Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood
The data to construct the missing wind-speed value in the weather station record at “Collado de Yuste”, between the years 2002 to 2012, was calculated using wind speed data recorded in two other nearby weather stations, those in “Solana del Zapatero” and “Calar Alto”. The three mentioned stations ar...
- Autores:
-
Cama-Pinto, Dora
Chavez Muñoz, Pastor David
Solano-Escorcia, Andres Felipe
Cama-Pinto, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7568
- Acceso en línea:
- https://hdl.handle.net/11323/7568
https://doi.org/10.1016/j.dib.2020.105835
https://repositorio.cuc.edu.co/
- Palabra clave:
- Wind data
Wavelet transform
Fast Fourier transform
Missing data
Renewable energy
Data filling
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_67a56f215aa5c4650af8709289e969cd |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7568 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
title |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
spellingShingle |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood Wind data Wavelet transform Fast Fourier transform Missing data Renewable energy Data filling |
title_short |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
title_full |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
title_fullStr |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
title_full_unstemmed |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
title_sort |
Data supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihood |
dc.creator.fl_str_mv |
Cama-Pinto, Dora Chavez Muñoz, Pastor David Solano-Escorcia, Andres Felipe Cama-Pinto, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Cama-Pinto, Dora Chavez Muñoz, Pastor David Solano-Escorcia, Andres Felipe Cama-Pinto, Alejandro |
dc.subject.spa.fl_str_mv |
Wind data Wavelet transform Fast Fourier transform Missing data Renewable energy Data filling |
topic |
Wind data Wavelet transform Fast Fourier transform Missing data Renewable energy Data filling |
description |
The data to construct the missing wind-speed value in the weather station record at “Collado de Yuste”, between the years 2002 to 2012, was calculated using wind speed data recorded in two other nearby weather stations, those in “Solana del Zapatero” and “Calar Alto”. The three mentioned stations are located in the mountain range of the province of Almeria, Autonomous Community of Andalusia, Spain. After calculating the degree of association using the correlation coefficient and Wavelet Transform Scalogram, the data was successfully constructed. This paper refers to another study: Wind missing data arrangement using wavelet based techniques for getting maximum likelihood |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-10T19:22:10Z |
dc.date.available.none.fl_str_mv |
2020-12-10T19:22:10Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2352-3409 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7568 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.dib.2020.105835 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2352-3409 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7568 https://doi.org/10.1016/j.dib.2020.105835 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Y. Mu, X. Liu, L Wang, A Pearson’s correlation coefficient based decision tree and its parallel implementation, Inf. Sci. 435 (2018) 40–58, doi:10.1016/j.ins.2017.12.059. [2] H. Li, F. Xu, H. Liu, X. Zhang, Incipient fault information determination for rolling element bearing based on synchronous averaging reassigned wavelet scalogram, Measurement 65 (2015) 1–10 http://doi.org/, doi:10.1016/j.measurement.2014.12.032. [3] A.J. Zapata-Sierra, A. Cama-Pinto, F.G., M.G. Montoya, A. Alcayde, F. Manzano-Agugliaro, Wind missing data arrangement using wavelet based techniques for getting maximum likelihood, Energy Convers. Manag. 185 (2019) 552–561. [4] A.-.J. Perea-Moreno, G. Alcalá, Q. Hernandez-Escobedo, Seasonal wind energy characterization in the Gulf of Mexico, Energies 13 (1) (2019) art. no. 93, doi:10.3390/en13010093. [5] Matlab, www.mathworks.com/products/matlab.html, (accessed April 2020). |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Data in Brief |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2352340920307290 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/09c7aa94-f742-487d-8e21-936249baa8ef/download https://repositorio.cuc.edu.co/bitstreams/34e1e89b-c6a0-43bd-861c-9309f13bf0b8/download https://repositorio.cuc.edu.co/bitstreams/cbd0d5c7-b0b1-4987-b5ea-298bff892d85/download https://repositorio.cuc.edu.co/bitstreams/3e8d5949-5c01-492e-bea1-5aef3db8c97f/download https://repositorio.cuc.edu.co/bitstreams/4d473825-040a-43ce-8748-bef2731590fb/download |
bitstream.checksum.fl_str_mv |
3d6a9202226c45371e8d3e0c084629b5 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad e9050cb4d05d36cc1acf5db18cae2096 0ad4911b6bdbc9d5d6a51df7ab466fd4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166765095419904 |
spelling |
Cama-Pinto, DoraChavez Muñoz, Pastor DavidSolano-Escorcia, Andres FelipeCama-Pinto, Alejandro2020-12-10T19:22:10Z2020-12-10T19:22:10Z20202352-3409https://hdl.handle.net/11323/7568https://doi.org/10.1016/j.dib.2020.105835Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The data to construct the missing wind-speed value in the weather station record at “Collado de Yuste”, between the years 2002 to 2012, was calculated using wind speed data recorded in two other nearby weather stations, those in “Solana del Zapatero” and “Calar Alto”. The three mentioned stations are located in the mountain range of the province of Almeria, Autonomous Community of Andalusia, Spain. After calculating the degree of association using the correlation coefficient and Wavelet Transform Scalogram, the data was successfully constructed. This paper refers to another study: Wind missing data arrangement using wavelet based techniques for getting maximum likelihoodCama-Pinto, Dora-will be generated-orcid-0000-0003-0726-196X-600Chavez Muñoz, Pastor David-will be generated-orcid-0000-0001-7012-2167-600Solano-Escorcia, Andres FelipeCama-Pinto, Alejandro-will be generated-orcid-0000-0002-1364-7394-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data in Briefhttps://www.sciencedirect.com/science/article/pii/S2352340920307290Wind dataWavelet transformFast Fourier transformMissing dataRenewable energyData fillingData supporting the reconstruction study of missing wind speed logs using wavelet techniques for getting maximum likelihoodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Y. Mu, X. Liu, L Wang, A Pearson’s correlation coefficient based decision tree and its parallel implementation, Inf. Sci. 435 (2018) 40–58, doi:10.1016/j.ins.2017.12.059.[2] H. Li, F. Xu, H. Liu, X. Zhang, Incipient fault information determination for rolling element bearing based on synchronous averaging reassigned wavelet scalogram, Measurement 65 (2015) 1–10 http://doi.org/, doi:10.1016/j.measurement.2014.12.032.[3] A.J. Zapata-Sierra, A. Cama-Pinto, F.G., M.G. Montoya, A. Alcayde, F. Manzano-Agugliaro, Wind missing data arrangement using wavelet based techniques for getting maximum likelihood, Energy Convers. Manag. 185 (2019) 552–561.[4] A.-.J. Perea-Moreno, G. Alcalá, Q. Hernandez-Escobedo, Seasonal wind energy characterization in the Gulf of Mexico, Energies 13 (1) (2019) art. no. 93, doi:10.3390/en13010093.[5] Matlab, www.mathworks.com/products/matlab.html, (accessed April 2020).PublicationORIGINALData supporting the reconstruction study.pdfData supporting the reconstruction study.pdfapplication/pdf483963https://repositorio.cuc.edu.co/bitstreams/09c7aa94-f742-487d-8e21-936249baa8ef/download3d6a9202226c45371e8d3e0c084629b5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/34e1e89b-c6a0-43bd-861c-9309f13bf0b8/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/cbd0d5c7-b0b1-4987-b5ea-298bff892d85/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILData supporting the reconstruction study.pdf.jpgData supporting the reconstruction study.pdf.jpgimage/jpeg36752https://repositorio.cuc.edu.co/bitstreams/3e8d5949-5c01-492e-bea1-5aef3db8c97f/downloade9050cb4d05d36cc1acf5db18cae2096MD54TEXTData supporting the reconstruction study.pdf.txtData supporting the reconstruction study.pdf.txttext/plain17357https://repositorio.cuc.edu.co/bitstreams/4d473825-040a-43ce-8748-bef2731590fb/download0ad4911b6bdbc9d5d6a51df7ab466fd4MD5511323/7568oai:repositorio.cuc.edu.co:11323/75682024-09-17 14:05:43.891http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |