A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia

The classifier selection problem in Assistive Technology Adoption refers to selecting the classification algorithms that have the best performance in predicting the adoption of technology, and is often addressed through measuring different single performance indicators. Satisfactory classifier selec...

Full description

Autores:
Ortiz Barrios, Miguel Angel
Garcia-Constantino, Matias Fernando
Nugent, Chris
ALFARO SARMIENTO , ISAAC RAFAEL
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9050
Acceso en línea:
https://hdl.handle.net/11323/9050
https://doi.org/10.3390/ijerph19031133
https://repositorio.cuc.edu.co/
Palabra clave:
Technology adoption
Classifier
Intuitionistic Fuzzy Sets (IFS)
Decision Making Trial and Evaluation Laboratory (DEMATEL)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Multi-Criteria Decision Making (MCDM)
People with Dementia (PwD)
Public health
Rights
openAccess
License
Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland
id RCUC2_665c9789f3c2e0066737083d06a76278
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9050
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
title A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
spellingShingle A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
Technology adoption
Classifier
Intuitionistic Fuzzy Sets (IFS)
Decision Making Trial and Evaluation Laboratory (DEMATEL)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Multi-Criteria Decision Making (MCDM)
People with Dementia (PwD)
Public health
title_short A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
title_full A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
title_fullStr A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
title_full_unstemmed A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
title_sort A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementia
dc.creator.fl_str_mv Ortiz Barrios, Miguel Angel
Garcia-Constantino, Matias Fernando
Nugent, Chris
ALFARO SARMIENTO , ISAAC RAFAEL
dc.contributor.author.spa.fl_str_mv Ortiz Barrios, Miguel Angel
Garcia-Constantino, Matias Fernando
Nugent, Chris
ALFARO SARMIENTO , ISAAC RAFAEL
dc.subject.proposal.eng.fl_str_mv Technology adoption
Classifier
Intuitionistic Fuzzy Sets (IFS)
Decision Making Trial and Evaluation Laboratory (DEMATEL)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Multi-Criteria Decision Making (MCDM)
People with Dementia (PwD)
Public health
topic Technology adoption
Classifier
Intuitionistic Fuzzy Sets (IFS)
Decision Making Trial and Evaluation Laboratory (DEMATEL)
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
Multi-Criteria Decision Making (MCDM)
People with Dementia (PwD)
Public health
description The classifier selection problem in Assistive Technology Adoption refers to selecting the classification algorithms that have the best performance in predicting the adoption of technology, and is often addressed through measuring different single performance indicators. Satisfactory classifier selection can help in reducing time and costs involved in the technology adoption process. As there are multiple criteria from different domains and several candidate classification algorithms, the classifier selection process is now a problem that can be addressed using Multiple-Criteria Decision-Making (MCDM) methods. This paper proposes a novel approach to address the classifier selection problem by integrating Intuitionistic Fuzzy Sets (IFS), Decision Making Trial and Evaluation Laboratory (DEMATEL), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The step-by-step procedure behind this application is as follows. First, IF-DEMATEL was used for estimating the criteria and sub-criteria weights considering uncertainty. This method was also employed to evaluate the interrelations among classifier selection criteria. Finally, a modified TOPSIS was applied to generate an overall suitability index per classifier so that the most effective ones can be selected. The proposed approach was validated using a real-world case study concerning the adoption of a mobile-based reminding solution by People with Dementia (PwD). The outputs allow public health managers to accurately identify whether PwD can adopt an assistive technology which results in (i) reduced cost overruns due to wrong classification, (ii) improved quality of life of adopters, and (iii) rapid deployment of intervention alternatives for non-adopters.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-03-04T23:05:44Z
dc.date.available.none.fl_str_mv 2022-03-04T23:05:44Z
dc.date.issued.none.fl_str_mv 2022-01-20
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1660-4601
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9050
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/ijerph19031133
dc.identifier.doi.spa.fl_str_mv 10.3390/ijerph19031133
dc.identifier.eissn.spa.fl_str_mv 16617827
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1660-4601
10.3390/ijerph19031133
16617827
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9050
https://doi.org/10.3390/ijerph19031133
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv International Journal of Environmental Research and Public Health
dc.relation.references.spa.fl_str_mv 1. Wittenberg, R.; Hu, B.; Barraza-Araiza, L.; Rehill, A. Projections of Older People with Dementia and Costs of Dementia Care in the United Kingdom, 2019–2040; London School of Economics: London, UK, 2019.
2. Dawson, W.D.; Bangerter, L.R.; Splaine, M. The politics of caregiving: Taking stock of state-level policies to support family caregivers. Public Policy Aging Rep. 2020, 30, 62–66. [CrossRef]
3. Ortiz-Barrios, M.; Nugent, C.; Cleland, I.; Donnelly, M.; Verikas, A. Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: A multicriteria framework. J. Multi-Criteria Decis. Anal. 2020, 27, 20–38. [CrossRef]
4. Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies 2020, 13, 1164. [CrossRef]
5. Ejegwa, P.A.; Akowe, S.O.; Otene, P.M.; Ikyule, J.M. An overview on intuitionistic fuzzy sets. Int. J. Sci. Technol. Res. 2014, 3, 142–145.
6. Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications. Math. Probl. Eng. 2018, 2018, 3696457. [CrossRef]
7. Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [CrossRef]
8. Ocampo, L.; Deiparine, C.B.; Go, A.L. Mapping strategy to best practices for sustainable food manufacturing using fuzzy dematel-anp-topsis. EMJ Eng. Manag. J. 2020, 32, 130–150. [CrossRef]
9. Sumrit, D. A hybrid multi-criteria decision making model for technological innovation capabilities measurement in automotive parts industry. Int. J. Manag. Decis. Mak. 2020, 19, 1–43. [CrossRef]
10. Hinduja, A.; Pandey, M. An integrated intuitionistic fuzzy MCDM approach to select cloud-based ERP system for SMEs. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1875–1908. [CrossRef]
11. Mishra, A.R.; Mardani, A.; Rani, P.; Zavadskas, E.K. A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures. J. Clean. Prod. 2020, 272, 122807. [CrossRef]
12. Çelikbilek, Y.; Tüysüz, F. An in-depth review of theory of the TOPSIS method: An experimental analysis. J. Manag. Anal. 2020, 7, 281–300. [CrossRef]
13. Hurst, A.; Tobias, J. Empowering Individuals with do-it-yourself Assistive Technology. In Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility, Dundee, Scotland, UK, 24–26 October 2011; pp. 11–18.
14. Lee, C.; Coughlin, J. PERSPECTIVE: Older adults’ adoption of technology: An integrated approach to identifying determinants and barriers. J. Prod. Innov. Manag. 2015, 32, 747–759. [CrossRef]
15. Fotteler, M.; Risch, B.; Gaugisch, P.; Furmanek, J.L.; Swoboda, W.; Mayer, S.; Kohn, B.; Dallmeier, D.; Denkinger, M. Obstacles to Using Assistive Technology for Older Adults–Results from a Focus Group Analysis. Stud. Health Technol. Inform. 2021, 281, 994–998. [PubMed]
16. Pal, J.; Viswanathan, A.; Chandra, P.; Nazareth, A.; Kameswaran, V.; Subramonyam, H.; Johri, A.; Ackerman, M.; O’Modhrain, S. Agency in Assistive Technology Adoption: Visual Impairment and Smartphone Use in Bangalore. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 5929–5940.
17. Kintsch, A.; DePaula, R. A Framework for the Adoption of Assistive Technology. SWAAAC 2002: Supporting Learning through Assistive Technology 2002. pp. 1–10. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.3726& rep=rep1&type=pdf (accessed on 1 November 2021).
18. Goodman, G.; Tiene, D.; Luft, P. Adoption of assistive technology for computer access among college students with disabilities. Disabil. Rehabil. 2002, 24, 80–92. [CrossRef] [PubMed]
19. Cleland, I.; Nugent, C.; McClean, S.; Hartin, P.; Sanders, C.; Donnelly, M.; Zhang, S.; Scotney, B.; Smith, K.; Norton, M.C.; et al. Predicting Technology Adoption in People with Dementia; Initial Results from the TAUT Project. In International Workshop on Ambient Assisted Living; Springer: Cham, Switzerland, 2014; pp. 266–274.
20. Chaurasia, P.; McClean, S.; Nugent, C.; Cleland, I.; Zhang, S.; Donnelly, M.; Scotney, B.; Sanders, C.; Smith, K.; Norton, M.; et al. Technology Adoption and Prediction Tools for Everyday Technologies Aimed at People with Dementia. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4407–4410.
21. Chaurasia, P.; McClean, S.; Nugent, C.; Cleland, I.; Zhang, S.; Donnelly, M.; Scotney, B.; Sanders, C.; Smith, K.; Norton, M.; et al. Modelling mobile-based technology adoption among people with dementia. Pers. Ubiquitous Comput. 2021, 1–20. [CrossRef]
22. Ortiz-Barrios, M.; Miranda-De la Hoz, C.; López-Meza, P.; Petrillo, A.; De Felice, F. A case of food supply chain management with AHP, DEMATEL, and TOPSIS. J. Multi-Criteria Decis. Anal. 2020, 27, 104–128. [CrossRef]
23. Cruz-Sandoval, D.; Favela, J.; Lopez-Nava, I.; Morales, A. Adoption of Wearable Devices by Persons with Dementia: Lessons from a Non-pharmacological Intervention Enabled by a Social Robot. In IoT in Healthcare and Ambient Assisted Living; Springer: Singapore, 2021; pp. 145–163.
24. Zhang, S.; McClean, S.I.; Nugent, C.D.; Donnelly, M.P.; Galway, L.; Scotney, B.W.; Cleland, I. A predictive model for assistive technology adoption for people with dementia. IEEE J. Biomed. Health Inform. 2014, 18, 375–383. [CrossRef] [PubMed]
25. Øksnebjerg, L.; Janbek, J.; Woods, B.; Waldemar, G. Assistive technology designed to support self-management of people with dementia: User involvement, dissemination, and adoption. A scoping review. Int. Psychogeriatr. 2020, 32, 937–953. [CrossRef] [PubMed]
26. Øksnebjerg, L.; Woods, B.; Vilsen, C.; Ruth, K.; Gustafsson, M.; Ringkobing, S.; Waldemar, G. Self-management and cognitive rehabilitation in early stage dementia–merging methods to promote coping and adoption of assistive technology. A pilot study. Aging Ment. Health 2020, 24, 1894–1903. [CrossRef] [PubMed]
27. Köksalan, M.; Wallenius, J.; Zionts, S. An early history of multiple criteria decision making. Data Envel. Anal. 2013, 20, 3–17. [CrossRef]
28. Zavadskas, E.K.; Turskis, Z.; Kildiene, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [CrossRef]
29. Ortiz-Barrios, M.; Nugent, C.; Garcia-Constantino, M.; Jimenez-Delgado, G. Identifying the Most Appropriate Classifier for Underpinning Assistive Technology Adoption for People With Dementia: An Integration of Fuzzy Ahp And Vikor Methods. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2020; pp. 406–419.
30. Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res.-Ekon. Istraz. 2016, 29, 857–887. [CrossRef]
31. Ortiz-Barrios, M.; Gul, M.; López-Meza, P.; Yucesan, M.; Navarro-Jiménez, E. Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: The case of turkish hospitals. Int. J. Disaster Risk Reduct. 2020, 49, 101748. [CrossRef]
32. Faizi, S.; Sałabun, W.; Nawaz, S.; Rehman, A.U.; W ˛atróbski, J. Best-worst method and hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [CrossRef]
33. Faizi, S.; Sałabun, W.; Rashid, T.; Zafar, S.; Watróbski, J. Intuitionistic fuzzy sets in multi-criteria group decision making problems using the characteristic objects method. Symmetry 2020, 12, 1382. [CrossRef]
34. Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [CrossRef]
35. Büyüközkan, G.; Havle, C.A.; Feyzio ˘glu, O. A new digital service quality model and its strategic analysis in aviation industry using interval-valued intuitionistic fuzzy AHP. J. Air Transp. Manag. 2020, 86, 101817. [CrossRef]
36. Hanine, M.; Boutkhoum, O.; Barakaz, F.E.; Lachgar, M.; Assad, N.; Rustam, F.; Ashraf, I. An intuitionistic fuzzy approach for smart city development evaluation for developing countries: Moroccan context. Mathematics 2021, 9, 2668. [CrossRef]
37. Ocampo, L.; Yamagishi, K. Modeling the lockdown relaxation protocols of the philippine government in response to the COVID-19 pandemic: An intuitionistic fuzzy DEMATEL analysis. Socio-Econ. Plan. Sci. 2020, 72, 100911. [CrossRef]
38. Otay, ˙I.; Oztaysi, B.; Cevik Onar, S.; Kahraman, C. Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowl. Based Syst. 2017, 133, 90–106. [CrossRef]
39. Mishra, A.R.; Rani, P.; Mardani, A.; Pardasani, K.R.; Govindan, K.; Alrasheedi, M. Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Comput. Ind. Eng. 2020, 139, 106140. [CrossRef]
40. Kalender, Z.T.; Tozan, H.; Vayvay, O. Prioritization of medical errors in patient safety management: Framework using intervalvalued intuitionistic fuzzy sets. Healthcare 2020, 8, 265. [CrossRef]
41. Paradowski, B.; Shekhovtsov, A.; Sałabun, W.; Baczkiewicz, A.; Kizielewicz, B. Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. Symmetry 2021, 13, 1874. [CrossRef]
42. Zareravasan, A.; Alizadeh, R. Challenges in creating business value from health information systems (HIS): A hybrid fuzzy approach. J. Inf. Technol. Manag. 2021, 13, 51–74. [CrossRef]
43. Liu, H.C.; You, J.X.; Zhen, L.; Fan, X.J. A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Mater. Des. 2014, 60, 380–390. [CrossRef]
44. Ortiz-Barrios, M.A.; Herrera-Fontalvo, Z.; Rúa-Muñoz, J.; Ojeda-Gutiérrez, S.; De Felice, F.; Petrillo, A. An integrated approach to evaluate the risk of adverse events in hospital sector: From theory to practice. Manag. Decis. 2018, 56, 2187–2224. [CrossRef]
45. Sałabun, W.; Watróbski, J.; Shekhovtsov, A. Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 2020, 12, 1549. [CrossRef]
46. Bertolini, M.; Esposito, G.; Romagnoli, G. A TOPSIS-based approach for the best match between manufacturing technologies and product specifications. Expert Syst. Appl. 2020, 159, 113610. [CrossRef]
47. Durak, ˙I.; Arslan, H.M.; Özdemir, Y. Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technol. Anal. Strateg. Manag. 2021. [CrossRef]
48. Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. 49. Navarro, I.J.; Yepes, V.; Martí, J. A review of multicriteria assessment techniques applied to sustainable infrastructure design. Adv. Civ. Eng. 2019, 2019, 6134803. [CrossRef]
50. Omar, M.; Hasan, B.; Ahmad, M.; Yasin, A.; Baharom, F.; Mohd, H.; Darus, N.M. Applying fuzzy technique in software team formation based on belbin team role. J. Telecommun. Electron. Comput. Eng. 2016, 8, 109–113.
51. Dinçer, H.; Yüksel, S. Financial Sector-Based Analysis of the G20 Economies Using the Integrated Decision-Making Approach with DEMATEL and TOPSIS. In Emerging Trends in Banking and Finance; Springer: Cham, Switzerland, 2018; pp. 210–223.
52. Yalcin, A.; Kilic, H.; Guler, E. Research and Development Project Selection via IF-DEMATEL and IF-TOPSIS. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2019; pp. 625–633.
53. Zhang, X.; Su, J. A combined fuzzy DEMATEL and TOPSIS approach for estimating participants in knowledge-intensive crowdsourcing. Comput. Ind. Eng. 2019, 137, 106085. [CrossRef]
54. Erkal, G.; Kilic, H.; Kalender, Z.; Yalcin, A.; Tuzkaya, G. An Integrated IVIF-DEMATEL and IVIF-TOPSIS Methodology for Hotel Information System Selection. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2020; pp. 381–389.
55. Li, X.; Han, Z.; Zhang, R.; Zhang, Y.; Zhang, L. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach. Int. J. Hydrogen Energy 2020, 45, 29630–29642. [CrossRef]
56. Atanassov, K.T. Intuitionistic fuzzy sets. In Physica; Springer: Heidelberg, Germany, 1999; pp. 1–137.
57. Gan, J.; Luo, L. Using DEMATEL and intuitionistic fuzzy sets to identify critical factors influencing the recycling rate of end-of-life vehicles in china. Sustainability 2017, 9, 1873. [CrossRef]
58. Kilic, H.S.; Demirci, A.E.; Delen, D. An integrated decision analysis methodology based on IF-DEMATEL and IF-ELECTRE for personnel selection. Decis. Support Syst. 2020, 137, 113360. [CrossRef]
59. Anzilli, L.; Facchinetti, G. A New Proposal of Defuzzification of Intuitionistic fuzzy Quantities. In Novel Developments in Uncertainty Representation and Processing; Springer: Cham, Switzerland, 2016; pp. 185–195.
60. Shieh, J.; Wu, H.H. Measures of consistency for DEMATEL method. Commun. Stat. Simul. Comput. 2016, 45, 781–790. [CrossRef]
61. Farhadi, P.; Niyas, M.; Shokrpour, N.; Ravangard, R. Prioritizing Factors Affecting Health Service Quality using Integrated Fuzzy DEMATEL and ANP: A Case of Iran. Open Public Health J. 2020, 13, 263–272. [CrossRef]
62. García-Cascales, M.S.; Lamata, M.T. On rank reversal and TOPSIS method. Math. Comput. Model. 2012, 56, 123–132. [CrossRef]
63. Wang, H.; Zheng, H. Model Validation, Machine Learning. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013. [CrossRef]
64. Chan, H.P.; Sahiner, B.; Wagner, R.F.; Petrick, N. Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers. Med. Phys. 1999, 26, 2654–2668. [CrossRef]
65. Samala, R.K.; Chan, H.P.; Hadjiiski, L.; Helvie, M.A. Risks of feature leakage and sample size dependencies in deep feature extraction for breast mass classification. Med. Phys. 2021, 48, 2827–2837. [CrossRef]
66. Ghods, A.; Cook, D.J. A survey of deep network techniques all classifiers can adopt. Data Min. Knowl. Discov. 2021, 35, 46–87. [CrossRef] [PubMed]
67. Zhou, Y.; Liu, Y. Correlation Analysis of Performance Metrics for Classifier. In Decision Making and Soft Computing—Proceedings of the 11th International FLINS Conference; World Scientific: Sidney, Australia, 2014; pp. 487–492. [CrossRef]
68. Pereira, R.B.; Plastino, A.; Zadrozny, B.; Merschmann LH, C. Correlation analysis of performance measures for multi-label classification. Inf. Processing Manag. 2018, 54, 359–369. [CrossRef]
69. Doan, T.; Kalita, J. Predicting run time of classification algorithms using meta-learning. Int. J. Mach. Learn. Cybern. 2017, 8, 1929–1943. [CrossRef]
70. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.
71. Jakobsen, J.C.; Gluud, C.; Wetterslev, J.; Winkel, P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—A practical guide with flowcharts. BMC Med. Res. Methodol. 2017, 17, 162. [CrossRef] [PubMed]
72. Zhang, Y.; Xiao, L. Stochastic primal-dual coordinate method for regularized empirical risk minimization. J. Mach. Learn. Res. 2017, 18, 1–42.
73. Lan, G.; Zhou, Y. An optimal randomized incremental gradient method. Math. Program. 2018, 171, 167–215. [CrossRef]
74. Petkovic, D.; Altman, R.; Wong, M.; Vigil, A. Improving the Explainability of Random Forest Classifier–User Centered Approach. In Pacific Symposium on Biocomputing 2018; World Scientific: Koala Coast, HI, USA, 2018; pp. 204–215. [CrossRef]
75. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]
76. de Leon, A.R.; Soo, A.; Williamson, T. Classification with discrete and continuous variables via general mixed-data models. J. Appl. Stat. 2011, 38, 1021–1032. [CrossRef]
77. Epaillard, E.; Bouguila, N. Hybrid Hidden Markov Model for Mixed Continuous/Continuous and Discrete/Continuous Data Modeling. In Proceedings of the 2015 IEEE 17th International Workshop on Multimedia Signal Processing, Xiamen, China, 19–21 October 2015. [CrossRef]
78. Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 2018, 217, 1–11. [CrossRef] [PubMed]
79. Netto, A.L.; Salomon, V.A.P.; Barrios, M.A.O. Multi-criteria analysis of green bonds: Hybrid multi-method applications. Sustainability 2021, 13, 512. [CrossRef]
dc.relation.citationendpage.spa.fl_str_mv 31
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationvolume.spa.fl_str_mv 19
dc.rights.spa.fl_str_mv Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 31 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI Multidisciplinary Digital Publishing Institute
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/1660-4601/19/3/1133
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/71ae572b-8078-40e2-91e7-81878e8e0177/download
https://repositorio.cuc.edu.co/bitstreams/6a4fb4fc-36f5-4ded-a455-9847e7d3e681/download
https://repositorio.cuc.edu.co/bitstreams/ce4ecddd-bc33-48b7-aa7c-eda642dd9c45/download
https://repositorio.cuc.edu.co/bitstreams/ae3a87b4-ad31-44a2-9b42-862f962e7948/download
bitstream.checksum.fl_str_mv 9447072f6605304eaf2c399c04420442
e30e9215131d99561d40d6b0abbe9bad
94e6ce9b1f0fb0c75035087b6a6b955a
a06bd24dc25c04a064bc3735e4fba18f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760663232512000
spelling Ortiz Barrios, Miguel AngelGarcia-Constantino, Matias FernandoNugent, ChrisALFARO SARMIENTO , ISAAC RAFAEL2022-03-04T23:05:44Z2022-03-04T23:05:44Z2022-01-201660-4601https://hdl.handle.net/11323/9050https://doi.org/10.3390/ijerph1903113310.3390/ijerph1903113316617827Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The classifier selection problem in Assistive Technology Adoption refers to selecting the classification algorithms that have the best performance in predicting the adoption of technology, and is often addressed through measuring different single performance indicators. Satisfactory classifier selection can help in reducing time and costs involved in the technology adoption process. As there are multiple criteria from different domains and several candidate classification algorithms, the classifier selection process is now a problem that can be addressed using Multiple-Criteria Decision-Making (MCDM) methods. This paper proposes a novel approach to address the classifier selection problem by integrating Intuitionistic Fuzzy Sets (IFS), Decision Making Trial and Evaluation Laboratory (DEMATEL), and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The step-by-step procedure behind this application is as follows. First, IF-DEMATEL was used for estimating the criteria and sub-criteria weights considering uncertainty. This method was also employed to evaluate the interrelations among classifier selection criteria. Finally, a modified TOPSIS was applied to generate an overall suitability index per classifier so that the most effective ones can be selected. The proposed approach was validated using a real-world case study concerning the adoption of a mobile-based reminding solution by People with Dementia (PwD). The outputs allow public health managers to accurately identify whether PwD can adopt an assistive technology which results in (i) reduced cost overruns due to wrong classification, (ii) improved quality of life of adopters, and (iii) rapid deployment of intervention alternatives for non-adopters.31 páginasapplication/pdfengMDPI Multidisciplinary Digital Publishing InstituteSwitzerlandCopyright: © 2022 by the authors. Licensee MDPI, Basel, SwitzerlandAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A novel integration of IF-DEMATEL and TOPSIS for the classifier selection problem in assistive technology adoption for people with dementiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/1660-4601/19/3/1133International Journal of Environmental Research and Public Health1. Wittenberg, R.; Hu, B.; Barraza-Araiza, L.; Rehill, A. Projections of Older People with Dementia and Costs of Dementia Care in the United Kingdom, 2019–2040; London School of Economics: London, UK, 2019.2. Dawson, W.D.; Bangerter, L.R.; Splaine, M. The politics of caregiving: Taking stock of state-level policies to support family caregivers. Public Policy Aging Rep. 2020, 30, 62–66. [CrossRef]3. Ortiz-Barrios, M.; Nugent, C.; Cleland, I.; Donnelly, M.; Verikas, A. Selecting the most suitable classification algorithm for supporting assistive technology adoption for people with dementia: A multicriteria framework. J. Multi-Criteria Decis. Anal. 2020, 27, 20–38. [CrossRef]4. Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies 2020, 13, 1164. [CrossRef]5. Ejegwa, P.A.; Akowe, S.O.; Otene, P.M.; Ikyule, J.M. An overview on intuitionistic fuzzy sets. Int. J. Sci. Technol. Res. 2014, 3, 142–145.6. Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL technique: A systematic review of the state-of-the-art literature on methodologies and applications. Math. Probl. Eng. 2018, 2018, 3696457. [CrossRef]7. Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [CrossRef]8. Ocampo, L.; Deiparine, C.B.; Go, A.L. Mapping strategy to best practices for sustainable food manufacturing using fuzzy dematel-anp-topsis. EMJ Eng. Manag. J. 2020, 32, 130–150. [CrossRef]9. Sumrit, D. A hybrid multi-criteria decision making model for technological innovation capabilities measurement in automotive parts industry. Int. J. Manag. Decis. Mak. 2020, 19, 1–43. [CrossRef]10. Hinduja, A.; Pandey, M. An integrated intuitionistic fuzzy MCDM approach to select cloud-based ERP system for SMEs. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1875–1908. [CrossRef]11. Mishra, A.R.; Mardani, A.; Rani, P.; Zavadskas, E.K. A novel EDAS approach on intuitionistic fuzzy set for assessment of health-care waste disposal technology using new parametric divergence measures. J. Clean. Prod. 2020, 272, 122807. [CrossRef]12. Çelikbilek, Y.; Tüysüz, F. An in-depth review of theory of the TOPSIS method: An experimental analysis. J. Manag. Anal. 2020, 7, 281–300. [CrossRef]13. Hurst, A.; Tobias, J. Empowering Individuals with do-it-yourself Assistive Technology. In Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility, Dundee, Scotland, UK, 24–26 October 2011; pp. 11–18.14. Lee, C.; Coughlin, J. PERSPECTIVE: Older adults’ adoption of technology: An integrated approach to identifying determinants and barriers. J. Prod. Innov. Manag. 2015, 32, 747–759. [CrossRef]15. Fotteler, M.; Risch, B.; Gaugisch, P.; Furmanek, J.L.; Swoboda, W.; Mayer, S.; Kohn, B.; Dallmeier, D.; Denkinger, M. Obstacles to Using Assistive Technology for Older Adults–Results from a Focus Group Analysis. Stud. Health Technol. Inform. 2021, 281, 994–998. [PubMed]16. Pal, J.; Viswanathan, A.; Chandra, P.; Nazareth, A.; Kameswaran, V.; Subramonyam, H.; Johri, A.; Ackerman, M.; O’Modhrain, S. Agency in Assistive Technology Adoption: Visual Impairment and Smartphone Use in Bangalore. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 5929–5940.17. Kintsch, A.; DePaula, R. A Framework for the Adoption of Assistive Technology. SWAAAC 2002: Supporting Learning through Assistive Technology 2002. pp. 1–10. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.3726& rep=rep1&type=pdf (accessed on 1 November 2021).18. Goodman, G.; Tiene, D.; Luft, P. Adoption of assistive technology for computer access among college students with disabilities. Disabil. Rehabil. 2002, 24, 80–92. [CrossRef] [PubMed]19. Cleland, I.; Nugent, C.; McClean, S.; Hartin, P.; Sanders, C.; Donnelly, M.; Zhang, S.; Scotney, B.; Smith, K.; Norton, M.C.; et al. Predicting Technology Adoption in People with Dementia; Initial Results from the TAUT Project. In International Workshop on Ambient Assisted Living; Springer: Cham, Switzerland, 2014; pp. 266–274.20. Chaurasia, P.; McClean, S.; Nugent, C.; Cleland, I.; Zhang, S.; Donnelly, M.; Scotney, B.; Sanders, C.; Smith, K.; Norton, M.; et al. Technology Adoption and Prediction Tools for Everyday Technologies Aimed at People with Dementia. In Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 4407–4410.21. Chaurasia, P.; McClean, S.; Nugent, C.; Cleland, I.; Zhang, S.; Donnelly, M.; Scotney, B.; Sanders, C.; Smith, K.; Norton, M.; et al. Modelling mobile-based technology adoption among people with dementia. Pers. Ubiquitous Comput. 2021, 1–20. [CrossRef]22. Ortiz-Barrios, M.; Miranda-De la Hoz, C.; López-Meza, P.; Petrillo, A.; De Felice, F. A case of food supply chain management with AHP, DEMATEL, and TOPSIS. J. Multi-Criteria Decis. Anal. 2020, 27, 104–128. [CrossRef]23. Cruz-Sandoval, D.; Favela, J.; Lopez-Nava, I.; Morales, A. Adoption of Wearable Devices by Persons with Dementia: Lessons from a Non-pharmacological Intervention Enabled by a Social Robot. In IoT in Healthcare and Ambient Assisted Living; Springer: Singapore, 2021; pp. 145–163.24. Zhang, S.; McClean, S.I.; Nugent, C.D.; Donnelly, M.P.; Galway, L.; Scotney, B.W.; Cleland, I. A predictive model for assistive technology adoption for people with dementia. IEEE J. Biomed. Health Inform. 2014, 18, 375–383. [CrossRef] [PubMed]25. Øksnebjerg, L.; Janbek, J.; Woods, B.; Waldemar, G. Assistive technology designed to support self-management of people with dementia: User involvement, dissemination, and adoption. A scoping review. Int. Psychogeriatr. 2020, 32, 937–953. [CrossRef] [PubMed]26. Øksnebjerg, L.; Woods, B.; Vilsen, C.; Ruth, K.; Gustafsson, M.; Ringkobing, S.; Waldemar, G. Self-management and cognitive rehabilitation in early stage dementia–merging methods to promote coping and adoption of assistive technology. A pilot study. Aging Ment. Health 2020, 24, 1894–1903. [CrossRef] [PubMed]27. Köksalan, M.; Wallenius, J.; Zionts, S. An early history of multiple criteria decision making. Data Envel. Anal. 2013, 20, 3–17. [CrossRef]28. Zavadskas, E.K.; Turskis, Z.; Kildiene, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [CrossRef]29. Ortiz-Barrios, M.; Nugent, C.; Garcia-Constantino, M.; Jimenez-Delgado, G. Identifying the Most Appropriate Classifier for Underpinning Assistive Technology Adoption for People With Dementia: An Integration of Fuzzy Ahp And Vikor Methods. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2020; pp. 406–419.30. Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res.-Ekon. Istraz. 2016, 29, 857–887. [CrossRef]31. Ortiz-Barrios, M.; Gul, M.; López-Meza, P.; Yucesan, M.; Navarro-Jiménez, E. Evaluation of hospital disaster preparedness by a multi-criteria decision making approach: The case of turkish hospitals. Int. J. Disaster Risk Reduct. 2020, 49, 101748. [CrossRef]32. Faizi, S.; Sałabun, W.; Nawaz, S.; Rehman, A.U.; W ˛atróbski, J. Best-worst method and hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. Expert Syst. Appl. 2021, 181, 115088. [CrossRef]33. Faizi, S.; Sałabun, W.; Rashid, T.; Zafar, S.; Watróbski, J. Intuitionistic fuzzy sets in multi-criteria group decision making problems using the characteristic objects method. Symmetry 2020, 12, 1382. [CrossRef]34. Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [CrossRef]35. Büyüközkan, G.; Havle, C.A.; Feyzio ˘glu, O. A new digital service quality model and its strategic analysis in aviation industry using interval-valued intuitionistic fuzzy AHP. J. Air Transp. Manag. 2020, 86, 101817. [CrossRef]36. Hanine, M.; Boutkhoum, O.; Barakaz, F.E.; Lachgar, M.; Assad, N.; Rustam, F.; Ashraf, I. An intuitionistic fuzzy approach for smart city development evaluation for developing countries: Moroccan context. Mathematics 2021, 9, 2668. [CrossRef]37. Ocampo, L.; Yamagishi, K. Modeling the lockdown relaxation protocols of the philippine government in response to the COVID-19 pandemic: An intuitionistic fuzzy DEMATEL analysis. Socio-Econ. Plan. Sci. 2020, 72, 100911. [CrossRef]38. Otay, ˙I.; Oztaysi, B.; Cevik Onar, S.; Kahraman, C. Multi-expert performance evaluation of healthcare institutions using an integrated intuitionistic fuzzy AHP&DEA methodology. Knowl. Based Syst. 2017, 133, 90–106. [CrossRef]39. Mishra, A.R.; Rani, P.; Mardani, A.; Pardasani, K.R.; Govindan, K.; Alrasheedi, M. Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Comput. Ind. Eng. 2020, 139, 106140. [CrossRef]40. Kalender, Z.T.; Tozan, H.; Vayvay, O. Prioritization of medical errors in patient safety management: Framework using intervalvalued intuitionistic fuzzy sets. Healthcare 2020, 8, 265. [CrossRef]41. Paradowski, B.; Shekhovtsov, A.; Sałabun, W.; Baczkiewicz, A.; Kizielewicz, B. Similarity analysis of methods for objective determination of weights in multi-criteria decision support systems. Symmetry 2021, 13, 1874. [CrossRef]42. Zareravasan, A.; Alizadeh, R. Challenges in creating business value from health information systems (HIS): A hybrid fuzzy approach. J. Inf. Technol. Manag. 2021, 13, 51–74. [CrossRef]43. Liu, H.C.; You, J.X.; Zhen, L.; Fan, X.J. A novel hybrid multiple criteria decision making model for material selection with target-based criteria. Mater. Des. 2014, 60, 380–390. [CrossRef]44. Ortiz-Barrios, M.A.; Herrera-Fontalvo, Z.; Rúa-Muñoz, J.; Ojeda-Gutiérrez, S.; De Felice, F.; Petrillo, A. An integrated approach to evaluate the risk of adverse events in hospital sector: From theory to practice. Manag. Decis. 2018, 56, 2187–2224. [CrossRef]45. Sałabun, W.; Watróbski, J.; Shekhovtsov, A. Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 2020, 12, 1549. [CrossRef]46. Bertolini, M.; Esposito, G.; Romagnoli, G. A TOPSIS-based approach for the best match between manufacturing technologies and product specifications. Expert Syst. Appl. 2020, 159, 113610. [CrossRef]47. Durak, ˙I.; Arslan, H.M.; Özdemir, Y. Application of AHP–TOPSIS methods in technopark selection of technology companies: Turkish case. Technol. Anal. Strateg. Manag. 2021. [CrossRef]48. Velasquez, M.; Hester, P.T. An analysis of multi-criteria decision making methods. Int. J. Oper. Res. 2013, 10, 56–66. 49. Navarro, I.J.; Yepes, V.; Martí, J. A review of multicriteria assessment techniques applied to sustainable infrastructure design. Adv. Civ. Eng. 2019, 2019, 6134803. [CrossRef]50. Omar, M.; Hasan, B.; Ahmad, M.; Yasin, A.; Baharom, F.; Mohd, H.; Darus, N.M. Applying fuzzy technique in software team formation based on belbin team role. J. Telecommun. Electron. Comput. Eng. 2016, 8, 109–113.51. Dinçer, H.; Yüksel, S. Financial Sector-Based Analysis of the G20 Economies Using the Integrated Decision-Making Approach with DEMATEL and TOPSIS. In Emerging Trends in Banking and Finance; Springer: Cham, Switzerland, 2018; pp. 210–223.52. Yalcin, A.; Kilic, H.; Guler, E. Research and Development Project Selection via IF-DEMATEL and IF-TOPSIS. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2019; pp. 625–633.53. Zhang, X.; Su, J. A combined fuzzy DEMATEL and TOPSIS approach for estimating participants in knowledge-intensive crowdsourcing. Comput. Ind. Eng. 2019, 137, 106085. [CrossRef]54. Erkal, G.; Kilic, H.; Kalender, Z.; Yalcin, A.; Tuzkaya, G. An Integrated IVIF-DEMATEL and IVIF-TOPSIS Methodology for Hotel Information System Selection. In International Conference on Intelligent and Fuzzy Systems; Springer: Cham, Switzerland, 2020; pp. 381–389.55. Li, X.; Han, Z.; Zhang, R.; Zhang, Y.; Zhang, L. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach. Int. J. Hydrogen Energy 2020, 45, 29630–29642. [CrossRef]56. Atanassov, K.T. Intuitionistic fuzzy sets. In Physica; Springer: Heidelberg, Germany, 1999; pp. 1–137.57. Gan, J.; Luo, L. Using DEMATEL and intuitionistic fuzzy sets to identify critical factors influencing the recycling rate of end-of-life vehicles in china. Sustainability 2017, 9, 1873. [CrossRef]58. Kilic, H.S.; Demirci, A.E.; Delen, D. An integrated decision analysis methodology based on IF-DEMATEL and IF-ELECTRE for personnel selection. Decis. Support Syst. 2020, 137, 113360. [CrossRef]59. Anzilli, L.; Facchinetti, G. A New Proposal of Defuzzification of Intuitionistic fuzzy Quantities. In Novel Developments in Uncertainty Representation and Processing; Springer: Cham, Switzerland, 2016; pp. 185–195.60. Shieh, J.; Wu, H.H. Measures of consistency for DEMATEL method. Commun. Stat. Simul. Comput. 2016, 45, 781–790. [CrossRef]61. Farhadi, P.; Niyas, M.; Shokrpour, N.; Ravangard, R. Prioritizing Factors Affecting Health Service Quality using Integrated Fuzzy DEMATEL and ANP: A Case of Iran. Open Public Health J. 2020, 13, 263–272. [CrossRef]62. García-Cascales, M.S.; Lamata, M.T. On rank reversal and TOPSIS method. Math. Comput. Model. 2012, 56, 123–132. [CrossRef]63. Wang, H.; Zheng, H. Model Validation, Machine Learning. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.H., Yokota, H., Eds.; Springer: New York, NY, USA, 2013. [CrossRef]64. Chan, H.P.; Sahiner, B.; Wagner, R.F.; Petrick, N. Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers. Med. Phys. 1999, 26, 2654–2668. [CrossRef]65. Samala, R.K.; Chan, H.P.; Hadjiiski, L.; Helvie, M.A. Risks of feature leakage and sample size dependencies in deep feature extraction for breast mass classification. Med. Phys. 2021, 48, 2827–2837. [CrossRef]66. Ghods, A.; Cook, D.J. A survey of deep network techniques all classifiers can adopt. Data Min. Knowl. Discov. 2021, 35, 46–87. [CrossRef] [PubMed]67. Zhou, Y.; Liu, Y. Correlation Analysis of Performance Metrics for Classifier. In Decision Making and Soft Computing—Proceedings of the 11th International FLINS Conference; World Scientific: Sidney, Australia, 2014; pp. 487–492. [CrossRef]68. Pereira, R.B.; Plastino, A.; Zadrozny, B.; Merschmann LH, C. Correlation analysis of performance measures for multi-label classification. Inf. Processing Manag. 2018, 54, 359–369. [CrossRef]69. Doan, T.; Kalita, J. Predicting run time of classification algorithms using meta-learning. Int. J. Mach. Learn. Cybern. 2017, 8, 1929–1943. [CrossRef]70. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.71. Jakobsen, J.C.; Gluud, C.; Wetterslev, J.; Winkel, P. When and how should multiple imputation be used for handling missing data in randomised clinical trials—A practical guide with flowcharts. BMC Med. Res. Methodol. 2017, 17, 162. [CrossRef] [PubMed]72. Zhang, Y.; Xiao, L. Stochastic primal-dual coordinate method for regularized empirical risk minimization. J. Mach. Learn. Res. 2017, 18, 1–42.73. Lan, G.; Zhou, Y. An optimal randomized incremental gradient method. Math. Program. 2018, 171, 167–215. [CrossRef]74. Petkovic, D.; Altman, R.; Wong, M.; Vigil, A. Improving the Explainability of Random Forest Classifier–User Centered Approach. In Pacific Symposium on Biocomputing 2018; World Scientific: Koala Coast, HI, USA, 2018; pp. 204–215. [CrossRef]75. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 2020, 128, 336–359. [CrossRef]76. de Leon, A.R.; Soo, A.; Williamson, T. Classification with discrete and continuous variables via general mixed-data models. J. Appl. Stat. 2011, 38, 1021–1032. [CrossRef]77. Epaillard, E.; Bouguila, N. Hybrid Hidden Markov Model for Mixed Continuous/Continuous and Discrete/Continuous Data Modeling. In Proceedings of the 2015 IEEE 17th International Workshop on Multimedia Signal Processing, Xiamen, China, 19–21 October 2015. [CrossRef]78. Shafizadeh-Moghadam, H.; Valavi, R.; Shahabi, H.; Chapi, K.; Shirzadi, A. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. J. Environ. Manag. 2018, 217, 1–11. [CrossRef] [PubMed]79. Netto, A.L.; Salomon, V.A.P.; Barrios, M.A.O. Multi-criteria analysis of green bonds: Hybrid multi-method applications. Sustainability 2021, 13, 512. [CrossRef]311319Technology adoptionClassifierIntuitionistic Fuzzy Sets (IFS)Decision Making Trial and Evaluation Laboratory (DEMATEL)Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)Multi-Criteria Decision Making (MCDM)People with Dementia (PwD)Public healthPublicationORIGINALA Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.pdfA Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.pdfapplication/pdf3436896https://repositorio.cuc.edu.co/bitstreams/71ae572b-8078-40e2-91e7-81878e8e0177/download9447072f6605304eaf2c399c04420442MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6a4fb4fc-36f5-4ded-a455-9847e7d3e681/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTA Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.pdf.txtA Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.pdf.txttext/plain121782https://repositorio.cuc.edu.co/bitstreams/ce4ecddd-bc33-48b7-aa7c-eda642dd9c45/download94e6ce9b1f0fb0c75035087b6a6b955aMD53THUMBNAILA Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.pdf.jpgA Novel Integration of IF-DEMATEL and TOPSIS for the Classifier Selection Problem in Assistive Technology Adoption for People with Dementia.pdf.jpgimage/jpeg16852https://repositorio.cuc.edu.co/bitstreams/ae3a87b4-ad31-44a2-9b42-862f962e7948/downloada06bd24dc25c04a064bc3735e4fba18fMD5411323/9050oai:repositorio.cuc.edu.co:11323/90502024-09-16 16:37:16.726https://creativecommons.org/licenses/by/4.0/Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerlandopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==