A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements
The toxicity and the health risk assessment associated to the presence of some hazardous elements (HEs) in dried (infant formula and powdered) milks due to manufacturing and packaging process, raw materials used, environmental conditions, etc. need to be determined. With this aim, a new methodology...
- Autores:
-
Gredilla, Ainara
Ortiz de Vallejuelo, Silvia Fdez
Arana, Gorka
de Diego, Alberto
S. Oliveira, Marcos L.
da Boit, Katia
Madariaga, Juan Manuel
O. Silva, Luis F.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9262
- Acceso en línea:
- https://hdl.handle.net/11323/9262
https://doi.org/10.1007/s12161-022-02267-6
https://repositorio.cuc.edu.co/
- Palabra clave:
- Infant milk
Powdered milk
Hazardous elements
Toxicity
Chemometrics
- Rights
- embargoedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_65c25318528d561bbc896dfd383f679a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9262 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
title |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
spellingShingle |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements Infant milk Powdered milk Hazardous elements Toxicity Chemometrics |
title_short |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
title_full |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
title_fullStr |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
title_full_unstemmed |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
title_sort |
A rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elements |
dc.creator.fl_str_mv |
Gredilla, Ainara Ortiz de Vallejuelo, Silvia Fdez Arana, Gorka de Diego, Alberto S. Oliveira, Marcos L. da Boit, Katia Madariaga, Juan Manuel O. Silva, Luis F. |
dc.contributor.author.spa.fl_str_mv |
Gredilla, Ainara Ortiz de Vallejuelo, Silvia Fdez Arana, Gorka de Diego, Alberto S. Oliveira, Marcos L. da Boit, Katia Madariaga, Juan Manuel O. Silva, Luis F. |
dc.subject.proposal.eng.fl_str_mv |
Infant milk Powdered milk Hazardous elements Toxicity Chemometrics |
topic |
Infant milk Powdered milk Hazardous elements Toxicity Chemometrics |
description |
The toxicity and the health risk assessment associated to the presence of some hazardous elements (HEs) in dried (infant formula and powdered) milks due to manufacturing and packaging process, raw materials used, environmental conditions, etc. need to be determined. With this aim, a new methodology based on the combination of health risk quotients and nonsupervised (as cluster analysis (CA) and principal component analysis (PCA)) chemometric techniques is proposed in this study. The methodology was exemplifed using the concentration of 27 elements, some of them HEs, measured in 12 powdered milk samples produced for children and adults in Brazil and Colombia. The concentration values were obtained by inductively coupled plasma-mass spectrometry (ICP-MS) after acid microwave digestion. Elemental concentrations vary depending upon the type of milk (initiation, growing-up, follow-on milks and adult milks). However, hazard quotients (HQ) and carcinogenic risk (CR) values showed no risk associated to the presence of HEs on milks. The methodology designed made possible to conclude that adults’ milks are more characteristic of elements naturally present in milk. Children milks present major presence of trace and minor elements. Between infant milks, sample H, designed for babies between 12 and 36 months, was identifed as of poor quality. Moreover, it was possible to deduce that while the fortifcation process applied to children powdered milks is a probable metal and metalloid source, together with the manufacturing, the skimming process is not a contamination source for milks. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-16T14:14:04Z |
dc.date.available.none.fl_str_mv |
2022-06-16T14:14:04Z 2023-04-12 |
dc.date.issued.none.fl_str_mv |
2022-04-12 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Gredilla, A., de Vallejuelo, S.FO., Arana, G. et al. A Rapid Routine Methodology Based on Chemometrics to Evaluate the Toxicity of Commercial Infant Milks Due to Hazardous Elements. Food Anal. Methods (2022). |
dc.identifier.issn.spa.fl_str_mv |
1936-9751 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9262 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/s12161-022-02267-6 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/s12161-022-02267-6 |
dc.identifier.eissn.spa.fl_str_mv |
1936-976X |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Gredilla, A., de Vallejuelo, S.FO., Arana, G. et al. A Rapid Routine Methodology Based on Chemometrics to Evaluate the Toxicity of Commercial Infant Milks Due to Hazardous Elements. Food Anal. Methods (2022). 1936-9751 10.1007/s12161-022-02267-6 1936-976X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9262 https://doi.org/10.1007/s12161-022-02267-6 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Food Analytical Methods |
dc.relation.references.spa.fl_str_mv |
Abdulkhaliq A, Swaileh KM, Hussein RM, Matani M (2012) Levels of metals (Cd, Pb, Cu and Fe) in cow milk dairy products and hen eggs from West Bank Palestine. Inter Food Res J 19:1089–1094 https://www.researchgate.net/publication/230669531 Ahmad I, Zaman A, Samad N, Ayaz MM, Rukh S, Akbar A, Ullah N (2017) Atomic absorption spectrophotometery detection of heavy metals in milk of camel, cattle, bufalo and goat from various areas of Khyber- Pakhtunkhwa (KPK). Pakistan. J Anal Bioanal Tech 8:1000367. https://doi.org/10.4172/2155-9872.1000367 ATSDR (2005) Public Health Assessment Guidance Manual (Update). U.S Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry Atlanta, Georgia, 357. CAC Codex Alimentarius Commission (2016) Codex Standard for infant formula and formulas for special medical purposes intended for infants. CODEX STAN 72–1981. CAC Codex Alimentarius Commission (2017) Codex Standard for follow-up formula. CODEX STAN 156-1987. Campillo N, Viñas P, López-García I, Hernández-Córdoba M (1998) Direct determination of copper and zinc in cow milk, human milk and infant formula samples using electrothermal atomization atomic absorption spectrometry. Talanta 46:615–622. https://doi. org/10.1016/S0039-9140(97)00306-8 Cancela S, Yebra MC (2006) Flow-injection fame atomic absorption spectrometric determination of trace amounts of cadmium in solid and semisolid milk products coupling a continuous ultrasound-assisted extraction system with the online preconcentration on a chelating aminomethylphosphoric acid resin. J Assoc Anal Chem 89:185–191 Cava-Montesinos PM, Ródenas-Torralba E, Morales-Rubio A, Luisa Cervera M, de la Guardia M (2004) Cold vapour atomic fuorescence determination of mercury in milk by slurry sampling using multi-commutation. Anal Chim Acta 5062:145–153. https://doi. org/10.1016/j.aca.2003.11.023 Cruz GC, Din Z, Feri CD (2009) Analysis of toxic heavy metals (arsenic, lead, and mercury) in selected infant formula milk commercially available in the Philippines by AAS. Int Sci Res J 1:40– 51. https://www.yumpu.com/s/P7XaznO2nxBX4Ptc Enb A, Donia MAA, Abd-Rabou NS, Abou-Arab AAK, El-Senaity MH (2009) Chemical composition of raw milk and heavy metals behaviour during processing of milk products. Glob Vet 3:268– 275. http://www.idosi.org/gv/gv3(3)09/13.pdf Farid S, Baloch MK (2012) Heavy metal ions in milk samples collected from animals feed with city efuent irrigated fodder. Greener J Phys Sci 2:36–43. https://api.semanticscholar.org/CorpusID: 38019121 Fernández-Menéndez S, Fernández-Sánchez ML, Fernández-Colomer B, de la Flor St Remy RR, Cotallo G, Soares Freire A, Ferreira Braz B, Erthal Santelli R, Sanz-Medel A (2016) Total zinc quantifcation by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography–inductively coupled plasma-mass spectrometry in human milk and commercial formulas: importance in infant nutrition. J. Chromatogr A 1428:246–254. https://doi.org/ 10.1016/j.chroma.2015.09.021 Fernández-Sánchez ML, de la Flor St Remy RR, González Iglesias H, López-Sastre JB, Sanz-Medel A (2012) Iron content and its speciation in human milk from mothers of preterm and full-term infants at early stages of lactation: a comparison with commercial infant milk formulas. Microchem J 105:108–114. https://doi.org/10.1016/j. microc.2012.03.016 Franco-Uría A, López-Mateo C, Roca E, Fernández-Marcos ML (2009) Source identifcation of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165(1-3):1008–1015. https:// doi.org/10.1016/j.jhazmat.2008.10.118 Gardener H, Bowen J, Callan SP (2019) Lead and cadmium contamination in a large sample of United States infant formulas and baby foods. Sci Total Environ 651:822–827. https://doi.org/10.1016/j. scitotenv.2018.09.026 Girma K, Tilahun Z, Haimanot D (2014) Review on milk safety with emphasis on its public health world. J Dairy Food Sci 9:166–183. https://doi.org/10.5829/idosi.wjdfs.2014.9.2.85184 Gredilla A, Fdez-Ortiz de Vallejuelo S, de Diego A, Arana G, Madariaga JM (2014) A new index to sort estuarine sediments according to the contaminant content. Ecol Ind 45:364–370. https://doi.org/10. 1016/j.ecolind.2014.04.038 Hozyasz KK, Ruszczynska A (2004) High manganese levels in milkbased infant formulas. NeuroToxicology 25:733. https://doi.org/10. 1016/j.neuro.2004.03.008 Kazi TG, Jalbani N, Baig JA, Afridi HI, Sha AQ (2009) Determination of toxic elements in infant formulae by using electrothermal atomic absorption spectrometer. Food Chem Toxicol 47:1425–1429. https:// doi.org/10.1016/j.fct.2009.03.025 Khan MA (2008) Nutritional adequacy of commercial infant milk formulas. Ecol Food Nutr 47:188–204. https://doi.org/10.1080/03670 240701781846 Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, Choi JY, Park KS, Kim KS (2014) Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem 147:220–224. https://doi.org/10.1016/j.foodc hem.2013.09.147 Koh TS, Judson GT (1986) Trace elements in sheep grazing near a leadzinc smelting complex at Port Pirie South Australia. B Environ Contam Tox 37:87–95. https://doi.org/10.1007/BF01607734 Kondyli E, Katsiari MC, Voutsinas LP (2007) Variations of vitamin and mineral contents in raw goat milk of the indigenous Greek breed during lactation. Food Chem 100:226–230. https://doi.org/10.1016/j. foodchem.2005.09.038 Krachler M, Prohaska T, Koellensperger G, Rossipal E, Stingeder G (2000) Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector feld inductively coupled plasma-mass spectrometry. Biol. Trace Elem Res 76:97–112. https://doi.org/10.1385/BTER:76:2:97 Landigran PJ, Sonawane BD, Mattison D, McCally M, Gargl A (2002) Chemical contaminants in breast milk and their impacts on children’s health: an overview. Environ Health Perspect 110:A313– A315. https://doi.org/10.1289/ehp.021100313 Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E (2005) Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere 61: 238–247. 0.1016/j.chemosphere.2005.01.084. Lima de Paiva E, Milani RF, Morgano MA, Pavesi Arisseto-Bragotto A (2019) Aluminum in infant formulas commercialized in Brazil: occurrence and exposure assessment. J Food Compos Anal 82:1–6. https://doi.org/10.1016/j.jfca.2019.06.002 López-García I, Viñas P, Romero-Romero R, Hernández-Córdoba M (2007) Liquid chromatography–electrothermal atomic absorption spectrometry for the separation and preconcentration of molybdenum in milk and infant formulas. Anal Chim Acta 597:187–194. https://doi.org/10.1016/j.aca.2007.07.003 Luo XS, Ding J, Xu B, Wang YJ, Li HB, Yu S (2012) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 1:88–96. https://doi.org/10. 1016/j.scitotenv.2012.02.053 Lutfullah G, Khan AA, Amjad AY, Perveen S (2014) Comparative study of heavy metals in dried and fuid milk in Peshawar by atomic absorption spectrophotometry. Sci World J 2014:1–5. https://doi. org/10.1155/2014/715845 Martínez MA, Castro I, Rovira J, Ares S, Nadal M (2019) Early-life intake of major trace elements, bisphenol A, tetrabromobisphenol A and fatty acids: comparing human milk and commercial infant formulas. Environ Res 169:246–255. https://doi.org/10.1016/j.envres.2018.11. 017 Mertz W (1986) Trace elements in human and animal nutrition, 5th ed., Academic Press, New York. Muhib MI, Chowdhury MAZ, Easha NJ, Rahman MM, Shammi M, Fardous Z, Bari ML, Uddin KH, Kurasaki M, Alam MK (2016) Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Int J Food Cont 3:1–10. https://doi.org/ 10.1186/s40550-016-0039-1 Muñoz E, Palmero S (2004) Determination of heavy metals in milk by potentiometric stripping analysis using a home-made fow cell. Food Control 158:635–641. https://doi.org/10.1016/j.foodcont.2003.10. 006 Pereira JSF, Pereira LSF, Schmidt L, Moreira CM, Flores EMM (2013) Metals determination in milk powder samples for adult and infant nutrition after focused-microwave induced combustion. Microchem J 109:29–35. https://doi.org/10.1016/j.microc.2012.05.010 Pilarczyk R, Wójcik J, Czerniak P, Sablik P, Pilarczyk B, Toma-Marciniak A (2013) Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environ Monit Assess 185:8383–8392. https://doi.org/ 10.1007/s10661-013-3180-9 Rao AN (2005) Trace element estimation: methods and clinical context. Online J Health Allied Sci 4:1–9. http://www.ojhas.org/issue13/ 2005-1-1.htm Rebelo FM, Dutra Caldas E (2016) Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res 151:671–688. https://doi.org/10.1016/j.envres.2016.08.027 Sager M, McCulloch CR, Schoder D (2018) Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: international branded versus black market products. Food Chem 255:365–371. https://doi.org/10.1016/j.foodc hem.2018.02.058 Saracoglu S, Saygi KO, Uluozlu OD, Tuzen M, Soylak M (2007) Determination of trace element contents of baby foods from Turkey. Food Chem 105:280–285. https://doi.org/10.1016/j.foodchem.2006.11.022 U.S.EPA Unites States Environmental Protection Agency (2011) Exposure factors handbook: National Centre for Environmental Assessment. http://www.epa.gov/ncea/efh. U.S.EPA, Unites States Environmental Protection Agency 2010. Risk Based Concentration Table. http://www.epa.gov/reg3hwmd/risk/ human/index.htm. Zeng F, Wei W, Li M, Huang R, Yang F, Duan Y (2015) Heavy metal contamination in rice-producing soils of Hunan Province, China and Potential Health Risks. Int J Environ Res 12:15584–15593. https:// doi.org/10.3390/ijerph121215005 Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China. Sci Total Environ 387:96–104. https:// doi.org/10.1016/j.scitotenv.2007.07.044 |
dc.relation.citationendpage.spa.fl_str_mv |
12 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 Copyright - All Rights Reserved |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 Copyright - All Rights Reserved https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
United States |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s12161-022-02267-6#article-info |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/54526982-872e-4eab-a2dd-e2cfbad4f601/download https://repositorio.cuc.edu.co/bitstreams/d671021b-0f15-430f-b804-954f076bc787/download https://repositorio.cuc.edu.co/bitstreams/74a97957-63a2-4bdf-be66-73101fc6b955/download https://repositorio.cuc.edu.co/bitstreams/d15af9b7-244b-4eb7-99cc-522d87d1fb6d/download |
bitstream.checksum.fl_str_mv |
beb9d28a6e401fd2d85d3ae11ee6b41f e30e9215131d99561d40d6b0abbe9bad 8afe1d6cd6403b188282d4053222444b cf7d39d0e11568e809c22621b59ae004 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760762196066304 |
spelling |
Gredilla, AinaraOrtiz de Vallejuelo, Silvia FdezArana, Gorkade Diego, AlbertoS. Oliveira, Marcos L.da Boit, KatiaMadariaga, Juan ManuelO. Silva, Luis F.2022-06-16T14:14:04Z2023-04-122022-06-16T14:14:04Z2022-04-12Gredilla, A., de Vallejuelo, S.FO., Arana, G. et al. A Rapid Routine Methodology Based on Chemometrics to Evaluate the Toxicity of Commercial Infant Milks Due to Hazardous Elements. Food Anal. Methods (2022).1936-9751https://hdl.handle.net/11323/9262https://doi.org/10.1007/s12161-022-02267-610.1007/s12161-022-02267-61936-976XCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The toxicity and the health risk assessment associated to the presence of some hazardous elements (HEs) in dried (infant formula and powdered) milks due to manufacturing and packaging process, raw materials used, environmental conditions, etc. need to be determined. With this aim, a new methodology based on the combination of health risk quotients and nonsupervised (as cluster analysis (CA) and principal component analysis (PCA)) chemometric techniques is proposed in this study. The methodology was exemplifed using the concentration of 27 elements, some of them HEs, measured in 12 powdered milk samples produced for children and adults in Brazil and Colombia. The concentration values were obtained by inductively coupled plasma-mass spectrometry (ICP-MS) after acid microwave digestion. Elemental concentrations vary depending upon the type of milk (initiation, growing-up, follow-on milks and adult milks). However, hazard quotients (HQ) and carcinogenic risk (CR) values showed no risk associated to the presence of HEs on milks. The methodology designed made possible to conclude that adults’ milks are more characteristic of elements naturally present in milk. Children milks present major presence of trace and minor elements. Between infant milks, sample H, designed for babies between 12 and 36 months, was identifed as of poor quality. Moreover, it was possible to deduce that while the fortifcation process applied to children powdered milks is a probable metal and metalloid source, together with the manufacturing, the skimming process is not a contamination source for milks.Springer New York12 páginasapplication/pdfengAtribución 4.0 Internacional (CC BY 4.0)© 2022 Copyright - All Rights Reservedhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfA rapid routine methodology based on chemometrics to evaluate the toxicity of commercial infant milks due to hazardous elementsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://link.springer.com/article/10.1007/s12161-022-02267-6#article-infoUnited StatesFood Analytical MethodsAbdulkhaliq A, Swaileh KM, Hussein RM, Matani M (2012) Levels of metals (Cd, Pb, Cu and Fe) in cow milk dairy products and hen eggs from West Bank Palestine. Inter Food Res J 19:1089–1094 https://www.researchgate.net/publication/230669531Ahmad I, Zaman A, Samad N, Ayaz MM, Rukh S, Akbar A, Ullah N (2017) Atomic absorption spectrophotometery detection of heavy metals in milk of camel, cattle, bufalo and goat from various areas of Khyber- Pakhtunkhwa (KPK). Pakistan. J Anal Bioanal Tech 8:1000367. https://doi.org/10.4172/2155-9872.1000367ATSDR (2005) Public Health Assessment Guidance Manual (Update). U.S Department of Health and Human Services Public Health Service Agency for Toxic Substances and Disease Registry Atlanta, Georgia, 357.CAC Codex Alimentarius Commission (2016) Codex Standard for infant formula and formulas for special medical purposes intended for infants. CODEX STAN 72–1981.CAC Codex Alimentarius Commission (2017) Codex Standard for follow-up formula. CODEX STAN 156-1987.Campillo N, Viñas P, López-García I, Hernández-Córdoba M (1998)Direct determination of copper and zinc in cow milk, human milk and infant formula samples using electrothermal atomization atomic absorption spectrometry. Talanta 46:615–622. https://doi. org/10.1016/S0039-9140(97)00306-8Cancela S, Yebra MC (2006) Flow-injection fame atomic absorption spectrometric determination of trace amounts of cadmium in solid and semisolid milk products coupling a continuous ultrasound-assisted extraction system with the online preconcentration on a chelating aminomethylphosphoric acid resin. J Assoc Anal Chem 89:185–191Cava-Montesinos PM, Ródenas-Torralba E, Morales-Rubio A, Luisa Cervera M, de la Guardia M (2004) Cold vapour atomic fuorescence determination of mercury in milk by slurry sampling using multi-commutation. Anal Chim Acta 5062:145–153. https://doi. org/10.1016/j.aca.2003.11.023Cruz GC, Din Z, Feri CD (2009) Analysis of toxic heavy metals (arsenic, lead, and mercury) in selected infant formula milk commercially available in the Philippines by AAS. Int Sci Res J 1:40– 51. https://www.yumpu.com/s/P7XaznO2nxBX4PtcEnb A, Donia MAA, Abd-Rabou NS, Abou-Arab AAK, El-Senaity MH (2009) Chemical composition of raw milk and heavy metals behaviour during processing of milk products. Glob Vet 3:268– 275. http://www.idosi.org/gv/gv3(3)09/13.pdfFarid S, Baloch MK (2012) Heavy metal ions in milk samples collected from animals feed with city efuent irrigated fodder. Greener J Phys Sci 2:36–43. https://api.semanticscholar.org/CorpusID: 38019121Fernández-Menéndez S, Fernández-Sánchez ML, Fernández-Colomer B, de la Flor St Remy RR, Cotallo G, Soares Freire A, Ferreira Braz B, Erthal Santelli R, Sanz-Medel A (2016) Total zinc quantifcation by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography–inductively coupled plasma-mass spectrometry in human milk and commercial formulas: importance in infant nutrition. J. Chromatogr A 1428:246–254. https://doi.org/ 10.1016/j.chroma.2015.09.021Fernández-Sánchez ML, de la Flor St Remy RR, González Iglesias H, López-Sastre JB, Sanz-Medel A (2012) Iron content and its speciation in human milk from mothers of preterm and full-term infants at early stages of lactation: a comparison with commercial infant milk formulas. Microchem J 105:108–114. https://doi.org/10.1016/j. microc.2012.03.016Franco-Uría A, López-Mateo C, Roca E, Fernández-Marcos ML (2009) Source identifcation of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165(1-3):1008–1015. https:// doi.org/10.1016/j.jhazmat.2008.10.118Gardener H, Bowen J, Callan SP (2019) Lead and cadmium contamination in a large sample of United States infant formulas and baby foods. Sci Total Environ 651:822–827. https://doi.org/10.1016/j. scitotenv.2018.09.026Girma K, Tilahun Z, Haimanot D (2014) Review on milk safety with emphasis on its public health world. J Dairy Food Sci 9:166–183. https://doi.org/10.5829/idosi.wjdfs.2014.9.2.85184Gredilla A, Fdez-Ortiz de Vallejuelo S, de Diego A, Arana G, Madariaga JM (2014) A new index to sort estuarine sediments according to the contaminant content. Ecol Ind 45:364–370. https://doi.org/10. 1016/j.ecolind.2014.04.038Hozyasz KK, Ruszczynska A (2004) High manganese levels in milkbased infant formulas. NeuroToxicology 25:733. https://doi.org/10. 1016/j.neuro.2004.03.008Kazi TG, Jalbani N, Baig JA, Afridi HI, Sha AQ (2009) Determination of toxic elements in infant formulae by using electrothermal atomic absorption spectrometer. Food Chem Toxicol 47:1425–1429. https:// doi.org/10.1016/j.fct.2009.03.025Khan MA (2008) Nutritional adequacy of commercial infant milk formulas. Ecol Food Nutr 47:188–204. https://doi.org/10.1080/03670 240701781846Khan N, Jeong IS, Hwang IM, Kim JS, Choi SH, Nho EY, Choi JY, Park KS, Kim KS (2014) Analysis of minor and trace elements in milk and yogurts by inductively coupled plasma-mass spectrometry (ICP-MS). Food Chem 147:220–224. https://doi.org/10.1016/j.foodc hem.2013.09.147Koh TS, Judson GT (1986) Trace elements in sheep grazing near a leadzinc smelting complex at Port Pirie South Australia. B Environ Contam Tox 37:87–95. https://doi.org/10.1007/BF01607734Kondyli E, Katsiari MC, Voutsinas LP (2007) Variations of vitamin and mineral contents in raw goat milk of the indigenous Greek breed during lactation. Food Chem 100:226–230. https://doi.org/10.1016/j. foodchem.2005.09.038Krachler M, Prohaska T, Koellensperger G, Rossipal E, Stingeder G (2000) Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector feld inductively coupled plasma-mass spectrometry. Biol. Trace Elem Res 76:97–112. https://doi.org/10.1385/BTER:76:2:97Landigran PJ, Sonawane BD, Mattison D, McCally M, Gargl A (2002) Chemical contaminants in breast milk and their impacts on children’s health: an overview. Environ Health Perspect 110:A313– A315. https://doi.org/10.1289/ehp.021100313Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E (2005) Toxic and essential trace elements in human milk from Greek lactating women: association with dietary habits and other factors. Chemosphere 61: 238–247. 0.1016/j.chemosphere.2005.01.084.Lima de Paiva E, Milani RF, Morgano MA, Pavesi Arisseto-Bragotto A (2019) Aluminum in infant formulas commercialized in Brazil: occurrence and exposure assessment. J Food Compos Anal 82:1–6. https://doi.org/10.1016/j.jfca.2019.06.002López-García I, Viñas P, Romero-Romero R, Hernández-Córdoba M (2007) Liquid chromatography–electrothermal atomic absorption spectrometry for the separation and preconcentration of molybdenum in milk and infant formulas. Anal Chim Acta 597:187–194. https://doi.org/10.1016/j.aca.2007.07.003Luo XS, Ding J, Xu B, Wang YJ, Li HB, Yu S (2012) Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Sci Total Environ 1:88–96. https://doi.org/10. 1016/j.scitotenv.2012.02.053Lutfullah G, Khan AA, Amjad AY, Perveen S (2014) Comparative study of heavy metals in dried and fuid milk in Peshawar by atomic absorption spectrophotometry. Sci World J 2014:1–5. https://doi. org/10.1155/2014/715845Martínez MA, Castro I, Rovira J, Ares S, Nadal M (2019) Early-life intake of major trace elements, bisphenol A, tetrabromobisphenol A and fatty acids: comparing human milk and commercial infant formulas. Environ Res 169:246–255. https://doi.org/10.1016/j.envres.2018.11. 017Mertz W (1986) Trace elements in human and animal nutrition, 5th ed., Academic Press, New York. Muhib MI, Chowdhury MAZ, Easha NJ, Rahman MM, Shammi M, Fardous Z, Bari ML, Uddin KH, Kurasaki M, Alam MK (2016) Investigation of heavy metal contents in cow milk samples from area of Dhaka, Bangladesh. Int J Food Cont 3:1–10. https://doi.org/ 10.1186/s40550-016-0039-1Muñoz E, Palmero S (2004) Determination of heavy metals in milk by potentiometric stripping analysis using a home-made fow cell. Food Control 158:635–641. https://doi.org/10.1016/j.foodcont.2003.10. 006Pereira JSF, Pereira LSF, Schmidt L, Moreira CM, Flores EMM (2013) Metals determination in milk powder samples for adult and infant nutrition after focused-microwave induced combustion. Microchem J 109:29–35. https://doi.org/10.1016/j.microc.2012.05.010Pilarczyk R, Wójcik J, Czerniak P, Sablik P, Pilarczyk B, Toma-Marciniak A (2013) Concentrations of toxic heavy metals and trace elements in raw milk of Simmental and Holstein-Friesian cows from organic farm. Environ Monit Assess 185:8383–8392. https://doi.org/ 10.1007/s10661-013-3180-9Rao AN (2005) Trace element estimation: methods and clinical context. Online J Health Allied Sci 4:1–9. http://www.ojhas.org/issue13/ 2005-1-1.htmRebelo FM, Dutra Caldas E (2016) Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ Res 151:671–688. https://doi.org/10.1016/j.envres.2016.08.027Sager M, McCulloch CR, Schoder D (2018) Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: international branded versus black market products. Food Chem 255:365–371. https://doi.org/10.1016/j.foodc hem.2018.02.058Saracoglu S, Saygi KO, Uluozlu OD, Tuzen M, Soylak M (2007) Determination of trace element contents of baby foods from Turkey. Food Chem 105:280–285. https://doi.org/10.1016/j.foodchem.2006.11.022U.S.EPA Unites States Environmental Protection Agency (2011) Exposure factors handbook: National Centre for Environmental Assessment. http://www.epa.gov/ncea/efh.U.S.EPA, Unites States Environmental Protection Agency 2010. Risk Based Concentration Table. http://www.epa.gov/reg3hwmd/risk/ human/index.htm.Zeng F, Wei W, Li M, Huang R, Yang F, Duan Y (2015) Heavy metal contamination in rice-producing soils of Hunan Province, China and Potential Health Risks. Int J Environ Res 12:15584–15593. https:// doi.org/10.3390/ijerph121215005Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao City, China. Sci Total Environ 387:96–104. https:// doi.org/10.1016/j.scitotenv.2007.07.044121Infant milkPowdered milkHazardous elementsToxicityChemometricsPublicationORIGINALGredilla2022_Article_ARapidRoutineMethodologyBasedO.pdfGredilla2022_Article_ARapidRoutineMethodologyBasedO.pdfapplication/pdf1338402https://repositorio.cuc.edu.co/bitstreams/54526982-872e-4eab-a2dd-e2cfbad4f601/downloadbeb9d28a6e401fd2d85d3ae11ee6b41fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d671021b-0f15-430f-b804-954f076bc787/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTGredilla2022_Article_ARapidRoutineMethodologyBasedO.pdf.txtGredilla2022_Article_ARapidRoutineMethodologyBasedO.pdf.txttext/plain43070https://repositorio.cuc.edu.co/bitstreams/74a97957-63a2-4bdf-be66-73101fc6b955/download8afe1d6cd6403b188282d4053222444bMD53THUMBNAILGredilla2022_Article_ARapidRoutineMethodologyBasedO.pdf.jpgGredilla2022_Article_ARapidRoutineMethodologyBasedO.pdf.jpgimage/jpeg14619https://repositorio.cuc.edu.co/bitstreams/d15af9b7-244b-4eb7-99cc-522d87d1fb6d/downloadcf7d39d0e11568e809c22621b59ae004MD5411323/9262oai:repositorio.cuc.edu.co:11323/92622024-09-17 11:02:05.753https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |