Using K-Means Algorithm for Description Analysis of Text in RSS News Format

This article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for...

Full description

Autores:
De-La-Hoz-Franco, Emiro
Oviedo Carrascal, Ana Isabel
Ariza Colpas, Paola Patricia
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7459
Acceso en línea:
https://hdl.handle.net/11323/7459
http://doi.org/10.1007/978-981-32-9563-6_17
https://repositorio.cuc.edu.co/
Palabra clave:
RSS news’s format
Simple K-means
Bag of words
Stopwords
Text mining
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
Description
Summary:This article shows the use of different techniques for the extraction of information through text mining. Through this implementation, the performance of each of the techniques in the dataset analysis process can be identified, which allows the reader to recommend the most appropriate technique for the processing of this type of data. This article shows the implementation of the K-means algorithm to determine the location of the news described in RSS format and the results of this type of grouping through a descriptive analysis of the resulting clusters.