Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production

Introduction−Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal ef-ficiency of panela burners is 30% on average.Objective−The objective of this...

Full description

Autores:
Meneses, Edxon
Jaramillo, J. E.
Mas de les Valls, Elisabet
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5633
Acceso en línea:
https://hdl.handle.net/11323/5633
https://doi.org/10.17981/ingecuc.15.1.2019.12
https://repositorio.cuc.edu.co/
Palabra clave:
CFD
Turbulent flow
Radiation heat transfer
Industrial furnace
Flujo turbulento
Transferencia de calor por radiación
Horno industrial
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_681f380aeeb3c1750365e277bcfd2b3d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5633
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
dc.title.translated.spa.fl_str_mv Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela
title Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
spellingShingle Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
CFD
Turbulent flow
Radiation heat transfer
Industrial furnace
Flujo turbulento
Transferencia de calor por radiación
Horno industrial
title_short Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
title_full Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
title_fullStr Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
title_full_unstemmed Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
title_sort Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
dc.creator.fl_str_mv Meneses, Edxon
Jaramillo, J. E.
Mas de les Valls, Elisabet
dc.contributor.author.spa.fl_str_mv Meneses, Edxon
Jaramillo, J. E.
Mas de les Valls, Elisabet
dc.subject.proposal.eng.fl_str_mv CFD
Turbulent flow
Radiation heat transfer
Industrial furnace
topic CFD
Turbulent flow
Radiation heat transfer
Industrial furnace
Flujo turbulento
Transferencia de calor por radiación
Horno industrial
dc.subject.proposal.spa.fl_str_mv Flujo turbulento
Transferencia de calor por radiación
Horno industrial
description Introduction−Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal ef-ficiency of panela burners is 30% on average.Objective−The objective of this investigation is to con-tribute to the search for new alternatives for the im-provement of the low efficiency present on these systems, mainly affecting the flue gases duct.Methodology−The development of this study is as fol-lows: first, a research of the radiation and optical thick-ness effect in a simplified furnace is carried out. After-ward, a series of simulations with modifications in the design of the flue gas duct for a real size furnace are analyzed.Results−The results showed that the radiation effect must be considered and, even though the optical thick-ness is low, it has a relevant impact in the heat transfer process due to the high temperatures in the furnace. A chaotic movement of the gases implied more heat trans-ferred to the heaters and high values of Nusselt with the addition of new elements in the duct were obtained.Conclusions−Arrangement 1, provides the best results with a Nusselt and thermal efficiency increase. No sig-nificant differences between the DOM and the P-1 radia-tion were found.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-13T14:27:33Z
dc.date.available.none.fl_str_mv 2019-11-13T14:27:33Z
dc.date.issued.none.fl_str_mv 2019-06-08
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Edxon S. Meneses-Chacón; Julián E. Jaramillo-Ibarra; Elisabet Mas de les Valls; “Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production,” INGE CUC, vol. 15, no. 1, pp. 133-141, 2019. http://doi.org/10.17981/ingecuc.15.1.2019.12
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5633
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.15.1.2019.12
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.15.1.2019.12
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Edxon S. Meneses-Chacón; Julián E. Jaramillo-Ibarra; Elisabet Mas de les Valls; “Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production,” INGE CUC, vol. 15, no. 1, pp. 133-141, 2019. http://doi.org/10.17981/ingecuc.15.1.2019.12
10.17981/ingecuc.15.1.2019.12
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5633
https://doi.org/10.17981/ingecuc.15.1.2019.12
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 15, Núm. 1 (2019)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] P. V. K. Jagannadha Rao, M. Das, and S. K. Das, “Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar,” J. Food Eng., vol. 90, no. 4, pp. 559–566, Feb. 2009. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024
[2] N. Singh, D. Kumar, S. Raisuddin, and A. P. Sahu, “Genotoxic effects of arsenic: prevention by functional food-jaggery.,” Cancer Lett., vol. 268, no. 2, pp. 325–30, Sep. 2008. doi: https://doi.org/10.1016/j.canlet.2008.04.011
[3] A. P. Sahu and B. N. Paul, “The role of dietary whole sugar-jaggery in prevention of respiratory toxicity of air toxics and in lung cancer,” Toxicol. Lett., vol. 95, Supplement 1, p. 154, Jul. 1998. doi: https://doi.org/10.1016/S0378-4274(98)80615-2
[4] H. García, A. Toscana, N. Santana, and O. Insuasty, Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural, Corpoica, 2007.
[5] K. S. S. Rao, A. Sampathrajan, and S. A. Ramjani, “Efficiency of traditional jaggery making furnace,” Madras Agric. J., vol. 90, no. 3, pp. 184–185, Jan. 2003. Available: http://www.panelamonitor.org/media/docrepo/document/ files/efficiency-of-traditional-jaggery-making-furnace.pdf
[6] V. R. Sardeshpande, D. J. Shendage, and I. R. Pillai, “Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization,” Energy, vol. 35, no. 12, pp. 4740–4747, Dec. 2010. doi: https://doi.org/10.1016/j.energy.2010.09.018
[7] K. González, Determinación de pérdidas energéticas y sus puntos críticos, en hornillas paneleras Ward-Cimpa en la hoya del río Suárez, Univ. Industrial de Santander, Colombia, 2010.
[9] O. Mendieta, “Desarrollo de un modelo experimental para el coeficiente de transferencia de calor en el proceso de evaporación del jugo de caña de azúcar en un arreglo de película delgada,” Univ. Industrial de Santander, Bucaramanga, Colombia, 2012.
[10] G. B. Agalave, “Performance improvement of a single pan traditional Jaggery making furnace by using fins and baffle,” Int. J. Adv. Res. Sci. Eng., vol. 4, no. 4, pp. 85–89, Apr. 2015. Available: https://www.ijarse.com/images/fullpdf/1429353638_12_Research_Paper.pdf
[11] J. Osorio, H. Ciro, and A. Espinosa, “Evaluación Térmica y Validación de un Modelo por Métodos Computacionales para la Hornilla Panelera GP150,” Dyna, vol. 77, no. 162, pp. 237–247, Jun. 2010. Available: http://bdigital.unal.edu.co/5373/1/jairoosorio.2010.pdf
[12] D. Choudhury, Introduction to the renormalization group method and turbulence modeling, Lebanon NH, USA: Fluent Inc., 1973.
[13] R. La Madrid, D. Marcelo, E. M. Orbegoso, and R. Saavedra, “Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment,” Energy Convers. Manag., vol. 125, pp. 107–120, Oct. 2016. Doi: https://doi.org/10.1016/j.enconman.2016.03.005
[14] D. Wilcox, “Formulation of the k-omega Turbulence Model Revisited,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8–11, 2007. doi: https://doi.org/10.2514/6.2007-1408
[15] M. F. Modest, “Chapter 23 - Inverse Radiative Heat Transfer,” in Radiative Heat Transfer, 3rd Ed., pp. 779-802, Cambrigde, MA, USA: Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6
[16] G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Threedimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, Jan. 2004. doi: https://doi.org/10.1016/S0017-9310(03)00387-9
[17] M. F. Modest, Radiative Heat Transfer, 3rd Ed., Cambrigde, MA, USA: Academic Press, 2013. Doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6
[18] OpenCFD Ltd (ESI Group), “OpenFOAM.” .
[19] S. B. Pope, Turbulent flows. Cambridge, MA, USA: Cambridge Univ. Press, 2000. doi: https://doi.org/10.1017/CBO9780511840531
[21] J. E. Jaramillo Ibarra, “Suitability of different RANS models in the description of turbulent forced convection flows: application to air curtains,” TDX (Tesis Dr. en Xarxa), Univ. Politècnica de Catalunya. Dept. de Màquines i Motors Tèrmics Barcelona, España, 2008.
[22] J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3749–3766, Sept. 2007. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.015
[25] Y. A. Çengel, Heat and mass transfer : a practical approach. India: McGraw-Hill Education, Pvt. Limited, 2007.
[26] G. Gordillo and H. García, Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera, Barbosa, Santander, Colombia: CIMPA, 1992.
[27] C. J. Greenshields, OpenFOAM User-Guide, no. 5, May. 2015.
dc.relation.references.none.fl_str_mv [8] P. Arya, U. K. Jaiswal, and S. Kumar, “Design based improvement in a three pan Jaggery making plant for rural India,” Int. J. Eng. Res., vol. 2, no.3, pp. 264-268, Jul. 2013.
[20] D. Wilcox, Turbulence modeling for CFD. La Cañada, CA, USA: DCW Industries, Inc., 1998.
[23] D. Wilcox, Turbulence Modeling for CFD, 2nd Ed., Miami, FL, USA: Amazon.com: Books, 2006.
dc.relation.citationendpage.spa.fl_str_mv 141
dc.relation.citationstartpage.spa.fl_str_mv 133
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1986
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e942df4a-763c-402a-b7b0-8148ae2e8f71/download
https://repositorio.cuc.edu.co/bitstreams/3e3c14de-79fe-4676-9a01-b3e309c5a058/download
https://repositorio.cuc.edu.co/bitstreams/b200587f-440f-4532-9079-8f0faf09e323/download
https://repositorio.cuc.edu.co/bitstreams/dcddb193-3094-49a6-83c8-3cd86975a28a/download
https://repositorio.cuc.edu.co/bitstreams/d3515bb5-84c6-403e-8f63-bc9827b65196/download
bitstream.checksum.fl_str_mv 960665fb8277ecb1c9a899c89216353a
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
c658e129d594cdfe7b3ce236dda3f593
7681b912aeac2ef54e03fbbebcf2d404
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166856197799936
spelling Meneses, EdxonJaramillo, J. E.Mas de les Valls, Elisabet2019-11-13T14:27:33Z2019-11-13T14:27:33Z2019-06-08Edxon S. Meneses-Chacón; Julián E. Jaramillo-Ibarra; Elisabet Mas de les Valls; “Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production,” INGE CUC, vol. 15, no. 1, pp. 133-141, 2019. http://doi.org/10.17981/ingecuc.15.1.2019.12https://hdl.handle.net/11323/5633https://doi.org/10.17981/ingecuc.15.1.2019.1210.17981/ingecuc.15.1.2019.122382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction−Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal ef-ficiency of panela burners is 30% on average.Objective−The objective of this investigation is to con-tribute to the search for new alternatives for the im-provement of the low efficiency present on these systems, mainly affecting the flue gases duct.Methodology−The development of this study is as fol-lows: first, a research of the radiation and optical thick-ness effect in a simplified furnace is carried out. After-ward, a series of simulations with modifications in the design of the flue gas duct for a real size furnace are analyzed.Results−The results showed that the radiation effect must be considered and, even though the optical thick-ness is low, it has a relevant impact in the heat transfer process due to the high temperatures in the furnace. A chaotic movement of the gases implied more heat trans-ferred to the heaters and high values of Nusselt with the addition of new elements in the duct were obtained.Conclusions−Arrangement 1, provides the best results with a Nusselt and thermal efficiency increase. No sig-nificant differences between the DOM and the P-1 radia-tion were found.Introducción−La panela es un producto derivado de la caña de azúcar. En su elaboración se utiliza una hornilla tradicional, diseñada especialmente para este propósito. Según estudios encontrados en la literatura, se ha identi-ficado que la eficiencia térmica de las hornillas paneleras se estima en un 30% promedio.Objetivo−Esta investigación tiene como objetivo contri-buir en la búsqueda de nuevas soluciones para el mejora-miento del nivel de eficiencia, modificando principalmente el ducto de humos.Metodología−El desarrollo de este estudio es el siguien-te: primero, se realiza una investigación del efecto de la radiación y del espesor óptico en un horno simplificado. Posteriormente, se realiza una serie de simulaciones con modificaciones en el diseño del ducto de humos para un horno de tamaño real.Resultados−Los resultados mostraron que se debe con-siderar el efecto de la radiación. Aunque el espesor óptico sea bajo, tiene un impacto relevante en el proceso de trans-ferencia de calor debido a las altas temperaturas en el hor-no. Un movimiento caótico de los gases implicó más calor transferido a las pailas, y se obtuvieron altos valores de Nusselt con la adición de nuevos elementos en el conducto.Conclusiones−El arreglo 1, proporciona los mejores resultados con un aumento de la eficiencia térmica y de Nusselt. No se encontraron diferencias significativas entre los modelos de radiación DOM y P-1.Meneses, Edxon-fb37f7b784eccaf5fb50d5babfc739e8-600Jaramillo, J. E.-623480be95169376235b5fefe47a65b4-600Mas de les Valls, Elisabet-c40d58e8efdaef6d6170c1784e976ab5-6009 páginasapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 1 (2019)INGE CUCINGE CUC[1] P. V. K. Jagannadha Rao, M. Das, and S. K. Das, “Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar,” J. Food Eng., vol. 90, no. 4, pp. 559–566, Feb. 2009. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024[2] N. Singh, D. Kumar, S. Raisuddin, and A. P. Sahu, “Genotoxic effects of arsenic: prevention by functional food-jaggery.,” Cancer Lett., vol. 268, no. 2, pp. 325–30, Sep. 2008. doi: https://doi.org/10.1016/j.canlet.2008.04.011[3] A. P. Sahu and B. N. Paul, “The role of dietary whole sugar-jaggery in prevention of respiratory toxicity of air toxics and in lung cancer,” Toxicol. Lett., vol. 95, Supplement 1, p. 154, Jul. 1998. doi: https://doi.org/10.1016/S0378-4274(98)80615-2[4] H. García, A. Toscana, N. Santana, and O. Insuasty, Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural, Corpoica, 2007.[5] K. S. S. Rao, A. Sampathrajan, and S. A. Ramjani, “Efficiency of traditional jaggery making furnace,” Madras Agric. J., vol. 90, no. 3, pp. 184–185, Jan. 2003. Available: http://www.panelamonitor.org/media/docrepo/document/ files/efficiency-of-traditional-jaggery-making-furnace.pdf[6] V. R. Sardeshpande, D. J. Shendage, and I. R. Pillai, “Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization,” Energy, vol. 35, no. 12, pp. 4740–4747, Dec. 2010. doi: https://doi.org/10.1016/j.energy.2010.09.018[7] K. González, Determinación de pérdidas energéticas y sus puntos críticos, en hornillas paneleras Ward-Cimpa en la hoya del río Suárez, Univ. Industrial de Santander, Colombia, 2010.[9] O. Mendieta, “Desarrollo de un modelo experimental para el coeficiente de transferencia de calor en el proceso de evaporación del jugo de caña de azúcar en un arreglo de película delgada,” Univ. Industrial de Santander, Bucaramanga, Colombia, 2012.[10] G. B. Agalave, “Performance improvement of a single pan traditional Jaggery making furnace by using fins and baffle,” Int. J. Adv. Res. Sci. Eng., vol. 4, no. 4, pp. 85–89, Apr. 2015. Available: https://www.ijarse.com/images/fullpdf/1429353638_12_Research_Paper.pdf[11] J. Osorio, H. Ciro, and A. Espinosa, “Evaluación Térmica y Validación de un Modelo por Métodos Computacionales para la Hornilla Panelera GP150,” Dyna, vol. 77, no. 162, pp. 237–247, Jun. 2010. Available: http://bdigital.unal.edu.co/5373/1/jairoosorio.2010.pdf[12] D. Choudhury, Introduction to the renormalization group method and turbulence modeling, Lebanon NH, USA: Fluent Inc., 1973.[13] R. La Madrid, D. Marcelo, E. M. Orbegoso, and R. Saavedra, “Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment,” Energy Convers. Manag., vol. 125, pp. 107–120, Oct. 2016. Doi: https://doi.org/10.1016/j.enconman.2016.03.005[14] D. Wilcox, “Formulation of the k-omega Turbulence Model Revisited,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8–11, 2007. doi: https://doi.org/10.2514/6.2007-1408[15] M. F. Modest, “Chapter 23 - Inverse Radiative Heat Transfer,” in Radiative Heat Transfer, 3rd Ed., pp. 779-802, Cambrigde, MA, USA: Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6[16] G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Threedimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, Jan. 2004. doi: https://doi.org/10.1016/S0017-9310(03)00387-9[17] M. F. Modest, Radiative Heat Transfer, 3rd Ed., Cambrigde, MA, USA: Academic Press, 2013. Doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6[18] OpenCFD Ltd (ESI Group), “OpenFOAM.” .[19] S. B. Pope, Turbulent flows. Cambridge, MA, USA: Cambridge Univ. Press, 2000. doi: https://doi.org/10.1017/CBO9780511840531[21] J. E. Jaramillo Ibarra, “Suitability of different RANS models in the description of turbulent forced convection flows: application to air curtains,” TDX (Tesis Dr. en Xarxa), Univ. Politècnica de Catalunya. Dept. de Màquines i Motors Tèrmics Barcelona, España, 2008.[22] J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3749–3766, Sept. 2007. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.015[25] Y. A. Çengel, Heat and mass transfer : a practical approach. India: McGraw-Hill Education, Pvt. Limited, 2007.[26] G. Gordillo and H. García, Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera, Barbosa, Santander, Colombia: CIMPA, 1992.[27] C. J. Greenshields, OpenFOAM User-Guide, no. 5, May. 2015.[8] P. Arya, U. K. Jaiswal, and S. Kumar, “Design based improvement in a three pan Jaggery making plant for rural India,” Int. J. Eng. Res., vol. 2, no.3, pp. 264-268, Jul. 2013.[20] D. Wilcox, Turbulence modeling for CFD. La Cañada, CA, USA: DCW Industries, Inc., 1998.[23] D. Wilcox, Turbulence Modeling for CFD, 2nd Ed., Miami, FL, USA: Amazon.com: Books, 2006.141133115INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1986Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela productionAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panelaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionCFDTurbulent flowRadiation heat transferIndustrial furnaceFlujo turbulentoTransferencia de calor por radiaciónHorno industrialPublicationORIGINALAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdfAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdfapplication/pdf1468150https://repositorio.cuc.edu.co/bitstreams/e942df4a-763c-402a-b7b0-8148ae2e8f71/download960665fb8277ecb1c9a899c89216353aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3e3c14de-79fe-4676-9a01-b3e309c5a058/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/b200587f-440f-4532-9079-8f0faf09e323/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.jpgAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.jpgimage/jpeg57208https://repositorio.cuc.edu.co/bitstreams/dcddb193-3094-49a6-83c8-3cd86975a28a/downloadc658e129d594cdfe7b3ce236dda3f593MD55TEXTAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.txtAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.txttext/plain34963https://repositorio.cuc.edu.co/bitstreams/d3515bb5-84c6-403e-8f63-bc9827b65196/download7681b912aeac2ef54e03fbbebcf2d404MD5611323/5633oai:repositorio.cuc.edu.co:11323/56332024-09-17 14:18:39.426http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=