Multiple linear regression model applied to the projection of electricity demand in Colombia

The exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which re...

Full description

Autores:
García Guiliany, Jesús Enrique
De-La-Hoz-Franco, Emiro
Rodríguez Toscano, Andrés David
De la Hoz Hernández, Juan David
Hernández-Palma, Hugo G.
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6095
Acceso en línea:
https://hdl.handle.net/11323/6095
https://doi.org/10.32479/ijeep.7813
https://repositorio.cuc.edu.co/
Palabra clave:
Energy consumption
Electric demand
Multiple linear regression model
Consumo de energía
Demanda eléctrica
Modelo de regresión lineal múltiple
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_6887dcb5f9d0b1d6ddfe3abe51cc99d9
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6095
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Multiple linear regression model applied to the projection of electricity demand in Colombia
dc.title.translated.spa.fl_str_mv Modelo de regresión lineal múltiple aplicado a la proyección de la demanda eléctrica en Colombia
title Multiple linear regression model applied to the projection of electricity demand in Colombia
spellingShingle Multiple linear regression model applied to the projection of electricity demand in Colombia
Energy consumption
Electric demand
Multiple linear regression model
Consumo de energía
Demanda eléctrica
Modelo de regresión lineal múltiple
title_short Multiple linear regression model applied to the projection of electricity demand in Colombia
title_full Multiple linear regression model applied to the projection of electricity demand in Colombia
title_fullStr Multiple linear regression model applied to the projection of electricity demand in Colombia
title_full_unstemmed Multiple linear regression model applied to the projection of electricity demand in Colombia
title_sort Multiple linear regression model applied to the projection of electricity demand in Colombia
dc.creator.fl_str_mv García Guiliany, Jesús Enrique
De-La-Hoz-Franco, Emiro
Rodríguez Toscano, Andrés David
De la Hoz Hernández, Juan David
Hernández-Palma, Hugo G.
dc.contributor.author.spa.fl_str_mv García Guiliany, Jesús Enrique
De-La-Hoz-Franco, Emiro
Rodríguez Toscano, Andrés David
De la Hoz Hernández, Juan David
Hernández-Palma, Hugo G.
dc.subject.spa.fl_str_mv Energy consumption
Electric demand
Multiple linear regression model
Consumo de energía
Demanda eléctrica
Modelo de regresión lineal múltiple
topic Energy consumption
Electric demand
Multiple linear regression model
Consumo de energía
Demanda eléctrica
Modelo de regresión lineal múltiple
description The exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which related to the possible future projections. Next, the results of a quantitative study are presented that through the analysis of data collected between 2007 and 2017 that made possible the construction of a multiple linear regression model to estimate the demand of electric energy. These types of instruments currently originate as alternatives to promote management strategies in the energy field in the country. The final results allow to visualize an estimated figure for the next periods which will serve to contrast with the official results and to generate from this information possible lines of intervention in different organisms.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-10-10
dc.date.accessioned.none.fl_str_mv 2020-03-11T12:58:02Z
dc.date.available.none.fl_str_mv 2020-03-11T12:58:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2146-4553
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6095
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.32479/ijeep.7813
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2146-4553
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6095
https://doi.org/10.32479/ijeep.7813
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Andrews-Speed, P., Liao, X., Dannreuther, R. (2014), The Strategic Implications of China’s Energy Needs. London: Routledge.
Ardila, L.M.C., Cardona, C.J.F. (2017), Structure and current state of the wholesale electricity markets. IEEE Latin America Transactions, 15(4), 669-674.
Banco Mundial. (2017), Sección Indicadores. Available from: https:// www.datos.bancomundial.org/indicador.
Fabra, N., Reguant, M. (2014), Pass-through of emissions costs in electricity markets. American Economic Review, 104(9), 2872-2899.
Government Publications Office. editor. (GPO). (2016), International Energy Outlook 2016: With Projections to 2040. Government Printing Office.
Holmberg, K., Erdemir, A. (2017), Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263-284.
Informe de Operación del Sistema Interconectado Nacional (SIN). (2017), Demanda de Energía Nacional. Available from: http:// www.informesanuales.xm.com.co/2017/SitePages/operacion/4-1- Demanda-de-energia-nacional.aspx.
Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. (2015), Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431-438
Montgomery, D., Peck, E.A., Vining, G. (2012), Introduction to Linear Regression Analysis. Vol. 821. New Jersey: John Wiley and Sons.
Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Majid, M.Z.A. (2015), A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843-862
Ñustes, W., Riviera, S. (2017), Colombia: territorio de inversión en fuentes no convencionales de energía renovable para la generación eléctrica. Revista Ingeniería, Investigación y Desarrollo, 17, 37-48.
Palma, H.H. (2017), Direccionamiento estratégico para la dinamización del sector salud en el departamento del Atlántico. BIOCIENCIAS, 12(1), 79-84.
Pukšec, T., Mathiesen, B.V., Novosel, T., Duić, N. (2014), Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia. Energy, 76, 198-209.
Sánchez-Villegas, A. (2014), In: Martínez-González, M.A., Faulín, F.J., editors. Bioestadística Amigable. Barcelona: Elsevier.
Stephanidis, C. editor. (2018), HCI International 2018 Posters’ Extended Abstracts: 20th International Conference. Vol. 852. HCI International 2018, Las Vegas, NV, USA, Proceedings. Springer.
Unidad de Planeación Minera y Energética (UPME). (2015), Plan Energetico Nacional Colombia: Ideario Energético 2050. Available from: http://www1.upme.gov.co/Documents/PEN_ IdearioEnergetico2050.pdf
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Energy Economics and Policy
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5924f059-188f-4469-bac7-e6f83c274851/download
https://repositorio.cuc.edu.co/bitstreams/3e22c49b-6028-47dd-8fdb-153860240387/download
https://repositorio.cuc.edu.co/bitstreams/13131d58-217a-4560-b473-8b4552f00186/download
https://repositorio.cuc.edu.co/bitstreams/ba05722d-affb-45a5-a1b4-66bdb4bc0172/download
https://repositorio.cuc.edu.co/bitstreams/bf63644a-9eae-4e8b-841f-8bd9f0beea8d/download
bitstream.checksum.fl_str_mv 5b36a47370607bf074d6e9ec3dc5fe92
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
f61284db5754accfb61297d9ccb9a2b4
32a28540c859543dca2dcfe63a5bee81
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760671342198784
spelling García Guiliany, Jesús EnriqueDe-La-Hoz-Franco, EmiroRodríguez Toscano, Andrés DavidDe la Hoz Hernández, Juan DavidHernández-Palma, Hugo G.2020-03-11T12:58:02Z2020-03-11T12:58:02Z2019-10-102146-4553https://hdl.handle.net/11323/6095https://doi.org/10.32479/ijeep.7813Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which related to the possible future projections. Next, the results of a quantitative study are presented that through the analysis of data collected between 2007 and 2017 that made possible the construction of a multiple linear regression model to estimate the demand of electric energy. These types of instruments currently originate as alternatives to promote management strategies in the energy field in the country. The final results allow to visualize an estimated figure for the next periods which will serve to contrast with the official results and to generate from this information possible lines of intervention in different organisms.Las exigencias en cuanto a competitividad y productividad han influido en el consumo energético y la demanda de energía eléctrica en Colombia, por lo que en la actualidad es de mucho interés y utilidad tener acceso a herramientas o modelos válidos para alcanzar un mayor conocimiento en lo relacionado con Las posibles proyecciones futuras. A continuación, se presentan los resultados de un estudio cuantitativo que a través del análisis de los datos recopilados entre 2007 y 2017 eso hizo posible la construcción de un modelo de regresión lineal múltiple para estimar la demanda de energía eléctrica. Este tipo de instrumentos actualmente se originan como alternativas para promover estrategias de gestión en el campo de la energía en el país. Los resultados finales permiten visualizar una cifra estimada para el Próximos períodos que servirán para contrastar con los resultados oficiales y generar a partir de esta información posibles líneas de intervención en diferentes organismos.García Guiliany, Jesús Enrique-will be generated-orcid-0000-0003-3777-3667-600De-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Rodríguez Toscano, Andrés DavidDe la Hoz Hernández, Juan David-will be generated-orcid-0000-0002-4025-8538-600Hernández-Palma, Hugo G.engInternational Journal of Energy Economics and PolicyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy consumptionElectric demandMultiple linear regression modelConsumo de energíaDemanda eléctricaModelo de regresión lineal múltipleMultiple linear regression model applied to the projection of electricity demand in ColombiaModelo de regresión lineal múltiple aplicado a la proyección de la demanda eléctrica en ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAndrews-Speed, P., Liao, X., Dannreuther, R. (2014), The Strategic Implications of China’s Energy Needs. London: Routledge.Ardila, L.M.C., Cardona, C.J.F. (2017), Structure and current state of the wholesale electricity markets. IEEE Latin America Transactions, 15(4), 669-674.Banco Mundial. (2017), Sección Indicadores. Available from: https:// www.datos.bancomundial.org/indicador.Fabra, N., Reguant, M. (2014), Pass-through of emissions costs in electricity markets. American Economic Review, 104(9), 2872-2899.Government Publications Office. editor. (GPO). (2016), International Energy Outlook 2016: With Projections to 2040. Government Printing Office.Holmberg, K., Erdemir, A. (2017), Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263-284.Informe de Operación del Sistema Interconectado Nacional (SIN). (2017), Demanda de Energía Nacional. Available from: http:// www.informesanuales.xm.com.co/2017/SitePages/operacion/4-1- Demanda-de-energia-nacional.aspx.Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. (2015), Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431-438Montgomery, D., Peck, E.A., Vining, G. (2012), Introduction to Linear Regression Analysis. Vol. 821. New Jersey: John Wiley and Sons.Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Majid, M.Z.A. (2015), A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843-862Ñustes, W., Riviera, S. (2017), Colombia: territorio de inversión en fuentes no convencionales de energía renovable para la generación eléctrica. Revista Ingeniería, Investigación y Desarrollo, 17, 37-48.Palma, H.H. (2017), Direccionamiento estratégico para la dinamización del sector salud en el departamento del Atlántico. BIOCIENCIAS, 12(1), 79-84.Pukšec, T., Mathiesen, B.V., Novosel, T., Duić, N. (2014), Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia. Energy, 76, 198-209.Sánchez-Villegas, A. (2014), In: Martínez-González, M.A., Faulín, F.J., editors. Bioestadística Amigable. Barcelona: Elsevier.Stephanidis, C. editor. (2018), HCI International 2018 Posters’ Extended Abstracts: 20th International Conference. Vol. 852. HCI International 2018, Las Vegas, NV, USA, Proceedings. Springer.Unidad de Planeación Minera y Energética (UPME). (2015), Plan Energetico Nacional Colombia: Ideario Energético 2050. Available from: http://www1.upme.gov.co/Documents/PEN_ IdearioEnergetico2050.pdfPublicationORIGINAL7813-21483-1-PB.pdf7813-21483-1-PB.pdfapplication/pdf383142https://repositorio.cuc.edu.co/bitstreams/5924f059-188f-4469-bac7-e6f83c274851/download5b36a47370607bf074d6e9ec3dc5fe92MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3e22c49b-6028-47dd-8fdb-153860240387/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/13131d58-217a-4560-b473-8b4552f00186/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL7813-21483-1-PB.pdf.jpg7813-21483-1-PB.pdf.jpgimage/jpeg73585https://repositorio.cuc.edu.co/bitstreams/ba05722d-affb-45a5-a1b4-66bdb4bc0172/downloadf61284db5754accfb61297d9ccb9a2b4MD54TEXT7813-21483-1-PB.pdf.txt7813-21483-1-PB.pdf.txttext/plain17899https://repositorio.cuc.edu.co/bitstreams/bf63644a-9eae-4e8b-841f-8bd9f0beea8d/download32a28540c859543dca2dcfe63a5bee81MD5511323/6095oai:repositorio.cuc.edu.co:11323/60952024-09-16 16:41:23.378http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=