Using K-Means Algorithm for Description Analysis of Text in RSS News Format
This article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for...
- Autores:
-
De-La-Hoz-Franco, Emiro
Oviedo Carrascal, Ana Isabel
Ariza Colpas, Paola Patricia
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7459
- Acceso en línea:
- https://hdl.handle.net/11323/7459
http://doi.org/10.1007/978-981-32-9563-6_17
https://repositorio.cuc.edu.co/
- Palabra clave:
- RSS news’s format
Simple K-means
Bag of words
Stopwords
Text mining
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_668c266472295fd8095afca6417b3a18 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7459 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
title |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
spellingShingle |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format RSS news’s format Simple K-means Bag of words Stopwords Text mining |
title_short |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
title_full |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
title_fullStr |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
title_full_unstemmed |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
title_sort |
Using K-Means Algorithm for Description Analysis of Text in RSS News Format |
dc.creator.fl_str_mv |
De-La-Hoz-Franco, Emiro Oviedo Carrascal, Ana Isabel Ariza Colpas, Paola Patricia |
dc.contributor.author.spa.fl_str_mv |
De-La-Hoz-Franco, Emiro Oviedo Carrascal, Ana Isabel Ariza Colpas, Paola Patricia |
dc.subject.spa.fl_str_mv |
RSS news’s format Simple K-means Bag of words Stopwords Text mining |
topic |
RSS news’s format Simple K-means Bag of words Stopwords Text mining |
description |
This article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for the processing of this type of data. This article shows the implementation of the K-means algorithm to determine the location of the news described in RSS format and the results of this type of grouping through a descriptive analysis of the resulting clusters. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-11-24T16:26:09Z |
dc.date.available.none.fl_str_mv |
2020-11-24T16:26:09Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7459 |
dc.identifier.doi.spa.fl_str_mv |
http://doi.org/10.1007/978-981-32-9563-6_17 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7459 http://doi.org/10.1007/978-981-32-9563-6_17 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Palechor, F., De la hoz manotas, A., De la hoz franco, E., Colpas, P: Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion detection systems. J. Theor. Appl. Inf. Technol. 82(2) (2015) 2. Calabria-Sarmiento, J.C., et al.: Software applications to health sector: a systematic review of literature (2018) 3. Sen, T., Ali, M.R., Hoque, M.E., Epstein, R., Duberstein, P.: Modeling doctor-patient communication with affective text analysis. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 170–177. IEEE (2017) 4. Jeon, S.W., Lee, H.J., Cho, S.: Building industry network based on business text: corporate disclosures and news. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4696–4704. IEEE (2017) 5. Irfan, M., Zulfikar, W.B.: Implementation of fuzzy C-Means algorithm and TF-IDF on English journal summary. In: 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1–5. IEEE (2017) 6. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access 6, 59192–59210 (2018) 7. Zhang, X., Yu, Q.: Hotel reviews sentiment analysis based on word vector clustering. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 260–264. IEEE (2017) 8. Vieira, A.S., Borrajo, L., Iglesias, E.L.: Improving the text classification using clustering and a novel HMM to reduce the dimensionality. Comput. Methods Programs Biomed. 136, 119–130 (2016) 9. Wu, H., Zou, B., Zhao, Y.Q., Chen, Z., Zhu, C., Guo, J.: Natural scene text detection by multi-scale adaptive color clustering and non-text filtering. Neurocomputing 214, 1011–1025 (2016) 10. Palechor, F.M., De la Hoz Manotas, A., Colpas, P.A., Ojeda, J.S., Ortega, R.M., Melo, M.P.: Cardiovascular disease analysis using supervised and unsupervised data mining techniques. JSW 12(2), 81–90 (2017) 11. Aradhya, V.M., Pavithra, M.S.: A comprehensive of transforms, Gabor filter and k-means clustering for text detection in images and video. Appl. Comput. Inform. (2014) 12. Bharti, K.K., Singh, P.K.: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Appl. Soft Comput. 43, 20–34 (2016) 13. Li, C.H.: Confirmatory factor analysis with ordinal data: comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 48(3), 936–949 (2016) 14. Melissa, A., François, R., Mohamed, N.: Graph modularity maximization as an effective method for co-clustering text data. Knowl.-Based Syst. 109(1), 160–173 (2016) 15. Mendoza-Palechor, F.E., Ariza-Colpas, P.P., Sepulveda-Ojeda, J.A., De-la-Hoz-Manotas, A., Piñeres Melo, M.: Fertility analysis method based on supervised and unsupervised data mining techniques (2016) 16. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.L., Hao, H.: Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 174, 806–814 (2016) 17. Shafiabady, N., Lee, L.H., Rajkumar, R., Kallimani, V.P., Akram, N.A., Isa, D.: Using unsupervised clustering approach to train the Support Vector Machine for text classification. Neurocomputing 211, 4–10 (2016) 18. Zhang, W., Tang, X., Yoshida, T.: Tesc: an approach to text classification using semi-supervised clustering. Knowl.-Based Syst. 75, 152–160 (2015) 19. De França, F.O.: A hash-based co-clustering algorithm for categorical data. arXiv preprint arXiv:1407.7753 (2014) 20. Echeverri-Ocampo, I., Urina-Triana, M., Patricia Ariza, P., Mantilla, M.: El trabajo colaborativo entre ingenieros y personal de la salud para el desarrollo de proyectos en salud digital: una visión al futuro para lograr tener éxito (2018) 21. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010) 22. Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. In: SODA, vol. 99, pp. 291–299 (1999) 23. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS, pp. 873–879 (2000) 24. Jain, A.K., Dubes, R.C.: Algorithms for clustering data (1988) 25. Guerrero Cuentas, H.R., Polo Mercado, S.S., Martinez Royert, J.C., Ariza Colpas, P.P.: Trabajo colaborativo como estrategia didáctica para el desarrollo del pensamiento crítico (2018) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
International Conference on Data Mining and Big Data |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007%2F978-981-32-9563-6_17 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f733341a-3fec-43ae-89a1-460cf9b26499/download https://repositorio.cuc.edu.co/bitstreams/3ae1cd97-61c3-48eb-b2f2-26e432fcc6bd/download https://repositorio.cuc.edu.co/bitstreams/e327d4df-1532-4bef-afb7-6b8d8a7f544d/download https://repositorio.cuc.edu.co/bitstreams/f4458f87-e82a-41aa-9a2a-ecb9aecf36ab/download https://repositorio.cuc.edu.co/bitstreams/7b09b4a1-0bce-4e96-b700-eeb927790da7/download |
bitstream.checksum.fl_str_mv |
dca65cbfd4ff69063d3ca9d013e4c720 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 184d585c1cc9dc250e0b2cdcc92ea8b7 0038e54141420716f854e7c5238999c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760825800589312 |
spelling |
De-La-Hoz-Franco, EmiroOviedo Carrascal, Ana IsabelAriza Colpas, Paola Patricia2020-11-24T16:26:09Z2020-11-24T16:26:09Z2019https://hdl.handle.net/11323/7459http://doi.org/10.1007/978-981-32-9563-6_17Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for the processing of this type of data. This article shows the implementation of the K-means algorithm to determine the location of the news described in RSS format and the results of this type of grouping through a descriptive analysis of the resulting clusters.De-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Oviedo Carrascal, Ana Isabel-will be generated-orcid-0000-0002-7105-7819-600Ariza Colpas, Paola Patricia-will be generated-orcid-0000-0003-4503-5461-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Conference on Data Mining and Big Datahttps://link.springer.com/chapter/10.1007%2F978-981-32-9563-6_17RSS news’s formatSimple K-meansBag of wordsStopwordsText miningUsing K-Means Algorithm for Description Analysis of Text in RSS News FormatArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Palechor, F., De la hoz manotas, A., De la hoz franco, E., Colpas, P: Feature selection, learning metrics and dimension reduction in training and classification processes in intrusion detection systems. J. Theor. Appl. Inf. Technol. 82(2) (2015)2. Calabria-Sarmiento, J.C., et al.: Software applications to health sector: a systematic review of literature (2018)3. Sen, T., Ali, M.R., Hoque, M.E., Epstein, R., Duberstein, P.: Modeling doctor-patient communication with affective text analysis. In: 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 170–177. IEEE (2017)4. Jeon, S.W., Lee, H.J., Cho, S.: Building industry network based on business text: corporate disclosures and news. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 4696–4704. IEEE (2017)5. Irfan, M., Zulfikar, W.B.: Implementation of fuzzy C-Means algorithm and TF-IDF on English journal summary. In: 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1–5. IEEE (2017)6. De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition–a systematic review of literature. IEEE Access 6, 59192–59210 (2018)7. Zhang, X., Yu, Q.: Hotel reviews sentiment analysis based on word vector clustering. In: 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA), pp. 260–264. IEEE (2017)8. Vieira, A.S., Borrajo, L., Iglesias, E.L.: Improving the text classification using clustering and a novel HMM to reduce the dimensionality. Comput. Methods Programs Biomed. 136, 119–130 (2016)9. Wu, H., Zou, B., Zhao, Y.Q., Chen, Z., Zhu, C., Guo, J.: Natural scene text detection by multi-scale adaptive color clustering and non-text filtering. Neurocomputing 214, 1011–1025 (2016)10. Palechor, F.M., De la Hoz Manotas, A., Colpas, P.A., Ojeda, J.S., Ortega, R.M., Melo, M.P.: Cardiovascular disease analysis using supervised and unsupervised data mining techniques. JSW 12(2), 81–90 (2017)11. Aradhya, V.M., Pavithra, M.S.: A comprehensive of transforms, Gabor filter and k-means clustering for text detection in images and video. Appl. Comput. Inform. (2014)12. Bharti, K.K., Singh, P.K.: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering. Appl. Soft Comput. 43, 20–34 (2016)13. Li, C.H.: Confirmatory factor analysis with ordinal data: comparing robust maximum likelihood and diagonally weighted least squares. Behav. Res. Methods 48(3), 936–949 (2016)14. Melissa, A., François, R., Mohamed, N.: Graph modularity maximization as an effective method for co-clustering text data. Knowl.-Based Syst. 109(1), 160–173 (2016)15. Mendoza-Palechor, F.E., Ariza-Colpas, P.P., Sepulveda-Ojeda, J.A., De-la-Hoz-Manotas, A., Piñeres Melo, M.: Fertility analysis method based on supervised and unsupervised data mining techniques (2016)16. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.L., Hao, H.: Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification. Neurocomputing 174, 806–814 (2016)17. Shafiabady, N., Lee, L.H., Rajkumar, R., Kallimani, V.P., Akram, N.A., Isa, D.: Using unsupervised clustering approach to train the Support Vector Machine for text classification. Neurocomputing 211, 4–10 (2016)18. Zhang, W., Tang, X., Yoshida, T.: Tesc: an approach to text classification using semi-supervised clustering. Knowl.-Based Syst. 75, 152–160 (2015)19. De França, F.O.: A hash-based co-clustering algorithm for categorical data. arXiv preprint arXiv:1407.7753 (2014)20. Echeverri-Ocampo, I., Urina-Triana, M., Patricia Ariza, P., Mantilla, M.: El trabajo colaborativo entre ingenieros y personal de la salud para el desarrollo de proyectos en salud digital: una visión al futuro para lograr tener éxito (2018)21. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)22. Drineas, P., Frieze, A.M., Kannan, R., Vempala, S., Vinay, V.: Clustering in large graphs and matrices. In: SODA, vol. 99, pp. 291–299 (1999)23. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS, pp. 873–879 (2000)24. Jain, A.K., Dubes, R.C.: Algorithms for clustering data (1988)25. Guerrero Cuentas, H.R., Polo Mercado, S.S., Martinez Royert, J.C., Ariza Colpas, P.P.: Trabajo colaborativo como estrategia didáctica para el desarrollo del pensamiento crítico (2018)PublicationORIGINALUsing K.pdfUsing K.pdfapplication/pdf94964https://repositorio.cuc.edu.co/bitstreams/f733341a-3fec-43ae-89a1-460cf9b26499/downloaddca65cbfd4ff69063d3ca9d013e4c720MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/3ae1cd97-61c3-48eb-b2f2-26e432fcc6bd/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e327d4df-1532-4bef-afb7-6b8d8a7f544d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILUsing K.pdf.jpgUsing K.pdf.jpgimage/jpeg29199https://repositorio.cuc.edu.co/bitstreams/f4458f87-e82a-41aa-9a2a-ecb9aecf36ab/download184d585c1cc9dc250e0b2cdcc92ea8b7MD54TEXTUsing K.pdf.txtUsing K.pdf.txttext/plain874https://repositorio.cuc.edu.co/bitstreams/7b09b4a1-0bce-4e96-b700-eeb927790da7/download0038e54141420716f854e7c5238999c2MD5511323/7459oai:repositorio.cuc.edu.co:11323/74592024-09-17 14:05:54.537http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |