Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production
Introduction−Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal ef-ficiency of panela burners is 30% on average.Objective−The objective of this...
- Autores:
-
Meneses, Edxon
Jaramillo, J. E.
Mas de les Valls, Elisabet
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5633
- Acceso en línea:
- https://hdl.handle.net/11323/5633
https://doi.org/10.17981/ingecuc.15.1.2019.12
https://repositorio.cuc.edu.co/
- Palabra clave:
- CFD
Turbulent flow
Radiation heat transfer
Industrial furnace
Flujo turbulento
Transferencia de calor por radiación
Horno industrial
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_681f380aeeb3c1750365e277bcfd2b3d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5633 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
dc.title.translated.spa.fl_str_mv |
Análisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela |
title |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
spellingShingle |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production CFD Turbulent flow Radiation heat transfer Industrial furnace Flujo turbulento Transferencia de calor por radiación Horno industrial |
title_short |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
title_full |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
title_fullStr |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
title_full_unstemmed |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
title_sort |
Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production |
dc.creator.fl_str_mv |
Meneses, Edxon Jaramillo, J. E. Mas de les Valls, Elisabet |
dc.contributor.author.spa.fl_str_mv |
Meneses, Edxon Jaramillo, J. E. Mas de les Valls, Elisabet |
dc.subject.proposal.eng.fl_str_mv |
CFD Turbulent flow Radiation heat transfer Industrial furnace |
topic |
CFD Turbulent flow Radiation heat transfer Industrial furnace Flujo turbulento Transferencia de calor por radiación Horno industrial |
dc.subject.proposal.spa.fl_str_mv |
Flujo turbulento Transferencia de calor por radiación Horno industrial |
description |
Introduction−Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal ef-ficiency of panela burners is 30% on average.Objective−The objective of this investigation is to con-tribute to the search for new alternatives for the im-provement of the low efficiency present on these systems, mainly affecting the flue gases duct.Methodology−The development of this study is as fol-lows: first, a research of the radiation and optical thick-ness effect in a simplified furnace is carried out. After-ward, a series of simulations with modifications in the design of the flue gas duct for a real size furnace are analyzed.Results−The results showed that the radiation effect must be considered and, even though the optical thick-ness is low, it has a relevant impact in the heat transfer process due to the high temperatures in the furnace. A chaotic movement of the gases implied more heat trans-ferred to the heaters and high values of Nusselt with the addition of new elements in the duct were obtained.Conclusions−Arrangement 1, provides the best results with a Nusselt and thermal efficiency increase. No sig-nificant differences between the DOM and the P-1 radia-tion were found. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-13T14:27:33Z |
dc.date.available.none.fl_str_mv |
2019-11-13T14:27:33Z |
dc.date.issued.none.fl_str_mv |
2019-06-08 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Edxon S. Meneses-Chacón; Julián E. Jaramillo-Ibarra; Elisabet Mas de les Valls; “Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production,” INGE CUC, vol. 15, no. 1, pp. 133-141, 2019. http://doi.org/10.17981/ingecuc.15.1.2019.12 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5633 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.15.1.2019.12 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.15.1.2019.12 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Edxon S. Meneses-Chacón; Julián E. Jaramillo-Ibarra; Elisabet Mas de les Valls; “Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production,” INGE CUC, vol. 15, no. 1, pp. 133-141, 2019. http://doi.org/10.17981/ingecuc.15.1.2019.12 10.17981/ingecuc.15.1.2019.12 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5633 https://doi.org/10.17981/ingecuc.15.1.2019.12 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 15, Núm. 1 (2019) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
[1] P. V. K. Jagannadha Rao, M. Das, and S. K. Das, “Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar,” J. Food Eng., vol. 90, no. 4, pp. 559–566, Feb. 2009. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024 [2] N. Singh, D. Kumar, S. Raisuddin, and A. P. Sahu, “Genotoxic effects of arsenic: prevention by functional food-jaggery.,” Cancer Lett., vol. 268, no. 2, pp. 325–30, Sep. 2008. doi: https://doi.org/10.1016/j.canlet.2008.04.011 [3] A. P. Sahu and B. N. Paul, “The role of dietary whole sugar-jaggery in prevention of respiratory toxicity of air toxics and in lung cancer,” Toxicol. Lett., vol. 95, Supplement 1, p. 154, Jul. 1998. doi: https://doi.org/10.1016/S0378-4274(98)80615-2 [4] H. García, A. Toscana, N. Santana, and O. Insuasty, Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural, Corpoica, 2007. [5] K. S. S. Rao, A. Sampathrajan, and S. A. Ramjani, “Efficiency of traditional jaggery making furnace,” Madras Agric. J., vol. 90, no. 3, pp. 184–185, Jan. 2003. Available: http://www.panelamonitor.org/media/docrepo/document/ files/efficiency-of-traditional-jaggery-making-furnace.pdf [6] V. R. Sardeshpande, D. J. Shendage, and I. R. Pillai, “Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization,” Energy, vol. 35, no. 12, pp. 4740–4747, Dec. 2010. doi: https://doi.org/10.1016/j.energy.2010.09.018 [7] K. González, Determinación de pérdidas energéticas y sus puntos críticos, en hornillas paneleras Ward-Cimpa en la hoya del río Suárez, Univ. Industrial de Santander, Colombia, 2010. [9] O. Mendieta, “Desarrollo de un modelo experimental para el coeficiente de transferencia de calor en el proceso de evaporación del jugo de caña de azúcar en un arreglo de película delgada,” Univ. Industrial de Santander, Bucaramanga, Colombia, 2012. [10] G. B. Agalave, “Performance improvement of a single pan traditional Jaggery making furnace by using fins and baffle,” Int. J. Adv. Res. Sci. Eng., vol. 4, no. 4, pp. 85–89, Apr. 2015. Available: https://www.ijarse.com/images/fullpdf/1429353638_12_Research_Paper.pdf [11] J. Osorio, H. Ciro, and A. Espinosa, “Evaluación Térmica y Validación de un Modelo por Métodos Computacionales para la Hornilla Panelera GP150,” Dyna, vol. 77, no. 162, pp. 237–247, Jun. 2010. Available: http://bdigital.unal.edu.co/5373/1/jairoosorio.2010.pdf [12] D. Choudhury, Introduction to the renormalization group method and turbulence modeling, Lebanon NH, USA: Fluent Inc., 1973. [13] R. La Madrid, D. Marcelo, E. M. Orbegoso, and R. Saavedra, “Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment,” Energy Convers. Manag., vol. 125, pp. 107–120, Oct. 2016. Doi: https://doi.org/10.1016/j.enconman.2016.03.005 [14] D. Wilcox, “Formulation of the k-omega Turbulence Model Revisited,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8–11, 2007. doi: https://doi.org/10.2514/6.2007-1408 [15] M. F. Modest, “Chapter 23 - Inverse Radiative Heat Transfer,” in Radiative Heat Transfer, 3rd Ed., pp. 779-802, Cambrigde, MA, USA: Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6 [16] G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Threedimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, Jan. 2004. doi: https://doi.org/10.1016/S0017-9310(03)00387-9 [17] M. F. Modest, Radiative Heat Transfer, 3rd Ed., Cambrigde, MA, USA: Academic Press, 2013. Doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6 [18] OpenCFD Ltd (ESI Group), “OpenFOAM.” . [19] S. B. Pope, Turbulent flows. Cambridge, MA, USA: Cambridge Univ. Press, 2000. doi: https://doi.org/10.1017/CBO9780511840531 [21] J. E. Jaramillo Ibarra, “Suitability of different RANS models in the description of turbulent forced convection flows: application to air curtains,” TDX (Tesis Dr. en Xarxa), Univ. Politècnica de Catalunya. Dept. de Màquines i Motors Tèrmics Barcelona, España, 2008. [22] J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3749–3766, Sept. 2007. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.015 [25] Y. A. Çengel, Heat and mass transfer : a practical approach. India: McGraw-Hill Education, Pvt. Limited, 2007. [26] G. Gordillo and H. García, Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera, Barbosa, Santander, Colombia: CIMPA, 1992. [27] C. J. Greenshields, OpenFOAM User-Guide, no. 5, May. 2015. |
dc.relation.references.none.fl_str_mv |
[8] P. Arya, U. K. Jaiswal, and S. Kumar, “Design based improvement in a three pan Jaggery making plant for rural India,” Int. J. Eng. Res., vol. 2, no.3, pp. 264-268, Jul. 2013. [20] D. Wilcox, Turbulence modeling for CFD. La Cañada, CA, USA: DCW Industries, Inc., 1998. [23] D. Wilcox, Turbulence Modeling for CFD, 2nd Ed., Miami, FL, USA: Amazon.com: Books, 2006. |
dc.relation.citationendpage.spa.fl_str_mv |
141 |
dc.relation.citationstartpage.spa.fl_str_mv |
133 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1986 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e942df4a-763c-402a-b7b0-8148ae2e8f71/download https://repositorio.cuc.edu.co/bitstreams/3e3c14de-79fe-4676-9a01-b3e309c5a058/download https://repositorio.cuc.edu.co/bitstreams/b200587f-440f-4532-9079-8f0faf09e323/download https://repositorio.cuc.edu.co/bitstreams/dcddb193-3094-49a6-83c8-3cd86975a28a/download https://repositorio.cuc.edu.co/bitstreams/d3515bb5-84c6-403e-8f63-bc9827b65196/download |
bitstream.checksum.fl_str_mv |
960665fb8277ecb1c9a899c89216353a 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 c658e129d594cdfe7b3ce236dda3f593 7681b912aeac2ef54e03fbbebcf2d404 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166856197799936 |
spelling |
Meneses, EdxonJaramillo, J. E.Mas de les Valls, Elisabet2019-11-13T14:27:33Z2019-11-13T14:27:33Z2019-06-08Edxon S. Meneses-Chacón; Julián E. Jaramillo-Ibarra; Elisabet Mas de les Valls; “Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela production,” INGE CUC, vol. 15, no. 1, pp. 133-141, 2019. http://doi.org/10.17981/ingecuc.15.1.2019.12https://hdl.handle.net/11323/5633https://doi.org/10.17981/ingecuc.15.1.2019.1210.17981/ingecuc.15.1.2019.122382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction−Panela is a product derived from sugar cane that is prepared using a traditional burner designed especially for this purpose. According to studies found in the literature, it was identified that the thermal ef-ficiency of panela burners is 30% on average.Objective−The objective of this investigation is to con-tribute to the search for new alternatives for the im-provement of the low efficiency present on these systems, mainly affecting the flue gases duct.Methodology−The development of this study is as fol-lows: first, a research of the radiation and optical thick-ness effect in a simplified furnace is carried out. After-ward, a series of simulations with modifications in the design of the flue gas duct for a real size furnace are analyzed.Results−The results showed that the radiation effect must be considered and, even though the optical thick-ness is low, it has a relevant impact in the heat transfer process due to the high temperatures in the furnace. A chaotic movement of the gases implied more heat trans-ferred to the heaters and high values of Nusselt with the addition of new elements in the duct were obtained.Conclusions−Arrangement 1, provides the best results with a Nusselt and thermal efficiency increase. No sig-nificant differences between the DOM and the P-1 radia-tion were found.Introducción−La panela es un producto derivado de la caña de azúcar. En su elaboración se utiliza una hornilla tradicional, diseñada especialmente para este propósito. Según estudios encontrados en la literatura, se ha identi-ficado que la eficiencia térmica de las hornillas paneleras se estima en un 30% promedio.Objetivo−Esta investigación tiene como objetivo contri-buir en la búsqueda de nuevas soluciones para el mejora-miento del nivel de eficiencia, modificando principalmente el ducto de humos.Metodología−El desarrollo de este estudio es el siguien-te: primero, se realiza una investigación del efecto de la radiación y del espesor óptico en un horno simplificado. Posteriormente, se realiza una serie de simulaciones con modificaciones en el diseño del ducto de humos para un horno de tamaño real.Resultados−Los resultados mostraron que se debe con-siderar el efecto de la radiación. Aunque el espesor óptico sea bajo, tiene un impacto relevante en el proceso de trans-ferencia de calor debido a las altas temperaturas en el hor-no. Un movimiento caótico de los gases implicó más calor transferido a las pailas, y se obtuvieron altos valores de Nusselt con la adición de nuevos elementos en el conducto.Conclusiones−El arreglo 1, proporciona los mejores resultados con un aumento de la eficiencia térmica y de Nusselt. No se encontraron diferencias significativas entre los modelos de radiación DOM y P-1.Meneses, Edxon-fb37f7b784eccaf5fb50d5babfc739e8-600Jaramillo, J. E.-623480be95169376235b5fefe47a65b4-600Mas de les Valls, Elisabet-c40d58e8efdaef6d6170c1784e976ab5-6009 páginasapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 15, Núm. 1 (2019)INGE CUCINGE CUC[1] P. V. K. Jagannadha Rao, M. Das, and S. K. Das, “Changes in physical and thermo-physical properties of sugarcane, palmyra-palm and date-palm juices at different concentration of sugar,” J. Food Eng., vol. 90, no. 4, pp. 559–566, Feb. 2009. doi: https://doi.org/10.1016/j.jfoodeng.2008.07.024[2] N. Singh, D. Kumar, S. Raisuddin, and A. P. Sahu, “Genotoxic effects of arsenic: prevention by functional food-jaggery.,” Cancer Lett., vol. 268, no. 2, pp. 325–30, Sep. 2008. doi: https://doi.org/10.1016/j.canlet.2008.04.011[3] A. P. Sahu and B. N. Paul, “The role of dietary whole sugar-jaggery in prevention of respiratory toxicity of air toxics and in lung cancer,” Toxicol. Lett., vol. 95, Supplement 1, p. 154, Jul. 1998. doi: https://doi.org/10.1016/S0378-4274(98)80615-2[4] H. García, A. Toscana, N. Santana, and O. Insuasty, Guía tecnológica para el manejo integral del sistema productivo de caña panelera. Bogotá, Colombia: Ministerio de Agricultura y Desarrollo Rural, Corpoica, 2007.[5] K. S. S. Rao, A. Sampathrajan, and S. A. Ramjani, “Efficiency of traditional jaggery making furnace,” Madras Agric. J., vol. 90, no. 3, pp. 184–185, Jan. 2003. Available: http://www.panelamonitor.org/media/docrepo/document/ files/efficiency-of-traditional-jaggery-making-furnace.pdf[6] V. R. Sardeshpande, D. J. Shendage, and I. R. Pillai, “Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization,” Energy, vol. 35, no. 12, pp. 4740–4747, Dec. 2010. doi: https://doi.org/10.1016/j.energy.2010.09.018[7] K. González, Determinación de pérdidas energéticas y sus puntos críticos, en hornillas paneleras Ward-Cimpa en la hoya del río Suárez, Univ. Industrial de Santander, Colombia, 2010.[9] O. Mendieta, “Desarrollo de un modelo experimental para el coeficiente de transferencia de calor en el proceso de evaporación del jugo de caña de azúcar en un arreglo de película delgada,” Univ. Industrial de Santander, Bucaramanga, Colombia, 2012.[10] G. B. Agalave, “Performance improvement of a single pan traditional Jaggery making furnace by using fins and baffle,” Int. J. Adv. Res. Sci. Eng., vol. 4, no. 4, pp. 85–89, Apr. 2015. Available: https://www.ijarse.com/images/fullpdf/1429353638_12_Research_Paper.pdf[11] J. Osorio, H. Ciro, and A. Espinosa, “Evaluación Térmica y Validación de un Modelo por Métodos Computacionales para la Hornilla Panelera GP150,” Dyna, vol. 77, no. 162, pp. 237–247, Jun. 2010. Available: http://bdigital.unal.edu.co/5373/1/jairoosorio.2010.pdf[12] D. Choudhury, Introduction to the renormalization group method and turbulence modeling, Lebanon NH, USA: Fluent Inc., 1973.[13] R. La Madrid, D. Marcelo, E. M. Orbegoso, and R. Saavedra, “Heat transfer study on open heat exchangers used in jaggery production modules – Computational Fluid Dynamics simulation and field data assessment,” Energy Convers. Manag., vol. 125, pp. 107–120, Oct. 2016. Doi: https://doi.org/10.1016/j.enconman.2016.03.005[14] D. Wilcox, “Formulation of the k-omega Turbulence Model Revisited,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 8–11, 2007. doi: https://doi.org/10.2514/6.2007-1408[15] M. F. Modest, “Chapter 23 - Inverse Radiative Heat Transfer,” in Radiative Heat Transfer, 3rd Ed., pp. 779-802, Cambrigde, MA, USA: Academic Press, 2013. doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6[16] G. Colomer, M. Costa, R. Cònsul, and A. Oliva, “Threedimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method,” Int. J. Heat Mass Transf., vol. 47, no. 2, pp. 257–269, Jan. 2004. doi: https://doi.org/10.1016/S0017-9310(03)00387-9[17] M. F. Modest, Radiative Heat Transfer, 3rd Ed., Cambrigde, MA, USA: Academic Press, 2013. Doi: https://doi.org/10.1016/B978-0-12-386944-9.50023-6[18] OpenCFD Ltd (ESI Group), “OpenFOAM.” .[19] S. B. Pope, Turbulent flows. Cambridge, MA, USA: Cambridge Univ. Press, 2000. doi: https://doi.org/10.1017/CBO9780511840531[21] J. E. Jaramillo Ibarra, “Suitability of different RANS models in the description of turbulent forced convection flows: application to air curtains,” TDX (Tesis Dr. en Xarxa), Univ. Politècnica de Catalunya. Dept. de Màquines i Motors Tèrmics Barcelona, España, 2008.[22] J. E. Jaramillo, C. D. Pérez-Segarra, A. Oliva, and K. Claramunt, “Analysis of different RANS models applied to turbulent forced convection,” Int. J. Heat Mass Transf., vol. 50, no. 19–20, pp. 3749–3766, Sept. 2007. doi: https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.015[25] Y. A. Çengel, Heat and mass transfer : a practical approach. India: McGraw-Hill Education, Pvt. Limited, 2007.[26] G. Gordillo and H. García, Manual para el diseño y operación de hornillas paneleras. Convenio de investigación y divulgación para el mejoramiento de la industria panelera, Barbosa, Santander, Colombia: CIMPA, 1992.[27] C. J. Greenshields, OpenFOAM User-Guide, no. 5, May. 2015.[8] P. Arya, U. K. Jaiswal, and S. Kumar, “Design based improvement in a three pan Jaggery making plant for rural India,” Int. J. Eng. Res., vol. 2, no.3, pp. 264-268, Jul. 2013.[20] D. Wilcox, Turbulence modeling for CFD. La Cañada, CA, USA: DCW Industries, Inc., 1998.[23] D. Wilcox, Turbulence Modeling for CFD, 2nd Ed., Miami, FL, USA: Amazon.com: Books, 2006.141133115INGE CUCCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2INGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1986Numerical analysis of the thermal and fluid dynamic behaviour of the flue gases in a traditional furnace for panela productionAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panelaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionCFDTurbulent flowRadiation heat transferIndustrial furnaceFlujo turbulentoTransferencia de calor por radiaciónHorno industrialPublicationORIGINALAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdfAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdfapplication/pdf1468150https://repositorio.cuc.edu.co/bitstreams/e942df4a-763c-402a-b7b0-8148ae2e8f71/download960665fb8277ecb1c9a899c89216353aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3e3c14de-79fe-4676-9a01-b3e309c5a058/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/b200587f-440f-4532-9079-8f0faf09e323/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.jpgAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.jpgimage/jpeg57208https://repositorio.cuc.edu.co/bitstreams/dcddb193-3094-49a6-83c8-3cd86975a28a/downloadc658e129d594cdfe7b3ce236dda3f593MD55TEXTAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.txtAnálisis numérico del comportamiento térmico y fluidodinámico de los gases de combustión en un horno tradicional para la producción de panela.pdf.txttext/plain34963https://repositorio.cuc.edu.co/bitstreams/d3515bb5-84c6-403e-8f63-bc9827b65196/download7681b912aeac2ef54e03fbbebcf2d404MD5611323/5633oai:repositorio.cuc.edu.co:11323/56332024-09-17 14:18:39.426http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |