Deep learning of robust representations for multi-instance and multi-label image classification
In multi-instance problems (MIL), an arbitrary number of instances is associated with a class label. Therefore, the labeling of training data becomes simpler (since it is done together, instead of individually) with the disadvantage that a weakly supervised database is produced [9]. In the PCRY, eac...
- Autores:
-
Silva, Jesús
Varela Izquierdo, Noel
Mendoza Palechor, Fabio
Pineda, Omar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7257
- Acceso en línea:
- https://hdl.handle.net/11323/7257
https://repositorio.cuc.edu.co/
- Palabra clave:
- Deep learning
Image classification
Multi-instance
Multi-label
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_6658ac9ccab39b340c0ec559fe4641f2 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7257 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Deep learning of robust representations for multi-instance and multi-label image classification |
title |
Deep learning of robust representations for multi-instance and multi-label image classification |
spellingShingle |
Deep learning of robust representations for multi-instance and multi-label image classification Deep learning Image classification Multi-instance Multi-label |
title_short |
Deep learning of robust representations for multi-instance and multi-label image classification |
title_full |
Deep learning of robust representations for multi-instance and multi-label image classification |
title_fullStr |
Deep learning of robust representations for multi-instance and multi-label image classification |
title_full_unstemmed |
Deep learning of robust representations for multi-instance and multi-label image classification |
title_sort |
Deep learning of robust representations for multi-instance and multi-label image classification |
dc.creator.fl_str_mv |
Silva, Jesús Varela Izquierdo, Noel Mendoza Palechor, Fabio Pineda, Omar |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Varela Izquierdo, Noel Mendoza Palechor, Fabio Pineda, Omar |
dc.subject.spa.fl_str_mv |
Deep learning Image classification Multi-instance Multi-label |
topic |
Deep learning Image classification Multi-instance Multi-label |
description |
In multi-instance problems (MIL), an arbitrary number of instances is associated with a class label. Therefore, the labeling of training data becomes simpler (since it is done together, instead of individually) with the disadvantage that a weakly supervised database is produced [9]. In the PCRY, each restaurant is represented by a set of images that share the attribute label(s) of that establishment. This paper explores the use of previously learned attribute extractors, trained in 3 different databases that are similar and complementary to the PCRY database |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-11T16:44:09Z |
dc.date.available.none.fl_str_mv |
2020-11-11T16:44:09Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.embargoEnd.none.fl_str_mv |
2021-05-07 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2194-5357 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7257 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2194-5357 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7257 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Chen, Z., Chi, Z., Fu, H., Feng, D .: Clasificación de imágenes de múltiples instancias y etiquetas múltiples: un enfoque neuronal. Neurocomputing 99 , 298-306 (2013) Zhang, Y., Wang, Y., Liu, XY, Mi, S., Zhang, ML: Clasificación de etiquetas múltiples a gran escala utilizando imágenes de transmisión desconocidas. Reconocimiento de patrones. 99 , 107100 (2020) Li, P., Chen, P., Xie, Y., Zhang, D .: Aprendizaje bi-modal con atención por canal para la clasificación de imágenes de múltiples etiquetas. IEEE Access 8 , 9965–9977 (2020) Yu, WJ, Chen, ZD, Luo, X., Liu, W., Xu, XS: DELTA: una red profunda de doble flujo para la clasificación de imágenes de múltiples etiquetas. Reconocimiento de patrones. 91 , 322–331 (2019) Wang, S., Zhu, Y., Yu, L., Chen, H., Lin, H., Wan, X., Fan, X., Heng, PA: RMDL: aprendizaje profundo de instancias múltiples recalibrado para toda la diapositiva clasificación de imágenes gástricas. Medicina. Imagen Anal. 58 , 101549 (2019) Loukas, C., Sgouros, NP: aprendizaje de múltiples etiquetas de instancias múltiples para la anotación de imágenes quirúrgicas. En t. J. Med. Robot. Computación. Ayudar. Surg. 16 , e2058 (2019) Zhang, M., Li, C., Wang, X .: Aprendizaje métrico de múltiples vistas para la clasificación de imágenes de múltiples etiquetas. En: IEEE International Conference on Image Processing (ICIP) de 2019, págs. 2134–2138. IEEE, septiembre de 2019 Varela, N., Silva, J., González, FM, Palencia, P., Palma, HH, Pineda, OB: Método para la recuperación de imágenes en bases de datos de granos de arroz a partir de contenido visual. Procedia Comput. Sci. 170 , 983–988 (2020) Song, L., Liu, J., Qian, B., Sun, M., Yang, K., Sun, M., Abbas, S .: Una CNN multimodal profunda para la clasificación de imágenes de múltiples instancias y múltiples etiquetas . IEEE Trans. Proceso de imagen. 27 (12), 6025–6038 (2018) Yang, Y., Fu, ZY, Zhan, DC, Liu, ZB, Jiang, Y .: Red profunda multi-etiqueta multi-instancia multi-modal semi-supervisada con transporte óptimo. IEEE Trans. Knowl. Ing. De datos (2019) Viloria, A., Acuña, GC, Franco, DJA, Hernández-Palma, H., Fuentes, JP, Rambal, EP: Integración de técnicas de minería de datos al sistema gestor de bases de datos PostgreSQL. Procedia Comput. Sci. 155 , 575–580 (2019) Tsoumakas, G., Katakis, I., Vlahavas, I .: Manual de minería de datos y descubrimiento del conocimiento (2009) Yosinski, J., Clune, J., Bengio, Y., Lipson, H .: ¿Cuán transferibles son las características en las redes neuronales profundas? En: Ghahramani, Z., Welling, M., et al. (eds.) Advances in Neural Information Processing Systems, págs. 3320–3328 (2014) Hu, H., Cui, Z., Wu, J., Wang, K .: Clasificación de múltiples etiquetas de múltiples instancias basada en el aprendizaje métrico con correlación de etiquetas. IEEE Access 7 , 109899–109909 (2019) Bossard, L., Guillaumin, M., Van Gool, L .: Food-101: componentes discriminativos de minería con bosques aleatorios. En: European Conference on Computer Vision (2014) Li, J., Liu, J., Yongkang, W., Nishimura, S., Kankanhalli, M .: Reconocimiento de acciones de varias personas con supervisión débil en videos de 360 °. En: Conferencia de invierno de IEEE sobre aplicaciones de la visión por computadora, págs. 508–516 (2020) Zeng, T., Ji, S .: Redes neuronales convolucionales profundas para el aprendizaje de múltiples tareas y múltiples instancias. En: 2015 IEEE International Conference on Data Mining, págs. 579–588. IEEE, noviembre de 2015 Zhu, M., Li, Y., Pan, Z., Yang, J .: Reconocimiento automático de modulación de señales compuestas utilizando un clasificador profundo de múltiples etiquetas: un estudio de caso con señales de interferencia de radar. Sig. Proceso. 169 , 107393 (2020) Yang, H., Tianyi Zhou, J., Cai, J., Soon Ong, Y .: MIML-FCN +: aprendizaje de múltiples etiquetas y múltiples instancias a través de redes totalmente convolucionales con información privilegiada. En: Actas de la Conferencia IEEE sobre Visión por Computador y Reconocimiento de Patrones, págs. 1577-1585 (2017) Viloria, A., Lezama, OBP: Mejoras para determinar el número de clusters en k-medias para bases de datos de innovación en pymes. ANT / EDI40, págs. 1201–1206 (2019) Li, D., Wang, J., Zhao, X., Liu, Y., Wang, D .: Algoritmo de aprendizaje de múltiples instancias basado en múltiples núcleos para la clasificación de imágenes. J. Vis. Comun. Representar la imagen. 25 (5), 1112–1117 (2014) Feng, S., Xiong, W., Li, B., Lang, C., Huang, X .: Aprendizaje semi-supervisado de múltiples instancias basado en representación escasa jerárquica con aplicación a la categorización de imágenes. Sig. Proceso. 94 , 595–607 (2014) Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X .: Aprendizaje de la regularización espacial con supervisiones a nivel de imagen para la clasificación de imágenes de múltiples etiquetas. En: Actas de la Conferencia IEEE sobre visión artificial y reconocimiento de patrones, págs. 5513–5522 (2017) Shang, J., Hong, S., Zhou, Y., Wu, M., Li, H .: Aprendizaje de múltiples etiquetas guiado por el conocimiento a través de redes neuronales en la predicción de medicamentos. En: Asian Conference on Machine Learning, págs. 831–846, noviembre de 2018 Wu, JS, Huang, SJ, Zhou, ZH: predicción de la función de proteínas en todo el genoma a través del aprendizaje de múltiples etiquetas y múltiples instancias. IEEE / ACM Trans. Computación. Biol. Bioinform. 11 (5), 891–902 (2014) Ding, X., Li, B., Xiong, W., Guo, W., Hu, W., Wang, B .: Aprendizaje multi-instancia multi-etiqueta que combina el contexto jerárquico y su aplicación a la anotación de imágenes. IEEE Trans. Multimed. 18 (8), 1616–1627 (2016) Cheplygina, V., de Bruijne, M., Pluim, JP: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medicina. Imagen Anal. 54 , 280–296 (2019) Shakya, S .: Determinación de no linealidad basada en aprendizaje automático para revisión de comunicación por fibra óptica. J. Ubiquit. Computación. Comun. Technol. (UCCT) 1 (02), 121–127 (2019) Laib, L., Allili, MS, Ait-Aoudia, S .: Un modelo temático probabilístico para la clasificación de imágenes basada en eventos y la anotación de múltiples etiquetas. Sig. Proceso. Imagen Comun. 76 , 283–294 (2019) García-Domínguez, M., Domínguez, C., Heras, J., Mata, E., Pascual, V .: FrImCla: un marco para la clasificación de imágenes mediante técnicas tradicionales y de aprendizaje por transferencia. IEEE Access 8 , 53443–53455 (2020) |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089233300&doi=10.1007%2f978-3-030-51859-2_16&partnerID=40&md5=84f4d400da9114781ba3418fb47ac6f0 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/240f2164-4a99-4ddd-a171-8695e1e0b371/download https://repositorio.cuc.edu.co/bitstreams/f90679d6-ba2c-4474-ac9f-e08c2881d506/download https://repositorio.cuc.edu.co/bitstreams/a4621443-b793-4c96-9ede-1c7af29ecbf3/download https://repositorio.cuc.edu.co/bitstreams/8074af77-872f-4ca5-954a-300e774fe67c/download https://repositorio.cuc.edu.co/bitstreams/4436f4c3-03f9-4fd1-8105-8797e3834b32/download |
bitstream.checksum.fl_str_mv |
158bfa50ee98d76a35169f6d36236987 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 486bac6d92b7874d154fbcf7ff103b9c 0cf25352cfb7d39b4dda1d0c8b0cc4d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760766449090560 |
spelling |
Silva, JesúsVarela Izquierdo, NoelMendoza Palechor, FabioPineda, Omar2020-11-11T16:44:09Z2020-11-11T16:44:09Z20202021-05-072194-5357https://hdl.handle.net/11323/7257Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In multi-instance problems (MIL), an arbitrary number of instances is associated with a class label. Therefore, the labeling of training data becomes simpler (since it is done together, instead of individually) with the disadvantage that a weakly supervised database is produced [9]. In the PCRY, each restaurant is represented by a set of images that share the attribute label(s) of that establishment. This paper explores the use of previously learned attribute extractors, trained in 3 different databases that are similar and complementary to the PCRY databaseSilva, JesúsVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Mendoza Palechor, Fabio-will be generated-orcid-0000-0002-2755-0841-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089233300&doi=10.1007%2f978-3-030-51859-2_16&partnerID=40&md5=84f4d400da9114781ba3418fb47ac6f0Deep learningImage classificationMulti-instanceMulti-labelDeep learning of robust representations for multi-instance and multi-label image classificationPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionChen, Z., Chi, Z., Fu, H., Feng, D .: Clasificación de imágenes de múltiples instancias y etiquetas múltiples: un enfoque neuronal. Neurocomputing 99 , 298-306 (2013)Zhang, Y., Wang, Y., Liu, XY, Mi, S., Zhang, ML: Clasificación de etiquetas múltiples a gran escala utilizando imágenes de transmisión desconocidas. Reconocimiento de patrones. 99 , 107100 (2020)Li, P., Chen, P., Xie, Y., Zhang, D .: Aprendizaje bi-modal con atención por canal para la clasificación de imágenes de múltiples etiquetas. IEEE Access 8 , 9965–9977 (2020)Yu, WJ, Chen, ZD, Luo, X., Liu, W., Xu, XS: DELTA: una red profunda de doble flujo para la clasificación de imágenes de múltiples etiquetas. Reconocimiento de patrones. 91 , 322–331 (2019)Wang, S., Zhu, Y., Yu, L., Chen, H., Lin, H., Wan, X., Fan, X., Heng, PA: RMDL: aprendizaje profundo de instancias múltiples recalibrado para toda la diapositiva clasificación de imágenes gástricas. Medicina. Imagen Anal. 58 , 101549 (2019)Loukas, C., Sgouros, NP: aprendizaje de múltiples etiquetas de instancias múltiples para la anotación de imágenes quirúrgicas. En t. J. Med. Robot. Computación. Ayudar. Surg. 16 , e2058 (2019)Zhang, M., Li, C., Wang, X .: Aprendizaje métrico de múltiples vistas para la clasificación de imágenes de múltiples etiquetas. En: IEEE International Conference on Image Processing (ICIP) de 2019, págs. 2134–2138. IEEE, septiembre de 2019Varela, N., Silva, J., González, FM, Palencia, P., Palma, HH, Pineda, OB: Método para la recuperación de imágenes en bases de datos de granos de arroz a partir de contenido visual. Procedia Comput. Sci. 170 , 983–988 (2020)Song, L., Liu, J., Qian, B., Sun, M., Yang, K., Sun, M., Abbas, S .: Una CNN multimodal profunda para la clasificación de imágenes de múltiples instancias y múltiples etiquetas . IEEE Trans. Proceso de imagen. 27 (12), 6025–6038 (2018)Yang, Y., Fu, ZY, Zhan, DC, Liu, ZB, Jiang, Y .: Red profunda multi-etiqueta multi-instancia multi-modal semi-supervisada con transporte óptimo. IEEE Trans. Knowl. Ing. De datos (2019)Viloria, A., Acuña, GC, Franco, DJA, Hernández-Palma, H., Fuentes, JP, Rambal, EP: Integración de técnicas de minería de datos al sistema gestor de bases de datos PostgreSQL. Procedia Comput. Sci. 155 , 575–580 (2019)Tsoumakas, G., Katakis, I., Vlahavas, I .: Manual de minería de datos y descubrimiento del conocimiento (2009)Yosinski, J., Clune, J., Bengio, Y., Lipson, H .: ¿Cuán transferibles son las características en las redes neuronales profundas? En: Ghahramani, Z., Welling, M., et al. (eds.) Advances in Neural Information Processing Systems, págs. 3320–3328 (2014)Hu, H., Cui, Z., Wu, J., Wang, K .: Clasificación de múltiples etiquetas de múltiples instancias basada en el aprendizaje métrico con correlación de etiquetas. IEEE Access 7 , 109899–109909 (2019)Bossard, L., Guillaumin, M., Van Gool, L .: Food-101: componentes discriminativos de minería con bosques aleatorios. En: European Conference on Computer Vision (2014)Li, J., Liu, J., Yongkang, W., Nishimura, S., Kankanhalli, M .: Reconocimiento de acciones de varias personas con supervisión débil en videos de 360 °. En: Conferencia de invierno de IEEE sobre aplicaciones de la visión por computadora, págs. 508–516 (2020)Zeng, T., Ji, S .: Redes neuronales convolucionales profundas para el aprendizaje de múltiples tareas y múltiples instancias. En: 2015 IEEE International Conference on Data Mining, págs. 579–588. IEEE, noviembre de 2015Zhu, M., Li, Y., Pan, Z., Yang, J .: Reconocimiento automático de modulación de señales compuestas utilizando un clasificador profundo de múltiples etiquetas: un estudio de caso con señales de interferencia de radar. Sig. Proceso. 169 , 107393 (2020)Yang, H., Tianyi Zhou, J., Cai, J., Soon Ong, Y .: MIML-FCN +: aprendizaje de múltiples etiquetas y múltiples instancias a través de redes totalmente convolucionales con información privilegiada. En: Actas de la Conferencia IEEE sobre Visión por Computador y Reconocimiento de Patrones, págs. 1577-1585 (2017)Viloria, A., Lezama, OBP: Mejoras para determinar el número de clusters en k-medias para bases de datos de innovación en pymes. ANT / EDI40, págs. 1201–1206 (2019)Li, D., Wang, J., Zhao, X., Liu, Y., Wang, D .: Algoritmo de aprendizaje de múltiples instancias basado en múltiples núcleos para la clasificación de imágenes. J. Vis. Comun. Representar la imagen. 25 (5), 1112–1117 (2014)Feng, S., Xiong, W., Li, B., Lang, C., Huang, X .: Aprendizaje semi-supervisado de múltiples instancias basado en representación escasa jerárquica con aplicación a la categorización de imágenes. Sig. Proceso. 94 , 595–607 (2014)Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X .: Aprendizaje de la regularización espacial con supervisiones a nivel de imagen para la clasificación de imágenes de múltiples etiquetas. En: Actas de la Conferencia IEEE sobre visión artificial y reconocimiento de patrones, págs. 5513–5522 (2017)Shang, J., Hong, S., Zhou, Y., Wu, M., Li, H .: Aprendizaje de múltiples etiquetas guiado por el conocimiento a través de redes neuronales en la predicción de medicamentos. En: Asian Conference on Machine Learning, págs. 831–846, noviembre de 2018Wu, JS, Huang, SJ, Zhou, ZH: predicción de la función de proteínas en todo el genoma a través del aprendizaje de múltiples etiquetas y múltiples instancias. IEEE / ACM Trans. Computación. Biol. Bioinform. 11 (5), 891–902 (2014)Ding, X., Li, B., Xiong, W., Guo, W., Hu, W., Wang, B .: Aprendizaje multi-instancia multi-etiqueta que combina el contexto jerárquico y su aplicación a la anotación de imágenes. IEEE Trans. Multimed. 18 (8), 1616–1627 (2016)Cheplygina, V., de Bruijne, M., Pluim, JP: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Medicina. Imagen Anal. 54 , 280–296 (2019)Shakya, S .: Determinación de no linealidad basada en aprendizaje automático para revisión de comunicación por fibra óptica. J. Ubiquit. Computación. Comun. Technol. (UCCT) 1 (02), 121–127 (2019)Laib, L., Allili, MS, Ait-Aoudia, S .: Un modelo temático probabilístico para la clasificación de imágenes basada en eventos y la anotación de múltiples etiquetas. Sig. Proceso. Imagen Comun. 76 , 283–294 (2019)García-Domínguez, M., Domínguez, C., Heras, J., Mata, E., Pascual, V .: FrImCla: un marco para la clasificación de imágenes mediante técnicas tradicionales y de aprendizaje por transferencia. IEEE Access 8 , 53443–53455 (2020)PublicationORIGINALDEEP LEARNING OF ROBUST REPRESENTATIONS FOR MULTI-INSTANCE AND MULTILABEL IMAGE CLASSIFICATION.pdfDEEP LEARNING OF ROBUST REPRESENTATIONS FOR MULTI-INSTANCE AND MULTILABEL IMAGE CLASSIFICATION.pdfapplication/pdf6032https://repositorio.cuc.edu.co/bitstreams/240f2164-4a99-4ddd-a171-8695e1e0b371/download158bfa50ee98d76a35169f6d36236987MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/f90679d6-ba2c-4474-ac9f-e08c2881d506/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/a4621443-b793-4c96-9ede-1c7af29ecbf3/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILDEEP LEARNING OF ROBUST REPRESENTATIONS FOR MULTI-INSTANCE AND MULTILABEL IMAGE CLASSIFICATION.pdf.jpgDEEP LEARNING OF ROBUST REPRESENTATIONS FOR MULTI-INSTANCE AND MULTILABEL IMAGE CLASSIFICATION.pdf.jpgimage/jpeg35673https://repositorio.cuc.edu.co/bitstreams/8074af77-872f-4ca5-954a-300e774fe67c/download486bac6d92b7874d154fbcf7ff103b9cMD54TEXTDEEP LEARNING OF ROBUST REPRESENTATIONS FOR MULTI-INSTANCE AND MULTILABEL IMAGE CLASSIFICATION.pdf.txtDEEP LEARNING OF ROBUST REPRESENTATIONS FOR MULTI-INSTANCE AND MULTILABEL IMAGE CLASSIFICATION.pdf.txttext/plain862https://repositorio.cuc.edu.co/bitstreams/4436f4c3-03f9-4fd1-8105-8797e3834b32/download0cf25352cfb7d39b4dda1d0c8b0cc4d1MD5511323/7257oai:repositorio.cuc.edu.co:11323/72572024-09-17 11:03:06.921http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |