Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids
Nowadays, microgrids (MGs) play a crucial role in modern power systems due to possibility of integrating renewable energies into grid-connected or islanded power systems. The Load Frequency Control (LFC) is an issue of paramount importance to ensure MGs reliable and safe operation. Specifically, in...
- Autores:
-
Peña Pupo, Leonardo
Martinez-Garcia, Herminio
Garcia-Vilchez, Encarnacion
Fariñas Wong, Ernesto Yoel
Núñez-Álvarez, José R.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8967
- Acceso en línea:
- https://hdl.handle.net/11323/8967
https://doi.org/10.3390/en14238059
https://repositorio.cuc.edu.co/
- Palabra clave:
- Microgrids (MGs)
Energy efficiency
Run-of-river hydroelectricity
Micro-hydropower
Autonomous micro-hydropower operation
Frequency control
Dump-load control
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_650d88b69f60ca87220aa4e6bfae298d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8967 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
title |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
spellingShingle |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids Microgrids (MGs) Energy efficiency Run-of-river hydroelectricity Micro-hydropower Autonomous micro-hydropower operation Frequency control Dump-load control |
title_short |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
title_full |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
title_fullStr |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
title_full_unstemmed |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
title_sort |
Combined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids |
dc.creator.fl_str_mv |
Peña Pupo, Leonardo Martinez-Garcia, Herminio Garcia-Vilchez, Encarnacion Fariñas Wong, Ernesto Yoel Núñez-Álvarez, José R. |
dc.contributor.author.spa.fl_str_mv |
Peña Pupo, Leonardo Martinez-Garcia, Herminio Garcia-Vilchez, Encarnacion Fariñas Wong, Ernesto Yoel Núñez-Álvarez, José R. |
dc.subject.spa.fl_str_mv |
Microgrids (MGs) Energy efficiency Run-of-river hydroelectricity Micro-hydropower Autonomous micro-hydropower operation Frequency control Dump-load control |
topic |
Microgrids (MGs) Energy efficiency Run-of-river hydroelectricity Micro-hydropower Autonomous micro-hydropower operation Frequency control Dump-load control |
description |
Nowadays, microgrids (MGs) play a crucial role in modern power systems due to possibility of integrating renewable energies into grid-connected or islanded power systems. The Load Frequency Control (LFC) is an issue of paramount importance to ensure MGs reliable and safe operation. Specifically, in AC MGs, primary frequency control of each energy source can be guaranteed in order to integrate other energy sources. This paper proposes a micro-hydro frequency control scheme, combining the control of a reduced dump load and the nozzle flow control of Pelton turbines operating in autonomous regime. Some works have reported the integration of dump load and flow control methods, but they did not reduce the dump load value and adjust the nozzle flow linearly to the power value demanded by users, causing the inefficient use of water. Simulation results were obtained in Matlab®/Simulink® using models obtained from previous research and proven by means of experimental studies. The simulation of the proposed scheme shows that the frequency control in this plant is done in correspondence with the Cuban NC62-04 norm of power energy quality. In addition, it is possible to increase energy efficiency by reducing the value of the resistive dump load by up to 7.5% in a case study. The validation result shows a 60% reduction of overshoot and settling time of frequency temporal behavior of the autonomous micro-hydro. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-02 |
dc.date.accessioned.none.fl_str_mv |
2022-01-11T21:15:24Z |
dc.date.available.none.fl_str_mv |
2022-01-11T21:15:24Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1996-1073 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8967 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/en14238059 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1996-1073 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8967 https://doi.org/10.3390/en14238059 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [CrossRef] 2. IRENA. Off-Grid Renewable Energy Solutions to Expand Electricity Access: An Opportunity Not to Be Missed; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2019. 3. Borowski, P.F.; Patuk, I. Environmental, social and economic factors in sustainable development with food, energy and eco-space aspect security. Present Environ. Sustain. Dev. 2021, 15, 153–169. [CrossRef] 4. Ardizzon, G.; Cavazzini, G.; Pavesi, G. A new generation of small hydro and pumped-hydro power plants: Advances and future challenges. Renew. Sustain. Energy Rev. 2014, 31, 746–761. [CrossRef] 5. Ashfaq, H.; Saood, M.; Singh, R. Autonomous micro-hydro power system for distributed generation: A power quality analysis. Int. J. Curr. Eng. Sci. Res. 2015, 2, 2394. [CrossRef] 6. Peña, P.L.; Dominguez, A.H.; Fong, B.J.; Garcia-Alzórris, P.J.A. Regulación de frecuencia en una Minihidrolectrica por carga lastre mediante un pc Embebido. In Proceedings of the 9th Spanish Potuguese Congress on Electrical Engineering (9CHLIE), Marbella, España, 30 June–2 July 2005; pp. 151–152. 7. Bory, P.H.; Vázquez, S.L.; Martínez-García, H.; Majanne, Y. Symmetrical Angle Switched Single-Phase and Three-Phase Rectifiers: Application to Micro Hydro Power Plants. IFAC Pap. Online 2019, 54, 216–221. [CrossRef] 8. Fernández-Guillamón, A.; Sarasúa, J.I.; Chazarra, M.; Vigueras-Rodríguez, A.; Fernández-Muñoz, D.; Molina-García, Á. Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. Electr. Power Energy Syst. 2020, 121, 106024. [CrossRef] 9. Salehi, N.; Martínez-García, H.; Velasco-Quesada, G.; García-Vílchez, E. Inverter Control Analysis in a Microgrid Community Based on Droop Control Strategy. In Proceedings of the 19th International Conference on Renewable Energies and Power Quality: ICREPQ’21, Almeria, Spain, 28–30 July 2021. 10. Guo, W.; Yang, J.; Yang, W.; Chen, J.; Teng, Y. Regulation quality for frequency response of turbine regulating system of isolated hydroelectric power plant with surge tank. Electr. Power Energy Syst. 2015, 73, 528–538. [CrossRef] 11. Kumar, V.S.; Singal, S.K. Operation of hydro power plants-a review. Renew. Sustain. Energy Rev. 2017, 69, 610–619. 12. Singh, R.R.; Kumar, B.A.; Shruthi, D.; Panda, R.; Raj, T.C. Review and experimental illustrations of electronic load controller used in standalone Micro-Hydro generating plants. Eng. Sci. Technol. Int. J. 2018, 21, 886–890. [CrossRef] 13. Pérez, F.D. Una serie de turbinas Pelton para mini y microhidroeléctricas. Ing. Hidráulica 1983, IV, 85–97. 14. Castillo, G.; Ortega, L.; Pozo, M.; Domínguez, X. Control of an island Micro-hydropower Plant with Self-excited AVR and combined ballast load frequency regulator. In Proceedings of the 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 12–14 October 2016. 15. Doolla, S.; Bhatti, T.S. Load Frequency Control of an Isolated Small-Hydro Power Plant With Reduced dump Load. IEEE Trans. Power Syst. 2006, 21, 1912–1919. [CrossRef] 16. NC62-04. Sistema Electroenergético Nacional. Frecuencia Nominal y Sus Desviaciones Permisibles; Oficina Nacional de Normalización: Havana, Cuba, 1981; p. 3. Available online: http://www.nc.cubaindustria.cu (accessed on 3 July 2019). 17. Goyal, H.; Bhatti, T.S.; Kothari, D.P. A novel technique proposed for automatic control of small Hydro-power plants. Int. J. Glob. Energy Issues 2005, 24, 29–46. [CrossRef] 18. Peña, P.L.; Fariñas, W.E.; Cordova, J.L.; Delgado, T.Y. Quality of energy, energy access and Law within the Cuban hydropower context. Glob. Jurist 2020, 2020. [CrossRef] 19. Oliveira, E.J.; Honório, L.M.; Anzai, A.H.; Oliveira, L.W.; Costa, E.B. Optimal transient droop compensator and PID tuning for load frequency control in hydro power systems. Electr. Power Energy Syst. 2015, 68, 345–355. [CrossRef] 20. Pappachen, A.; Fathima, A.P. Critical research areas on load frequency control issues in a deregulated power system: A state-ofthe-art-of-review. Renew. Sustain. Energy Rev. 2017, 72, 163–177. [CrossRef] 21. Shankar, R.; Pradhan, S.R.; Chatterjee, K.; Mandal, R. A comprehensive state of the art literature survey on LFC mechanism for power system. Renew. Sustain. Energy Rev. 2017, 76, 1185–1207. [CrossRef] 22. Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.A.; Román-Wilhelmi, J. Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation. Renew. Energy 2015, 83, 245–255. [CrossRef] 23. Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.Á. Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System. Energies 2018, 11, 239. [CrossRef] 24. Guzmán, J.L.; Moreno, J.C.; Berenguel, M.; Moscoso, J. Inverse pole placement method for PI control in the tracking problem. In Proceedings of the 3rd IFAC Conference in Proporcional Integral Derivative Control, Ghent, Belgium, 9–11 May 2018; pp. 406–411. 25. Himr, V.; Habán, V.; Štefan, D. Inner Damping of Water in Conduit of Hydraulic Power Plant. Sustainability 2021, 13, 7125. [CrossRef] 26. Souza, Z.d.; Moreira, S.A.H.; da Costa, B.E. Centrais Hidreléctricas: Implantação e Comissionamento, 3rd ed.; Editora Interciencia Ltd.: Rio de Janeiro, Brazil, 2018; p. 522. 27. Peña, P.L.; Fariñas, W.E. World Small Hydropower Development Report 2022 (WSHPDR2022): Cuba Chapter; United Nations Industrial Development Organization (UNIDO) and International Center on Small Hydro Power (ICSHP): Havana, Cuba, 2022; in press. 28. Khodadoost, A.A.A.; Karami, H.; Gharehpetian, G.B.; Hejazi, M.S.A. Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids. Renew. Sustain. Energy Rev. 2017, 69, 9–18. 29. Dreidy, M.; Mokhlis, H.; Mekhilef, S. Inertia response and frequency control techniques for renewable energy sources: A review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [CrossRef] 30. Dolla, S.a.T.S.B.; Bhatti, T.S.; Bansal, R.C. Load frequency control of an isolated small hydro power plant using multi-pipe scheme. Electr. Power Compon. Syst. 2011, 39, 46–63. [CrossRef] 31. Mohanrajan, S.R.; Vijayakumari, A.; Kottayil, S.K. Power Balancing in Autonomous Micro Grid with Variable Speed Pump. In Proceedings of the IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017), Chennai, India, 21–22 September 2017. 32. Gil-González, W.; Montoya, O.D.; Garces, A. Modeling and control of a small hydro-power plant for a DC microgrid. Electr. Power Syst. Res. 2020, 180, 106104. [CrossRef] 33. Guo, B.; Bacha, S.; Alamir, M.; Imanein, H. An anti-disturbance ADRC based MPTT for variable speed micro-hydropower station. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 1783–1789. 34. Ali, W.; Farooq, H.; Rehman, A.u.; Farrag, M.E. Modeling and performance analysis of micro-hydro generation controls considering power system stability. In Proceedings of the 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 15–16 November 2017; pp. 1–7. 35. Kundur, P. Power System Stability and Control; The EPRI Power System Engineering Series; McGraw-Hill Inc.: New York, NY, USA, 1994. 36. Singh, R.; Raja, T.R.; Chelliah, P.A. Power electronics in hydro electric energy systems—A review. Renewable and Sustainable Energy Reviews 2014, 32, 16. [CrossRef] 37. Bory, P.H.; Martínez, G.H.; Vázquez, S.L. Comparison of Single-Phase Rectifier with Symmetrical Switching and AC-AC Converter for the Power Factor Improvement in Hydroelectric Micro-Plants. Rev. Iberoam. Auto. Inf. Ind. 2019, 16, 79–88. [CrossRef] 38. Doolla, S.; Bhatti, T.S. Automatic Frequency Control of an Isolated Small Hydro Power Plant. Int. Energy J. 2006, 7, 17–26. 39. Yadav, R.K.; Mathew, L. Load Frequency control of an Isolated Small Hydro Power Plant with Reduction in Dump Load Rating By Using Variable Structure Control. Int. J. Eng. Sci. Invent. 2014, 3, 8–15. 40. Kurtz, V.H.; Anocibar, H.R. Sistema mixto para el control de la generación en micro centrales hidroeléctricas. Hidrored 2007, 2007, 24–30. 41. Fong, B.J.; Domínguez, A.H.; Abreu, B.A.; Barrueco, D.M.E. Design of a regulator of frequency for small central hydroelectric in isolated operation. J. Eng. Technol. Ind. Appl. 2018, 13, 140–148. 42. Borowski, P.F. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 2021, 14, 1885. [CrossRef] 43. Yang, W.; Yang, J.; Guo, W.; Zeng, W.; Wang, C.; Saarinen, L.; Norrlund, P. A Mathematical Model and Its Application for Hydro Power Units under Different Operating Conditions. Energies 2015, 2015, 10260–10275. [CrossRef] 44. Stephanopaulos, G. Chemical Process Control. An Introduction to Theory and Practice; Prentice Hall Inc.: Hoboken, NJ, USA, 1984; 696p. 45. Salhi, I.; Doubabi, S.; Essounbouli, N.; Hamzaoui, A. Application of multi-model control with fuzzy switching to a micro hydro-electrical power plant. Int. J. Renew. Energy 2010, 35, 2071–2079. [CrossRef] 46. Ogata, K. Modern Control Engineering, 5th ed.; Prentice-Hall Inc.: Hoboken, NJ, USA, 2009; p. 145. 47. ESHA. Guía Para el Desarrollo de Una Pequeña Central Hidroeléctrica; ESHA, Ed.; European Small Hydropower Association (ESHA): Brussels, Belgium, 2006; p. 310. Available online: http://www.esha.be (accessed on 1 December 2021). 48. HRC. Small Hydropower. A Textbook Specially Designed for Trining Workshops in TCDC Program, 1st ed.; Hydropower, H.R.A.-P.C.f.S., Ed.; Zhejiang University Press: Hangzhou, China, 2006; p. 286. 49. Peña, P.L.; Fariñas, W.E. Mejoras en la eficiencia energética de las mini-hidroeléctricas aisladas mediante la regulación combinada flujo-carga lastre. Rev. Energética 2020, 41, 1C. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Energies |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/1996-1073/14/23/8059 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e69c1d8e-2cec-4adc-ace9-3ceb83154bd0/download https://repositorio.cuc.edu.co/bitstreams/8fad19f0-c02b-42e2-b3d5-ec3f1a20661d/download https://repositorio.cuc.edu.co/bitstreams/c4f4d8ee-e764-42a4-bfab-74a86de1c05c/download https://repositorio.cuc.edu.co/bitstreams/d7430558-9ec0-4261-9a8f-f17a52d304eb/download https://repositorio.cuc.edu.co/bitstreams/b8249de6-d619-4ac4-a143-212af9db98b9/download |
bitstream.checksum.fl_str_mv |
bac964f9334864d5205d573b957714b7 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 8897dc36627d21577d60802a89b81d3c fe6e00a93f7480cc4420d0d6f7dd39fb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760710526435328 |
spelling |
Peña Pupo, LeonardoMartinez-Garcia, HerminioGarcia-Vilchez, EncarnacionFariñas Wong, Ernesto YoelNúñez-Álvarez, José R.2022-01-11T21:15:24Z2022-01-11T21:15:24Z2021-12-021996-1073https://hdl.handle.net/11323/8967https://doi.org/10.3390/en14238059Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Nowadays, microgrids (MGs) play a crucial role in modern power systems due to possibility of integrating renewable energies into grid-connected or islanded power systems. The Load Frequency Control (LFC) is an issue of paramount importance to ensure MGs reliable and safe operation. Specifically, in AC MGs, primary frequency control of each energy source can be guaranteed in order to integrate other energy sources. This paper proposes a micro-hydro frequency control scheme, combining the control of a reduced dump load and the nozzle flow control of Pelton turbines operating in autonomous regime. Some works have reported the integration of dump load and flow control methods, but they did not reduce the dump load value and adjust the nozzle flow linearly to the power value demanded by users, causing the inefficient use of water. Simulation results were obtained in Matlab®/Simulink® using models obtained from previous research and proven by means of experimental studies. The simulation of the proposed scheme shows that the frequency control in this plant is done in correspondence with the Cuban NC62-04 norm of power energy quality. In addition, it is possible to increase energy efficiency by reducing the value of the resistive dump load by up to 7.5% in a case study. The validation result shows a 60% reduction of overshoot and settling time of frequency temporal behavior of the autonomous micro-hydro.Peña Pupo, Leonardo-will be generated-orcid-0000-0003-3779-9576-600Martinez-Garcia, Herminio-will be generated-orcid-0000-0002-7977-2577-600Garcia-Vilchez, Encarnacion-will be generated-orcid-0000-0002-1446-0652-600Fariñas Wong, Ernesto Yoel-will be generated-orcid-0000-0002-8798-0114-600Núñez-Álvarez, José R.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energieshttps://www.mdpi.com/1996-1073/14/23/8059Microgrids (MGs)Energy efficiencyRun-of-river hydroelectricityMicro-hydropowerAutonomous micro-hydropower operationFrequency controlDump-load controlCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgridsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [CrossRef]2. IRENA. Off-Grid Renewable Energy Solutions to Expand Electricity Access: An Opportunity Not to Be Missed; International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2019.3. Borowski, P.F.; Patuk, I. Environmental, social and economic factors in sustainable development with food, energy and eco-space aspect security. Present Environ. Sustain. Dev. 2021, 15, 153–169. [CrossRef]4. Ardizzon, G.; Cavazzini, G.; Pavesi, G. A new generation of small hydro and pumped-hydro power plants: Advances and future challenges. Renew. Sustain. Energy Rev. 2014, 31, 746–761. [CrossRef]5. Ashfaq, H.; Saood, M.; Singh, R. Autonomous micro-hydro power system for distributed generation: A power quality analysis. Int. J. Curr. Eng. Sci. Res. 2015, 2, 2394. [CrossRef]6. Peña, P.L.; Dominguez, A.H.; Fong, B.J.; Garcia-Alzórris, P.J.A. Regulación de frecuencia en una Minihidrolectrica por carga lastre mediante un pc Embebido. In Proceedings of the 9th Spanish Potuguese Congress on Electrical Engineering (9CHLIE), Marbella, España, 30 June–2 July 2005; pp. 151–152.7. Bory, P.H.; Vázquez, S.L.; Martínez-García, H.; Majanne, Y. Symmetrical Angle Switched Single-Phase and Three-Phase Rectifiers: Application to Micro Hydro Power Plants. IFAC Pap. Online 2019, 54, 216–221. [CrossRef]8. Fernández-Guillamón, A.; Sarasúa, J.I.; Chazarra, M.; Vigueras-Rodríguez, A.; Fernández-Muñoz, D.; Molina-García, Á. Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. Electr. Power Energy Syst. 2020, 121, 106024. [CrossRef]9. Salehi, N.; Martínez-García, H.; Velasco-Quesada, G.; García-Vílchez, E. Inverter Control Analysis in a Microgrid Community Based on Droop Control Strategy. In Proceedings of the 19th International Conference on Renewable Energies and Power Quality: ICREPQ’21, Almeria, Spain, 28–30 July 2021.10. Guo, W.; Yang, J.; Yang, W.; Chen, J.; Teng, Y. Regulation quality for frequency response of turbine regulating system of isolated hydroelectric power plant with surge tank. Electr. Power Energy Syst. 2015, 73, 528–538. [CrossRef]11. Kumar, V.S.; Singal, S.K. Operation of hydro power plants-a review. Renew. Sustain. Energy Rev. 2017, 69, 610–619.12. Singh, R.R.; Kumar, B.A.; Shruthi, D.; Panda, R.; Raj, T.C. Review and experimental illustrations of electronic load controller used in standalone Micro-Hydro generating plants. Eng. Sci. Technol. Int. J. 2018, 21, 886–890. [CrossRef]13. Pérez, F.D. Una serie de turbinas Pelton para mini y microhidroeléctricas. Ing. Hidráulica 1983, IV, 85–97.14. Castillo, G.; Ortega, L.; Pozo, M.; Domínguez, X. Control of an island Micro-hydropower Plant with Self-excited AVR and combined ballast load frequency regulator. In Proceedings of the 2016 IEEE Ecuador Technical Chapters Meeting (ETCM), Guayaquil, Ecuador, 12–14 October 2016.15. Doolla, S.; Bhatti, T.S. Load Frequency Control of an Isolated Small-Hydro Power Plant With Reduced dump Load. IEEE Trans. Power Syst. 2006, 21, 1912–1919. [CrossRef]16. NC62-04. Sistema Electroenergético Nacional. Frecuencia Nominal y Sus Desviaciones Permisibles; Oficina Nacional de Normalización: Havana, Cuba, 1981; p. 3. Available online: http://www.nc.cubaindustria.cu (accessed on 3 July 2019).17. Goyal, H.; Bhatti, T.S.; Kothari, D.P. A novel technique proposed for automatic control of small Hydro-power plants. Int. J. Glob. Energy Issues 2005, 24, 29–46. [CrossRef]18. Peña, P.L.; Fariñas, W.E.; Cordova, J.L.; Delgado, T.Y. Quality of energy, energy access and Law within the Cuban hydropower context. Glob. Jurist 2020, 2020. [CrossRef]19. Oliveira, E.J.; Honório, L.M.; Anzai, A.H.; Oliveira, L.W.; Costa, E.B. Optimal transient droop compensator and PID tuning for load frequency control in hydro power systems. Electr. Power Energy Syst. 2015, 68, 345–355. [CrossRef]20. Pappachen, A.; Fathima, A.P. Critical research areas on load frequency control issues in a deregulated power system: A state-ofthe-art-of-review. Renew. Sustain. Energy Rev. 2017, 72, 163–177. [CrossRef]21. Shankar, R.; Pradhan, S.R.; Chatterjee, K.; Mandal, R. A comprehensive state of the art literature survey on LFC mechanism for power system. Renew. Sustain. Energy Rev. 2017, 76, 1185–1207. [CrossRef]22. Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.A.; Román-Wilhelmi, J. Power-frequency control of hydropower plants with long penstocks in isolated systems with wind generation. Renew. Energy 2015, 83, 245–255. [CrossRef]23. Martínez-Lucas, G.; Sarasúa, J.I.; Sánchez-Fernández, J.Á. Frequency Regulation of a Hybrid Wind–Hydro Power Plant in an Isolated Power System. Energies 2018, 11, 239. [CrossRef]24. Guzmán, J.L.; Moreno, J.C.; Berenguel, M.; Moscoso, J. Inverse pole placement method for PI control in the tracking problem. In Proceedings of the 3rd IFAC Conference in Proporcional Integral Derivative Control, Ghent, Belgium, 9–11 May 2018; pp. 406–411.25. Himr, V.; Habán, V.; Štefan, D. Inner Damping of Water in Conduit of Hydraulic Power Plant. Sustainability 2021, 13, 7125. [CrossRef]26. Souza, Z.d.; Moreira, S.A.H.; da Costa, B.E. Centrais Hidreléctricas: Implantação e Comissionamento, 3rd ed.; Editora Interciencia Ltd.: Rio de Janeiro, Brazil, 2018; p. 522.27. Peña, P.L.; Fariñas, W.E. World Small Hydropower Development Report 2022 (WSHPDR2022): Cuba Chapter; United Nations Industrial Development Organization (UNIDO) and International Center on Small Hydro Power (ICSHP): Havana, Cuba, 2022; in press.28. Khodadoost, A.A.A.; Karami, H.; Gharehpetian, G.B.; Hejazi, M.S.A. Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids. Renew. Sustain. Energy Rev. 2017, 69, 9–18.29. Dreidy, M.; Mokhlis, H.; Mekhilef, S. Inertia response and frequency control techniques for renewable energy sources: A review. Renew. Sustain. Energy Rev. 2017, 69, 144–155. [CrossRef]30. Dolla, S.a.T.S.B.; Bhatti, T.S.; Bansal, R.C. Load frequency control of an isolated small hydro power plant using multi-pipe scheme. Electr. Power Compon. Syst. 2011, 39, 46–63. [CrossRef]31. Mohanrajan, S.R.; Vijayakumari, A.; Kottayil, S.K. Power Balancing in Autonomous Micro Grid with Variable Speed Pump. In Proceedings of the IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017), Chennai, India, 21–22 September 2017.32. Gil-González, W.; Montoya, O.D.; Garces, A. Modeling and control of a small hydro-power plant for a DC microgrid. Electr. Power Syst. Res. 2020, 180, 106104. [CrossRef]33. Guo, B.; Bacha, S.; Alamir, M.; Imanein, H. An anti-disturbance ADRC based MPTT for variable speed micro-hydropower station. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 1783–1789.34. Ali, W.; Farooq, H.; Rehman, A.u.; Farrag, M.E. Modeling and performance analysis of micro-hydro generation controls considering power system stability. In Proceedings of the 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 15–16 November 2017; pp. 1–7.35. Kundur, P. Power System Stability and Control; The EPRI Power System Engineering Series; McGraw-Hill Inc.: New York, NY, USA, 1994.36. Singh, R.; Raja, T.R.; Chelliah, P.A. Power electronics in hydro electric energy systems—A review. Renewable and Sustainable Energy Reviews 2014, 32, 16. [CrossRef]37. Bory, P.H.; Martínez, G.H.; Vázquez, S.L. Comparison of Single-Phase Rectifier with Symmetrical Switching and AC-AC Converter for the Power Factor Improvement in Hydroelectric Micro-Plants. Rev. Iberoam. Auto. Inf. Ind. 2019, 16, 79–88. [CrossRef]38. Doolla, S.; Bhatti, T.S. Automatic Frequency Control of an Isolated Small Hydro Power Plant. Int. Energy J. 2006, 7, 17–26.39. Yadav, R.K.; Mathew, L. Load Frequency control of an Isolated Small Hydro Power Plant with Reduction in Dump Load Rating By Using Variable Structure Control. Int. J. Eng. Sci. Invent. 2014, 3, 8–15.40. Kurtz, V.H.; Anocibar, H.R. Sistema mixto para el control de la generación en micro centrales hidroeléctricas. Hidrored 2007, 2007, 24–30.41. Fong, B.J.; Domínguez, A.H.; Abreu, B.A.; Barrueco, D.M.E. Design of a regulator of frequency for small central hydroelectric in isolated operation. J. Eng. Technol. Ind. Appl. 2018, 13, 140–148.42. Borowski, P.F. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 2021, 14, 1885. [CrossRef]43. Yang, W.; Yang, J.; Guo, W.; Zeng, W.; Wang, C.; Saarinen, L.; Norrlund, P. A Mathematical Model and Its Application for Hydro Power Units under Different Operating Conditions. Energies 2015, 2015, 10260–10275. [CrossRef]44. Stephanopaulos, G. Chemical Process Control. An Introduction to Theory and Practice; Prentice Hall Inc.: Hoboken, NJ, USA, 1984; 696p.45. Salhi, I.; Doubabi, S.; Essounbouli, N.; Hamzaoui, A. Application of multi-model control with fuzzy switching to a micro hydro-electrical power plant. Int. J. Renew. Energy 2010, 35, 2071–2079. [CrossRef]46. Ogata, K. Modern Control Engineering, 5th ed.; Prentice-Hall Inc.: Hoboken, NJ, USA, 2009; p. 145.47. ESHA. Guía Para el Desarrollo de Una Pequeña Central Hidroeléctrica; ESHA, Ed.; European Small Hydropower Association (ESHA): Brussels, Belgium, 2006; p. 310. Available online: http://www.esha.be (accessed on 1 December 2021).48. HRC. Small Hydropower. A Textbook Specially Designed for Trining Workshops in TCDC Program, 1st ed.; Hydropower, H.R.A.-P.C.f.S., Ed.; Zhejiang University Press: Hangzhou, China, 2006; p. 286.49. Peña, P.L.; Fariñas, W.E. Mejoras en la eficiencia energética de las mini-hidroeléctricas aisladas mediante la regulación combinada flujo-carga lastre. Rev. Energética 2020, 41, 1C.PublicationORIGINALCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids.pdfCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids.pdfapplication/pdf3004427https://repositorio.cuc.edu.co/bitstreams/e69c1d8e-2cec-4adc-ace9-3ceb83154bd0/downloadbac964f9334864d5205d573b957714b7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/8fad19f0-c02b-42e2-b3d5-ec3f1a20661d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c4f4d8ee-e764-42a4-bfab-74a86de1c05c/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids.pdf.jpgCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids.pdf.jpgimage/jpeg75713https://repositorio.cuc.edu.co/bitstreams/d7430558-9ec0-4261-9a8f-f17a52d304eb/download8897dc36627d21577d60802a89b81d3cMD54TEXTCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids.pdf.txtCombined method of flow-reduced dump load for frequency control of an autonomous micro-hydropower in ac microgrids.pdf.txttext/plain73572https://repositorio.cuc.edu.co/bitstreams/b8249de6-d619-4ac4-a143-212af9db98b9/downloadfe6e00a93f7480cc4420d0d6f7dd39fbMD5511323/8967oai:repositorio.cuc.edu.co:11323/89672024-09-17 10:44:53.578http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |