories |
title |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
spellingShingle |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software Mining Software Repositories Technology Forecasting Review of technologies Technological maps GitHub Minería de Repositorios de Software Vigilancia Tecnológica Revisión del estado de la técnica Mapas tecnológicos GitHub |
title_short |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
title_full |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
title_fullStr |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
title_full_unstemmed |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
title_sort |
VIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de Software |
dc.creator.fl_str_mv |
Hidalgo-Suarez, Carlos Giovanny Bucheli-Guerrero , Victor Andres Ordoñez-Eraso , Hugo Armando |
dc.contributor.author.spa.fl_str_mv |
Hidalgo-Suarez, Carlos Giovanny Bucheli-Guerrero , Victor Andres Ordoñez-Eraso , Hugo Armando |
dc.subject.eng.fl_str_mv |
Mining Software Repositories Technology Forecasting Review of technologies Technological maps GitHub |
topic |
Mining Software Repositories Technology Forecasting Review of technologies Technological maps GitHub Minería de Repositorios de Software Vigilancia Tecnológica Revisión del estado de la técnica Mapas tecnológicos GitHub |
dc.subject.spa.fl_str_mv |
Minería de Repositorios de Software Vigilancia Tecnológica Revisión del estado de la técnica Mapas tecnológicos GitHub |
description |
Introducción: Académicos, desarrolladores y empresas enfocadas en el desarrollo tecnológico, buscan conocer lo que ya existe y lo que aún falta en este campo. Una de las formas que utilizan, es realizar revisiones sobre fuentes bibliográficas (estado del arte). En este sentido, se desarrolló una herramienta que permite identificar el estado actual de una tecnología de forma semi-automática. Objetivo: Este artículo propone una herramienta que extrae información de repositorios alojados en GitHub. Analiza los datos utilizando técnicas computacionales y presenta los resultados a través de visualizaciones que identifican la evolución tecnológica del campo estudiado a través de los lenguajes de programación, principales, repositorios y organizaciones. Metodología: Se utiliza un modelo basado en Repositorios de Software de Minería (MSR), el cual integra una arquitectura basada en microservicios utilizando diferentes lenguajes de programación, lo que permitió la construcción de la herramienta VigHub. El modelo se centra en cuatro aspectos: selección de un tema tecnológico, extracción de la fuente de datos, análisis de la información mediante técnicas computacionales y finalmente, se muestran los resultados a través de visualizaciones. Resultados: Se dispuso la herramienta VigHub de manera online para realizar 3 casos de estudio. El primero en la academia, donde se identifico desde el año 2011 al 2021, las tecnologías, los lenguajes de programación, los usuarios y empresas interesadas en el desarrollo de VLE’s (Virtual Learning Environment). El segundo y tercero fueron ejecutados por empresas (ambiente industrial), que afirmaron que el uso de la herramienta VigHub, apoya tanto en el análisis de datos como en la identificación de resultados útiles. Conclusiones: Contar con una herramienta que a partir de una sola consulta permite identificar parte del estado actual de una tecnología, podría ser una herramienta útil para académicos, desarrolladores y empresas, que ahorrarían recursos humanos, tiempo y posibles desarrollos repetidos---reutilización de código. La herramienta VigHub pretende apoyar en la construcción de un estado de arte. Sus resultados son complementarios al método tradicional. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-11-02 00:00:00 2024-04-09T20:21:54Z |
dc.date.available.none.fl_str_mv |
2021-11-02 00:00:00 2024-04-09T20:21:54Z |
dc.date.issued.none.fl_str_mv |
2021-11-02 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12353 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.18.1.2022.07 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.18.1.2022.07 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.18.1.2022.07 2382-4700 |
url |
https://hdl.handle.net/11323/12353 https://doi.org/10.17981/ingecuc.18.1.2022.07 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
A. Peralta & F. P. Romero, “Decision making from knowledge obtained after previous behavior analysis. Practical implementation to project management of software development,” Rev Cintex, vol. 20, no. 2, pp. 97–111, Nov. 2015. https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/26 D. Güemes-Peña, C. López-Nozal, R. Marticorena-Sánchez & J. Maudes-Raedo, “Emerging topics in mining software repositories: Machine learning in software repositories and datasets”, Prog Artif Intell, vol. 7, no. 3, pp. 237–247, Mar. 2018. https://doi.org/10.1007/s13748-018-0147-7 O. Meqdadi, N. Alhindawi, J. Alsakran, A. Saifan & H. Migdadi, “Mining software repositories for adaptive change commits using machine learning techniques,” Inf Softw Technol, vol. 109, pp. 80–91, May. 2019. https://doi.org/10.1016/j.infsof.2019.01.008 M. Garriga, “Towards a taxonomy of microservices architectures,” presented at International Conference on Software Engineering and Formal Methods, SEFM, TLS, FR, 27-29 Jun. 2018. https://doi.org/10.1007/978-3-319-74781-1_15 K. Bakshi, “Microservices-based software architecture and approaches,” presented at Aerospace Conference Proceedings, IEEE, Big Sky, MT, 4-11 Mar. 2017. https://doi.org/10.1109/AERO.2017.7943959 Y. San Juan & F. Romero, “Management, extraction and storing sources for technological watch and competitive intelligence,” presented at VIII Congreso Internacional de Tecnologías y Contenidos Multimedia, CITCM, HAB, CU, 19-23 Mar. 2018. M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue & D. Lo, “Improving reusability of software libraries through usage pattern mining,” JSS, vol. 145, pp. 164–179, Nov. 2018. https://doi.org/10.1016/j.jss.2018.08.032 R. Dyer, H. A. Nguyen, H. Rajan & T. N. Nguyen, “Boa: Ultra-large-scale software repository and source-code mining,” ACM Trans Softw Eng Methodol, vol. 25, no. 1, pp. 1–34, Dec. 2015. https://doi.org/10.1145/2803171 F. Z. Sokol, M. F. Aniche & M. A. Gerosa, “MetricMiner: Supporting researchers in mining software repositories,” presented at 2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation, SCAM, EIN, NL, 22-23 Sept. 013. https://doi.org/10.1109/SCAM.2013.6648195 C. M. Filho, “Kalibro: Uma ferramenta de configuração e interpretação de métricas de código-fonte,” Projeto de conclusão de curso, USP, SP, BR, 2009. https://www.ime.usp.br/~cef/mac499-09/monografias/carlos-morais/Monografia.pdf D. S. Chawla, “The unsung heroes of scientific software,” Nature, vol. 529, no. 7584, pp. 115–116, Jan. 2016. https://doi.org/10.1038/529115a D. Spadini, M. Aniche & A. Bacchelli, “PyDriller: Python framework for mining software repositories,” presented at 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE, NYC, NY, USA, 4-9 Nov. 2018. https://doi.org/10.1145/3236024.3264598 S. Dueñas, V. Cosentino, G. Robles & J. M. Gonzalez-Barahona, “Perceval: software project data at your will,” presented at 40th International Conference on Software Engineering: Companion, ICSE-Companion, GBG, SE, 27 May.-3 Jun. 018. https://ieeexplore.ieee.org/document/8449430 J. J. Ramírez-Echeverry, F. Restrepo-Calle & F. A. González, “Uncode: interactive system for learning and automatic evaluation of computer programming skills”, presented at 10th International Conference on Education and New Learning Technologies, EDULEARN, PMI, ES, 2-4 Jul. 2018. https://doi.org/10.21125/edulearn.2018.1632 E. Ortíz, “La evaluación del impacto científico en las investigaciones educativas a través de un estudio de caso,” REDIE, vol. 17, no. 2, pp. 89–100, May. 2015. https://www.scienceopen.com/document?vid=0de24d4c-b9e3-4739-b394-346f7480b4fe A. Berges-García, J. M. Meneses-Chaus & J. F. Martínez-Ortega, “Methodology for evaluating functions and products for technology watch and competitive intelligence (TW/CI) and their implementation through web,” PEI, vol. 25, no. 1, pp. 103–113, Jan. 2016. https://doi.org/10.3145/epi.2016.ene.10 SpaCy, “Industrial-Strength Natural Language Processing in Python,” Accessed: Oct. 18, 2019. [Online]. Available: https://spacy.io/ Google Developers. “Google Charts.” Accessed: 2018. [Online]. Available: https://developers.google.com/chart P. T. Goeser, F. G. Hamza-Lup, W. M. Johnson & D. Scharfer, “VIEW: A Virtual Interactive Web-based Learning Environment for Engineering,” AEEE, vol. 2, no. 3, pp. 1–24, Dec. 2011. https://doi.org/10.48550/arXiv.1811.07463 WISE-Community, “WISE VLE,” Feb. 25, 2015. [Online]. Available: https://github.com/WISE-Community/WISE-VLE--Deprecated-- F. Supriadi, M. Agreindra Helmiawan, Y. Y. Sofiyan & A. Guntara, “A Model of Virtual Learning Environments Using Micro-Lecture, MOODLE, and SLOODLE,” presented at 8th International Conference on Cyber and IT Service Management, CITSM, PGX, ID, 23-24 Dec. 020. https://doi.org/10.1109/CITSM50537.2020.9268785 Knowm, “Proprioceptron,” Oct. 27, 2012. [Online]. Available: https://github.com/knowm/Proprioceptron Yjwong, “com.nuscomputing.ivlelapi,” Aug. 14, 2012. [Online]. Available: https://github.com/yjwong/com.nuscomputing.ivlelapi 40thieves, “WikiVLE,” Jun. 23, 2012. [Online]. Available: https://github.com/40thieves/WikiVLE Jbittencourt, “massinha,” Jul. 5, 2012. [Online]. Available: https://github.com/jbittencourt/massinha Conel, “moodle-1.9,” Aug. 20, 2012. [Online]. Available: https://github.com/conel/moodle-1.9 Elkuku, “JDevAndLearn,” Jul. 28, 2012. [Online]. Available: https://github.com/elkuku/JDevAndLearn Champiewebfolio, “CloudPod,” Jan. 6, 2013. [Online]. Available: https://github.com/champiewebfolio/CloudPod RheoDesign, “AAVS-Beijing,” Oct. 23, 2013. [Online]. Available: https://github.com/RheoDesign/AAVS-Beijing Roxolan, “vlemean,” Aug. 11, 2015. [Online]. Available: https://github.com/roxolan/vlemean luistp001, “LT-Autograder,” Sep. 16, 2012. [Online]. Available: https://github.com/luistp001/LT-Autograder StephenBergeron, “RubySoup,” Apr. 1, 2014. [Online]. Available: https://github.com/StephenBergeron/RubySoup Deepapanwar, “vle,” Jun. 16, 2015. [Online]. Available: https://github.com/deepapanwar/vle Soyjun, “Implement-ODR-protocol,” Apr. 10, 2015. [Online]. Available: https://github.com/SOYJUN/Implement-ODR-protocol Brukmoon, “eduqo-vle,” Apr. 23, 2015. [Online]. Available: https://github.com/Brukmoon/eduqo-vle Sykonba, “PeerReviewSystem,” Nov. 2, 2015. [Online]. Available: https://github.com/Sykonba/PeerReviewSystem DavidStCox, “nlp-vle,” Apr. 10, 2017. [Online]. Available: https://github.com/DavidStCox/nlp-vle Lumeng, “univ-washington-machine-learning-python-virtualenv,” Dec. 3, 2017. [Online]. Available: https://github.com/lumeng/univ-washington-machine-learning-python-virtualenv Blosm-org, “blosm-core,” Sep. 30, 2017. [Online]. Available: https://github.com/blosm-org/blosm-core Cvgokhale, “Course-Completion-Rate-Prediction,” Jul. 16, 2017. [Online]. Available: https://github.com/cvgokhale/Course-Completion-Rate-Prediction Victor-iyiola, “navigating-a-virtual-world-using-dynamic-programming,” Nov. 26, 2017. [Online]. Available: https://github.com/victor-iyiola/navigating-a-virtual-world-using-dynamic-programming Charvi5, “VirtualLearning-Analysis-Classification,” Apr. 4, 2018. [Online]. Available: https://github.com/charvi5/VirtualLearning-Analysis-Classification Viniciusvec, “hackops,” Mar. 2, 2018. [Online]. Available: https://github.com/viniciusvec/hackops Fernando24164, “breakfast_docker,” Feb. 2, 2018. [Online]. Available: https://github.com/fernando24164/breakfast_docker pupilfirst, “pupilfirst,” Aug. 2, 2021. [Online]. Available: https://github.com/pupilfirst/pupilfirst tparisi, “LearningVirtualReality,” Mar. 4, 2016. [Online]. Available: https://github.com/tparisi/LearningVirtualReality Aayushi15061997, “Reinforcement_Learning_ThompsonSampling,” Jan 29, 2018. [Online]. Available: https://github.com/aayushi15061997/Reinforcement_Learning_ThompsonSampling The-Dank-Network, “TDVLE-API,” Mar. 23, 2019. [Online]. Available: https://github.com/The-Dank-Network/TDVLE-API C. G. Hidalgo, V. A. Bucheli, F. Restrepo-Calle & F. A. González, “A strategy based on technological maps for the identification of the state-of-the-art techniques in software development projects: Virtual judge projects as a case study,” in Communications in Computer and Information Science, C. J. Serrano & J. Martínez-Santos, Cham, CH: Springer, 2018, vol. 885, pp. 338–354. https://doi.org/10.1007/978-3-319-98998-3_27 |
dc.relation.citationendpage.none.fl_str_mv |
94 |
dc.relation.citationstartpage.none.fl_str_mv |
83 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
18 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/4065/4167 https://revistascientificas.cuc.edu.co/ingecuc/article/download/4065/4636 https://revistascientificas.cuc.edu.co/ingecuc/article/download/4065/4637 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2022 : (Enero - Junio) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2021 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2021 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html text/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/4065 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/2b5946e7-7876-46ea-a67c-4181b8f02bc4/download |
bitstream.checksum.fl_str_mv |
823019c285caea0076e5267402e6bd68 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760698368196608 |
spelling |
Hidalgo-Suarez, Carlos GiovannyBucheli-Guerrero , Victor AndresOrdoñez-Eraso , Hugo Armando2021-11-02 00:00:002024-04-09T20:21:54Z2021-11-02 00:00:002024-04-09T20:21:54Z2021-11-020122-6517https://hdl.handle.net/11323/12353https://doi.org/10.17981/ingecuc.18.1.2022.0710.17981/ingecuc.18.1.2022.072382-4700Introducción: Académicos, desarrolladores y empresas enfocadas en el desarrollo tecnológico, buscan conocer lo que ya existe y lo que aún falta en este campo. Una de las formas que utilizan, es realizar revisiones sobre fuentes bibliográficas (estado del arte). En este sentido, se desarrolló una herramienta que permite identificar el estado actual de una tecnología de forma semi-automática. Objetivo: Este artículo propone una herramienta que extrae información de repositorios alojados en GitHub. Analiza los datos utilizando técnicas computacionales y presenta los resultados a través de visualizaciones que identifican la evolución tecnológica del campo estudiado a través de los lenguajes de programación, principales, repositorios y organizaciones. Metodología: Se utiliza un modelo basado en Repositorios de Software de Minería (MSR), el cual integra una arquitectura basada en microservicios utilizando diferentes lenguajes de programación, lo que permitió la construcción de la herramienta VigHub. El modelo se centra en cuatro aspectos: selección de un tema tecnológico, extracción de la fuente de datos, análisis de la información mediante técnicas computacionales y finalmente, se muestran los resultados a través de visualizaciones. Resultados: Se dispuso la herramienta VigHub de manera online para realizar 3 casos de estudio. El primero en la academia, donde se identifico desde el año 2011 al 2021, las tecnologías, los lenguajes de programación, los usuarios y empresas interesadas en el desarrollo de VLE’s (Virtual Learning Environment). El segundo y tercero fueron ejecutados por empresas (ambiente industrial), que afirmaron que el uso de la herramienta VigHub, apoya tanto en el análisis de datos como en la identificación de resultados útiles. Conclusiones: Contar con una herramienta que a partir de una sola consulta permite identificar parte del estado actual de una tecnología, podría ser una herramienta útil para académicos, desarrolladores y empresas, que ahorrarían recursos humanos, tiempo y posibles desarrollos repetidos---reutilización de código. La herramienta VigHub pretende apoyar en la construcción de un estado de arte. Sus resultados son complementarios al método tradicional. Introduction: Academics, developers, and companies focused on technological development seek to know what exists and what is still missing in this field. One of the ways they use is the review of bibliographic sources (state-of-the art). In this sense, a tool was developed that allows the current state to be identified semi-automatically. Objective: This article proposes a tool that extracts information from repositories hosted on GitHub. It analyzes the data using computational techniques and presents the results through visualizations that identify the field's technological evolution studied through the most used programming languages, central repositories, and organizations. Method: A model based on Mining Software Repositories (MSR) is used, which integrates an architecture based on microservices, using different programming languages, which allowed the construction of the VigHub tool. The model focuses on four aspects: Selection of a topic, extraction of the data source, analysis of information using computational techniques, and finally, the results are communicated through visualizations. Results: The VigHub tool was available online to carry out 3 case studies. The first in the academy, where technologies, programming languages, users, and companies interested in developing VLE's (Virtual Learning Environment) were identified from 2011 to 2021. The second and third were carried out by companies (industrial environment), which stated that using the VigHub tool supports data analysis and valuable results identification. Conclusions: A tool that allows identifying a part of the current state of technology could be a helpful tool for academics, developers, and companies, saving human resources, time, and possible repeated developments---code reuse. The VigHub tool aims to support the construction of state-of-the-art. Its results are complementary to the traditional method.application/pdftext/htmltext/xmlengUniversidad de la CostaINGE CUC - 2021http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/4065Mining Software RepositoriesTechnology ForecastingReview of technologiesTechnological mapsGitHubMinería de Repositorios de SoftwareVigilancia TecnológicaRevisión del estado de la técnicaMapas tecnológicosGitHubVIGHUB: una Herramienta de Pronóstico Tecnológico basada en Minería de Repositorios de SoftwareVIGHUB: a Technology Forecasting Tool based on Mining Software RepositoriesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucA. Peralta & F. P. Romero, “Decision making from knowledge obtained after previous behavior analysis. Practical implementation to project management of software development,” Rev Cintex, vol. 20, no. 2, pp. 97–111, Nov. 2015. https://revistas.pascualbravo.edu.co/index.php/cintex/article/view/26D. Güemes-Peña, C. López-Nozal, R. Marticorena-Sánchez & J. Maudes-Raedo, “Emerging topics in mining software repositories: Machine learning in software repositories and datasets”, Prog Artif Intell, vol. 7, no. 3, pp. 237–247, Mar. 2018. https://doi.org/10.1007/s13748-018-0147-7O. Meqdadi, N. Alhindawi, J. Alsakran, A. Saifan & H. Migdadi, “Mining software repositories for adaptive change commits using machine learning techniques,” Inf Softw Technol, vol. 109, pp. 80–91, May. 2019. https://doi.org/10.1016/j.infsof.2019.01.008M. Garriga, “Towards a taxonomy of microservices architectures,” presented at International Conference on Software Engineering and Formal Methods, SEFM, TLS, FR, 27-29 Jun. 2018. https://doi.org/10.1007/978-3-319-74781-1_15K. Bakshi, “Microservices-based software architecture and approaches,” presented at Aerospace Conference Proceedings, IEEE, Big Sky, MT, 4-11 Mar. 2017. https://doi.org/10.1109/AERO.2017.7943959Y. San Juan & F. Romero, “Management, extraction and storing sources for technological watch and competitive intelligence,” presented at VIII Congreso Internacional de Tecnologías y Contenidos Multimedia, CITCM, HAB, CU, 19-23 Mar. 2018.M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue & D. Lo, “Improving reusability of software libraries through usage pattern mining,” JSS, vol. 145, pp. 164–179, Nov. 2018. https://doi.org/10.1016/j.jss.2018.08.032R. Dyer, H. A. Nguyen, H. Rajan & T. N. Nguyen, “Boa: Ultra-large-scale software repository and source-code mining,” ACM Trans Softw Eng Methodol, vol. 25, no. 1, pp. 1–34, Dec. 2015. https://doi.org/10.1145/2803171F. Z. Sokol, M. F. Aniche & M. A. Gerosa, “MetricMiner: Supporting researchers in mining software repositories,” presented at 2013 IEEE 13th International Working Conference on Source Code Analysis and Manipulation, SCAM, EIN, NL, 22-23 Sept. 013. https://doi.org/10.1109/SCAM.2013.6648195C. M. Filho, “Kalibro: Uma ferramenta de configuração e interpretação de métricas de código-fonte,” Projeto de conclusão de curso, USP, SP, BR, 2009. https://www.ime.usp.br/~cef/mac499-09/monografias/carlos-morais/Monografia.pdfD. S. Chawla, “The unsung heroes of scientific software,” Nature, vol. 529, no. 7584, pp. 115–116, Jan. 2016. https://doi.org/10.1038/529115aD. Spadini, M. Aniche & A. Bacchelli, “PyDriller: Python framework for mining software repositories,” presented at 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE, NYC, NY, USA, 4-9 Nov. 2018. https://doi.org/10.1145/3236024.3264598S. Dueñas, V. Cosentino, G. Robles & J. M. Gonzalez-Barahona, “Perceval: software project data at your will,” presented at 40th International Conference on Software Engineering: Companion, ICSE-Companion, GBG, SE, 27 May.-3 Jun. 018. https://ieeexplore.ieee.org/document/8449430J. J. Ramírez-Echeverry, F. Restrepo-Calle & F. A. González, “Uncode: interactive system for learning and automatic evaluation of computer programming skills”, presented at 10th International Conference on Education and New Learning Technologies, EDULEARN, PMI, ES, 2-4 Jul. 2018. https://doi.org/10.21125/edulearn.2018.1632E. Ortíz, “La evaluación del impacto científico en las investigaciones educativas a través de un estudio de caso,” REDIE, vol. 17, no. 2, pp. 89–100, May. 2015. https://www.scienceopen.com/document?vid=0de24d4c-b9e3-4739-b394-346f7480b4feA. Berges-García, J. M. Meneses-Chaus & J. F. Martínez-Ortega, “Methodology for evaluating functions and products for technology watch and competitive intelligence (TW/CI) and their implementation through web,” PEI, vol. 25, no. 1, pp. 103–113, Jan. 2016. https://doi.org/10.3145/epi.2016.ene.10SpaCy, “Industrial-Strength Natural Language Processing in Python,” Accessed: Oct. 18, 2019. [Online]. Available: https://spacy.io/Google Developers. “Google Charts.” Accessed: 2018. [Online]. Available: https://developers.google.com/chartP. T. Goeser, F. G. Hamza-Lup, W. M. Johnson & D. Scharfer, “VIEW: A Virtual Interactive Web-based Learning Environment for Engineering,” AEEE, vol. 2, no. 3, pp. 1–24, Dec. 2011. https://doi.org/10.48550/arXiv.1811.07463WISE-Community, “WISE VLE,” Feb. 25, 2015. [Online]. Available: https://github.com/WISE-Community/WISE-VLE--Deprecated--F. Supriadi, M. Agreindra Helmiawan, Y. Y. Sofiyan & A. Guntara, “A Model of Virtual Learning Environments Using Micro-Lecture, MOODLE, and SLOODLE,” presented at 8th International Conference on Cyber and IT Service Management, CITSM, PGX, ID, 23-24 Dec. 020. https://doi.org/10.1109/CITSM50537.2020.9268785Knowm, “Proprioceptron,” Oct. 27, 2012. [Online]. Available: https://github.com/knowm/ProprioceptronYjwong, “com.nuscomputing.ivlelapi,” Aug. 14, 2012. [Online]. Available: https://github.com/yjwong/com.nuscomputing.ivlelapi40thieves, “WikiVLE,” Jun. 23, 2012. [Online]. Available: https://github.com/40thieves/WikiVLEJbittencourt, “massinha,” Jul. 5, 2012. [Online]. Available: https://github.com/jbittencourt/massinhaConel, “moodle-1.9,” Aug. 20, 2012. [Online]. Available: https://github.com/conel/moodle-1.9Elkuku, “JDevAndLearn,” Jul. 28, 2012. [Online]. Available: https://github.com/elkuku/JDevAndLearnChampiewebfolio, “CloudPod,” Jan. 6, 2013. [Online]. Available: https://github.com/champiewebfolio/CloudPodRheoDesign, “AAVS-Beijing,” Oct. 23, 2013. [Online]. Available: https://github.com/RheoDesign/AAVS-BeijingRoxolan, “vlemean,” Aug. 11, 2015. [Online]. Available: https://github.com/roxolan/vlemeanluistp001, “LT-Autograder,” Sep. 16, 2012. [Online]. Available: https://github.com/luistp001/LT-AutograderStephenBergeron, “RubySoup,” Apr. 1, 2014. [Online]. Available: https://github.com/StephenBergeron/RubySoupDeepapanwar, “vle,” Jun. 16, 2015. [Online]. Available: https://github.com/deepapanwar/vleSoyjun, “Implement-ODR-protocol,” Apr. 10, 2015. [Online]. Available: https://github.com/SOYJUN/Implement-ODR-protocolBrukmoon, “eduqo-vle,” Apr. 23, 2015. [Online]. Available: https://github.com/Brukmoon/eduqo-vleSykonba, “PeerReviewSystem,” Nov. 2, 2015. [Online]. Available: https://github.com/Sykonba/PeerReviewSystemDavidStCox, “nlp-vle,” Apr. 10, 2017. [Online]. Available: https://github.com/DavidStCox/nlp-vleLumeng, “univ-washington-machine-learning-python-virtualenv,” Dec. 3, 2017. [Online]. Available: https://github.com/lumeng/univ-washington-machine-learning-python-virtualenvBlosm-org, “blosm-core,” Sep. 30, 2017. [Online]. Available: https://github.com/blosm-org/blosm-coreCvgokhale, “Course-Completion-Rate-Prediction,” Jul. 16, 2017. [Online]. Available: https://github.com/cvgokhale/Course-Completion-Rate-PredictionVictor-iyiola, “navigating-a-virtual-world-using-dynamic-programming,” Nov. 26, 2017. [Online]. Available: https://github.com/victor-iyiola/navigating-a-virtual-world-using-dynamic-programmingCharvi5, “VirtualLearning-Analysis-Classification,” Apr. 4, 2018. [Online]. Available: https://github.com/charvi5/VirtualLearning-Analysis-ClassificationViniciusvec, “hackops,” Mar. 2, 2018. [Online]. Available: https://github.com/viniciusvec/hackopsFernando24164, “breakfast_docker,” Feb. 2, 2018. [Online]. Available: https://github.com/fernando24164/breakfast_dockerpupilfirst, “pupilfirst,” Aug. 2, 2021. [Online]. Available: https://github.com/pupilfirst/pupilfirsttparisi, “LearningVirtualReality,” Mar. 4, 2016. [Online]. Available: https://github.com/tparisi/LearningVirtualRealityAayushi15061997, “Reinforcement_Learning_ThompsonSampling,” Jan 29, 2018. [Online]. Available: https://github.com/aayushi15061997/Reinforcement_Learning_ThompsonSamplingThe-Dank-Network, “TDVLE-API,” Mar. 23, 2019. [Online]. Available: https://github.com/The-Dank-Network/TDVLE-APIC. G. Hidalgo, V. A. Bucheli, F. Restrepo-Calle & F. A. González, “A strategy based on technological maps for the identification of the state-of-the-art techniques in software development projects: Virtual judge projects as a case study,” in Communications in Computer and Information Science, C. J. Serrano & J. Martínez-Santos, Cham, CH: Springer, 2018, vol. 885, pp. 338–354. https://doi.org/10.1007/978-3-319-98998-3_279483118https://revistascientificas.cuc.edu.co/ingecuc/article/download/4065/4167https://revistascientificas.cuc.edu.co/ingecuc/article/download/4065/4636https://revistascientificas.cuc.edu.co/ingecuc/article/download/4065/4637Núm. 1 , Año 2022 : (Enero - Junio)PublicationOREORE.xmltext/xml2703https://repositorio.cuc.edu.co/bitstreams/2b5946e7-7876-46ea-a67c-4181b8f02bc4/download823019c285caea0076e5267402e6bd68MD5111323/12353oai:repositorio.cuc.edu.co:11323/123532024-09-17 10:16:38.478http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2021metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |