Interaction between domain-specific and domain-general abilities in math´s competence

This article is an approach to some viewpoints about interactions between domain-specific and general cognitive tools involved in the development of mathematical competence. Many studies report positive correlations between the acuity of the numerical approximation system and formal mathematical per...

Full description

Autores:
Torresi, Sandra
Tipo de recurso:
Review article
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10116
Acceso en línea:
https://hdl.handle.net/11323/10116
https://repositorio.cuc.edu.co/
Palabra clave:
Numerical cognition
Approximate number system
Working memory
Cognitive development
Cognición numérica
Desarrollo cognitivo
Sistema de aproximación numérica
Memoria de trabajo
Precursores
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_6509905519b59cfd08b3a5139e01a731
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10116
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Interaction between domain-specific and domain-general abilities in math´s competence
dc.title.translated.none.fl_str_mv Interacción entre las capacidades específicas del dominio y las generales en la competencia matemática
title Interaction between domain-specific and domain-general abilities in math´s competence
spellingShingle Interaction between domain-specific and domain-general abilities in math´s competence
Numerical cognition
Approximate number system
Working memory
Cognitive development
Cognición numérica
Desarrollo cognitivo
Sistema de aproximación numérica
Memoria de trabajo
Precursores
title_short Interaction between domain-specific and domain-general abilities in math´s competence
title_full Interaction between domain-specific and domain-general abilities in math´s competence
title_fullStr Interaction between domain-specific and domain-general abilities in math´s competence
title_full_unstemmed Interaction between domain-specific and domain-general abilities in math´s competence
title_sort Interaction between domain-specific and domain-general abilities in math´s competence
dc.creator.fl_str_mv Torresi, Sandra
dc.contributor.author.none.fl_str_mv Torresi, Sandra
dc.subject.proposal.eng.fl_str_mv Numerical cognition
Approximate number system
Working memory
topic Numerical cognition
Approximate number system
Working memory
Cognitive development
Cognición numérica
Desarrollo cognitivo
Sistema de aproximación numérica
Memoria de trabajo
Precursores
dc.subject.proposal.fra.fl_str_mv Cognitive development
dc.subject.proposal.spa.fl_str_mv Cognición numérica
Desarrollo cognitivo
Sistema de aproximación numérica
Memoria de trabajo
Precursores
description This article is an approach to some viewpoints about interactions between domain-specific and general cognitive tools involved in the development of mathematical competence. Many studies report positive correlations between the acuity of the numerical approximation system and formal mathematical performance, while another important group of investigations have found no evidence of a direct connection between non-symbolic and symbolic numerical representations. The challenge for future research will be to focus on correlations and possible causalities between non-symbolic and symbolic arithmetic skills and general domain cognitive skills in order to identify stable precursors of mathematical competence.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-07
dc.date.accessioned.none.fl_str_mv 2023-05-12T21:54:44Z
dc.date.available.none.fl_str_mv 2023-05-12T21:54:44Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_dcae04bc
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_dcae04bc
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Torresi, S. (2020). Interaction between domain-specific and domain-general abilities in math´s competence: Interacción entre las capacidades específicas del dominio y las generales en la competencia matemática. Journal of Applied Cognitive Neuroscience, 1(1), 43–51. https://doi.org/10.17981/JACN.1.1.2020.08
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10116
dc.identifier.doi.none.fl_str_mv 10.17981/JACN.1.1.2020.08
dc.identifier.eissn.spa.fl_str_mv 2745-0031
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Torresi, S. (2020). Interaction between domain-specific and domain-general abilities in math´s competence: Interacción entre las capacidades específicas del dominio y las generales en la competencia matemática. Journal of Applied Cognitive Neuroscience, 1(1), 43–51. https://doi.org/10.17981/JACN.1.1.2020.08
10.17981/JACN.1.1.2020.08
2745-0031
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10116
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Applied Cognitive Neuroscience
dc.relation.references.spa.fl_str_mv Anobile, G., Cicchini, G. M. & Burr, D. C. (2016). Number as a Primary Perceptual Attribute: A Review. Perception, 45(1-2), 5–31. https://doi.org/10.1177/0301006615602599
Ashkenazi, S., Mark-Zigdon, N. & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16(1), 35–46. https://doi.org/10.1111/j.1467- 7687.2012.01190.x
Allen, K., Higgins, S. & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: a systematic review. Educational Psychology Review, 31, 1–23. https://doi. org/10.1007/s10648-019-09470-8
Baddeley, A. D. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/annurevpsych-120710-100422
Blankenship, T. L., Keith, K., Calkins, S. D. & Bell, M. A. (2018). Behavioral performance and neural areas associated with memory processes contribute to math and reading achievement in 6-year- old children. Cognitive Development, 45, 141–151, https://doi.org/10.1016/j.cogdev.2017.07.002
Bonny, J. W. & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. https://doi. org/10.1016/j.jecp.2012.09.015
Butterworth, B. (2019). Dyscalculia: from Science to Education. New York: Taylor & Francis.
Bugden, S. & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not the automatic processing of Arabic numerals. Cognition, 118(1), 32–44. https://doi.org/10.1016/j.cognition.2010.09.005
Cantlon, J. F. & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), 2912– 2919. https://doi.org/10.1371/journal. pbio.0050328
Carey, S. (2009). The Origin of Concepts. New York: Oxford Scholarship. https://doi.org/10.1093/acprof:oso/97801 95367638.001.0001
Chen, Q. & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. http://doi.org/10.1016/j.actpsy.2014.01.016
Chu, F. W., vanMarle, K. & Geary, D. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. http://dx.doi.org/10.1016/j.jecp.2015.01.006
Clark, C. A. C., Nelson, J. M., Garza, J., Sheffield, T. D., Wiebe, S. A. & Espy, K. A. (2014). Gaining control: Changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 1–15. https://doi.org/10.3389/fpsyg.2014.00107
Clearman, J., Klinger, V. & Szücs, D. (2017). Visuospatial and verbal memory in mental arithmetic. Quarterly Journal of Experimental Psychology, 70(9), 1837– 1855. https://doi.org/10.1080/17470218.2016.1209534
Dehaene, S. (2011). The Number Sense. New York: Oxford University Press.
Desoete, A., Ceulemans, A., De Weerdt, F. & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002
Fanari, R., Meloni, C. & Massidda, D. (2019). Visual and Spatial Working Memory Abilities Predict Early Math Skills: A Longitudinal Study. Frontiers in Psychology, 10, 1–9. https://doi.org/10.3389/fpsyg.2019.02460
Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. http://doi.org/10.1016/j.jecp.2014.01.013
Fritz, A., Haase, V. & Räsänen, P. (Eds.) (2019). International Handbook of Mathematical Learning Difficulties. From the Laboratory to the Classroom. Cham: Springer.
Geary, D. (2011). Cognitive predictors of achievement growth in mathematics: A five-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510
Geary, D., Nicholas, A., Li, Y. & Sun, J. (2017). Development change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: an eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. https://doi.org/10.1037/edu0000159
Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V. & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), 1–9. https://doi.org/10.1371/journal.pone.0067374
Goffin, C., Vogel, S. E., Slipenkyj, M. & Ansari, D. (2020). A comes before B, like 1 comes before 2. Is the parietal cortex sensitive to ordinal relationships in both numbers and letters? An fMRI-adaptation study. Human Brain Mapping, 41(6), 1591–1610. https://doi.org/10.1002/hbm.24897
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120. http:// doi.org/10.1073/pnas.1200196109
Hellstrand, H., Korhonen, J., Räsänen, P., Linmmanmaku, K. & Aunio, P. (2020). Reliability and validity evidence of the early numeracy test for identifying children at risk for mathematical learning difficulties. International Journal of Educational Research, 102, 1–10. https://doi.org/10.1016/j.ijer.2020.101580
Honoré, N. & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PloS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166685
Hornung, C., Schiltz, C., Brunner, M. & Martin, R. (2014). Predicting firstgrade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 1–18 https://doi.org/10.3389/fpsyg.2014.00272
Izard, V., Sann, C., Spelke E. S. & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–1038. https://doi.org/10.1073/ pnas.0812142106
Kuzmina, Y., Tikhomirova, T., Lysenkova, I. & Malykh, S. (2020). Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PLoS ONE, 15(2), 1–23. https://doi.org/10.1371/journal.pone.0228960
LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D. & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.x
Libertus, M. E., Feigenson, L. & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–300. https://doi.org/10.1111/j.1467-7687.2011.01080.x
Libertus, M. E., Odic, D., Feigenson, L. & Halberda, J. (2020). Effects of Visual Training of Approximate Number Sense on Auditory Number Sense and School Math Ability. Frontiers in Psychology, 11, 1–16. https://doi. org/10.3389/fpsyg.2020.02085
Lindskog, M., Winman, A. & Juslin, P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 1–10. https://doi.org/10.3389/fpsyg.2014.00462
Mammarella, I. C., Caviola, S., Giofrè, D. & Szücs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220–235. https://doi. org/10.1111/bjdp.12202
Matejko, A. A. & Ansari, D. (2016). Trajectories of Symbolic and Non-symbolic Magnitude Processing in the First Year of Formal Schooling. PLOS ONE, 11(3), 1–15. http://doi.org/10.1371/journal.pone.0149863
Mazzocco. M. M., Feigenson, L. & Halberda, J. (2011). Impairs acuity of the approximate number system underlines mathematical learning disability (Dyscalculia). Child Development, 82(4), 1224–1237. https://doi. org/10.1111/j.1467-8624.2011.01608.x
Nieder, A. (2019). A brain for numbers. The biology of the number instinct. Cambridge: MIT Press.
Nieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185– 208. https://doi.org/10.1146/annurev.neuro.051508.135550
Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J. & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education. 2(1), 13–22. https://doi.org/10.1016/j.tine.2013.01.001
Park, J. & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188–200. https://doi.org/10.1016/j.cognition.2014.06.011
Piazza, M. (2010). Neurocognitive startup tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. https://doi.org/10.1016/j.tics.2010.09.008
Piazza, M. & Izard, V. (2009). How humans count: numerosity and the parietal cortex. The Neuroscientist, 15(3), 261–273. https://doi.org/10.1177/1073858409333073
Purpura, D. J. & Ganley, C. M. (2014). Working memory and language: Skillspecific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122, 104–121. https://doi.org/10.1016/j.jecp.2013.12.009
Rapin, I. (2016). Dyscalculia and the calculating brain. Pediatric Neurology, 61, 11–20. https://doi.org/10.1016/j.pediatrneurol.2016.02.007
Revkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.x
Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J. & De Smedt, B. (2016). Associations of nonsymbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3), 1–16. http://doi.org/10.1111/desc.12372
Siemann, J. & Petermann, F. (2018). Innate or Acquired? Disentangling number sense and early number competencies. Frontiers in Psychology, 9, 1–13. https://doi.org/10.3389/fpsyg.2018.00571
Spelke, E. S. (2017). Core Knowledge, Language, and Number. Language Learning and Development, 13(2), 147–170, https://doi.org/10.1080/15475441.2016.1263572
Szkudlarek, E. & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language learning and development: the official journal of the Society for Language Development, 13(2), 171–190. https://doi.org/10.1080/15475441.2016.1263573
Träff, L. O., Östergren, R. & Skagerlund, K. (2020). Development of early domain-specific and domain-general cognitive precursors of high and low math achievers in grade 6. Child Neuropsychology, 26(8), 1065–1090. https://doi.org/10.1080/09297049.2020.1739259
Vanbinst, K., Ghesquiere, P. & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129–136. https://doi.org/10.1111/j.1751- 228X.2012.01148.x
Xenidou-Dervou, I., Van Luit, J. E. H., Kroesbergen, E. H., Friso-van den Bos, I., Jonkman, L. M., Van der Schoot, M. & Van Lieshout, E. (2018). Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Developmental Science, 21(6), 1–51. https://doi.org/10.1111/desc.12671
Zhou, X., Wei, W., Zhang, Y., Cui, J. & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1–13. https://doi.org/10.3389/ fpsyg.2015.01364
dc.relation.citationendpage.spa.fl_str_mv 51
dc.relation.citationstartpage.spa.fl_str_mv 43
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 1
dc.rights.eng.fl_str_mv Copyright (c) 2020 Journal of Applied Cognitive Neuroscience
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Copyright (c) 2020 Journal of Applied Cognitive Neuroscience
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/JACN/article/view/3340
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b0918456-7719-41e6-9cf8-5bbf4c715b3a/download
https://repositorio.cuc.edu.co/bitstreams/d6f7e99b-07fa-454d-8360-9c34429dbb1d/download
https://repositorio.cuc.edu.co/bitstreams/28f52a62-d45c-4f07-b233-5f77e3c74727/download
https://repositorio.cuc.edu.co/bitstreams/b34d4ef8-4e44-4539-ac5b-c1e426dff90e/download
bitstream.checksum.fl_str_mv 9fbcb03b6525bb069a352fa7d77b5800
2f9959eaf5b71fae44bbf9ec84150c7a
4025f0e945776697c7e173d6ad1b8de2
60422ff2f19d0abc7d6b487579b5e02b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760749228326912
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Copyright (c) 2020 Journal of Applied Cognitive Neurosciencehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torresi, Sandra2023-05-12T21:54:44Z2023-05-12T21:54:44Z2020-12-07Torresi, S. (2020). Interaction between domain-specific and domain-general abilities in math´s competence: Interacción entre las capacidades específicas del dominio y las generales en la competencia matemática. Journal of Applied Cognitive Neuroscience, 1(1), 43–51. https://doi.org/10.17981/JACN.1.1.2020.08https://hdl.handle.net/11323/1011610.17981/JACN.1.1.2020.082745-0031Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article is an approach to some viewpoints about interactions between domain-specific and general cognitive tools involved in the development of mathematical competence. Many studies report positive correlations between the acuity of the numerical approximation system and formal mathematical performance, while another important group of investigations have found no evidence of a direct connection between non-symbolic and symbolic numerical representations. The challenge for future research will be to focus on correlations and possible causalities between non-symbolic and symbolic arithmetic skills and general domain cognitive skills in order to identify stable precursors of mathematical competence.Este artículo es una aproximación a diferentes puntos de vista acerca de la interacción entre las habilidades cognitivas de dominio específico y general involucradas en el desarrollo de la competencia matemática. Muchos estudios reportan correlaciones positivas entre la agudeza del sistema de aproximación numérica y el desempeño matemático formal, mientras que otro grupo importante de investigaciones no han hallado evidencias de una conexión directa entre las representaciones numéricas no simbólicas y las simbólicas. El desafío para las futuras investigaciones será focalizar en correlaciones y posibles causalidades entre las habilidades aritméticas no simbólicas, las simbólicas y las habilidades cognitivas de dominio general con el propósito de identificar precursores estables de la competencia matemática.9 páginasapplication/pdfengCorporación Universidad de la CostaColombiahttps://revistascientificas.cuc.edu.co/JACN/article/view/3340Interaction between domain-specific and domain-general abilities in math´s competenceInteracción entre las capacidades específicas del dominio y las generales en la competencia matemáticaArtículo de revistahttp://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Applied Cognitive NeuroscienceAnobile, G., Cicchini, G. M. & Burr, D. C. (2016). Number as a Primary Perceptual Attribute: A Review. Perception, 45(1-2), 5–31. https://doi.org/10.1177/0301006615602599Ashkenazi, S., Mark-Zigdon, N. & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16(1), 35–46. https://doi.org/10.1111/j.1467- 7687.2012.01190.xAllen, K., Higgins, S. & Adams, J. (2019). The relationship between visuospatial working memory and mathematical performance in school-aged children: a systematic review. Educational Psychology Review, 31, 1–23. https://doi. org/10.1007/s10648-019-09470-8Baddeley, A. D. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. https://doi.org/10.1146/annurevpsych-120710-100422Blankenship, T. L., Keith, K., Calkins, S. D. & Bell, M. A. (2018). Behavioral performance and neural areas associated with memory processes contribute to math and reading achievement in 6-year- old children. Cognitive Development, 45, 141–151, https://doi.org/10.1016/j.cogdev.2017.07.002Bonny, J. W. & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375–388. https://doi. org/10.1016/j.jecp.2012.09.015Butterworth, B. (2019). Dyscalculia: from Science to Education. New York: Taylor & Francis.Bugden, S. & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not the automatic processing of Arabic numerals. Cognition, 118(1), 32–44. https://doi.org/10.1016/j.cognition.2010.09.005Cantlon, J. F. & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5(12), 2912– 2919. https://doi.org/10.1371/journal. pbio.0050328Carey, S. (2009). The Origin of Concepts. New York: Oxford Scholarship. https://doi.org/10.1093/acprof:oso/97801 95367638.001.0001Chen, Q. & Li, J. (2014). Association between individual differences in nonsymbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172. http://doi.org/10.1016/j.actpsy.2014.01.016Chu, F. W., vanMarle, K. & Geary, D. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212. http://dx.doi.org/10.1016/j.jecp.2015.01.006Clark, C. A. C., Nelson, J. M., Garza, J., Sheffield, T. D., Wiebe, S. A. & Espy, K. A. (2014). Gaining control: Changing relations between executive control and processing speed and their relevance for mathematics achievement over course of the preschool period. Frontiers in Psychology, 5, 1–15. https://doi.org/10.3389/fpsyg.2014.00107Clearman, J., Klinger, V. & Szücs, D. (2017). Visuospatial and verbal memory in mental arithmetic. Quarterly Journal of Experimental Psychology, 70(9), 1837– 1855. https://doi.org/10.1080/17470218.2016.1209534Dehaene, S. (2011). The Number Sense. New York: Oxford University Press.Desoete, A., Ceulemans, A., De Weerdt, F. & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002Fanari, R., Meloni, C. & Massidda, D. (2019). Visual and Spatial Working Memory Abilities Predict Early Math Skills: A Longitudinal Study. Frontiers in Psychology, 10, 1–9. https://doi.org/10.3389/fpsyg.2019.02460Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53–72. http://doi.org/10.1016/j.jecp.2014.01.013Fritz, A., Haase, V. & Räsänen, P. (Eds.) (2019). International Handbook of Mathematical Learning Difficulties. From the Laboratory to the Classroom. Cham: Springer.Geary, D. (2011). Cognitive predictors of achievement growth in mathematics: A five-year longitudinal study. Developmental Psychology, 47(6), 1539–1552. https://doi.org/10.1037/a0025510Geary, D., Nicholas, A., Li, Y. & Sun, J. (2017). Development change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: an eight-year longitudinal study. Journal of Educational Psychology, 109(5), 680–693. https://doi.org/10.1037/edu0000159Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V. & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), 1–9. https://doi.org/10.1371/journal.pone.0067374Goffin, C., Vogel, S. E., Slipenkyj, M. & Ansari, D. (2020). A comes before B, like 1 comes before 2. Is the parietal cortex sensitive to ordinal relationships in both numbers and letters? An fMRI-adaptation study. Human Brain Mapping, 41(6), 1591–1610. https://doi.org/10.1002/hbm.24897Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116–11120. http:// doi.org/10.1073/pnas.1200196109Hellstrand, H., Korhonen, J., Räsänen, P., Linmmanmaku, K. & Aunio, P. (2020). Reliability and validity evidence of the early numeracy test for identifying children at risk for mathematical learning difficulties. International Journal of Educational Research, 102, 1–10. https://doi.org/10.1016/j.ijer.2020.101580Honoré, N. & Noël, M. P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PloS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166685Hornung, C., Schiltz, C., Brunner, M. & Martin, R. (2014). Predicting firstgrade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence. Frontiers in Psychology, 5, 1–18 https://doi.org/10.3389/fpsyg.2014.00272Izard, V., Sann, C., Spelke E. S. & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382–1038. https://doi.org/10.1073/ pnas.0812142106Kuzmina, Y., Tikhomirova, T., Lysenkova, I. & Malykh, S. (2020). Domain-general cognitive functions fully explained growth in nonsymbolic magnitude representation but not in symbolic representation in elementary school children. PLoS ONE, 15(2), 1–23. https://doi.org/10.1371/journal.pone.0228960LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith-Chant, B. L., Bisanz, J., Kamawar, D. & Penner-Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 1753–1767. https://doi.org/10.1111/j.1467-8624.2010.01508.xLibertus, M. E., Feigenson, L. & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292–300. https://doi.org/10.1111/j.1467-7687.2011.01080.xLibertus, M. E., Odic, D., Feigenson, L. & Halberda, J. (2020). Effects of Visual Training of Approximate Number Sense on Auditory Number Sense and School Math Ability. Frontiers in Psychology, 11, 1–16. https://doi. org/10.3389/fpsyg.2020.02085Lindskog, M., Winman, A. & Juslin, P. (2014). The association between higher education and approximate number system acuity. Frontiers in Psychology, 5, 1–10. https://doi.org/10.3389/fpsyg.2014.00462Mammarella, I. C., Caviola, S., Giofrè, D. & Szücs, D. (2018). The underlying structure of visuospatial working memory in children with mathematical learning disability. British Journal of Developmental Psychology, 36(2), 220–235. https://doi. org/10.1111/bjdp.12202Matejko, A. A. & Ansari, D. (2016). Trajectories of Symbolic and Non-symbolic Magnitude Processing in the First Year of Formal Schooling. PLOS ONE, 11(3), 1–15. http://doi.org/10.1371/journal.pone.0149863Mazzocco. M. M., Feigenson, L. & Halberda, J. (2011). Impairs acuity of the approximate number system underlines mathematical learning disability (Dyscalculia). Child Development, 82(4), 1224–1237. https://doi. org/10.1111/j.1467-8624.2011.01608.xNieder, A. (2019). A brain for numbers. The biology of the number instinct. Cambridge: MIT Press.Nieder, A. & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185– 208. https://doi.org/10.1146/annurev.neuro.051508.135550Nys, J., Ventura, P., Fernandes, T., Querido, L., Leybaert, J. & Content, A. (2013). Does math education modify the approximate number system? A comparison of schooled and unschooled adults. Trends in Neuroscience and Education. 2(1), 13–22. https://doi.org/10.1016/j.tine.2013.01.001Park, J. & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188–200. https://doi.org/10.1016/j.cognition.2014.06.011Piazza, M. (2010). Neurocognitive startup tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542–551. https://doi.org/10.1016/j.tics.2010.09.008Piazza, M. & Izard, V. (2009). How humans count: numerosity and the parietal cortex. The Neuroscientist, 15(3), 261–273. https://doi.org/10.1177/1073858409333073Purpura, D. J. & Ganley, C. M. (2014). Working memory and language: Skillspecific or domain-general relations to mathematics? Journal of Experimental Child Psychology, 122, 104–121. https://doi.org/10.1016/j.jecp.2013.12.009Rapin, I. (2016). Dyscalculia and the calculating brain. Pediatric Neurology, 61, 11–20. https://doi.org/10.1016/j.pediatrneurol.2016.02.007Revkin, S. K., Piazza, M., Izard, V., Cohen, L. & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological Science, 19(6), 607–614. https://doi.org/10.1111/j.1467-9280.2008.02130.xSchneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J. & De Smedt, B. (2016). Associations of nonsymbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science, 20(3), 1–16. http://doi.org/10.1111/desc.12372Siemann, J. & Petermann, F. (2018). Innate or Acquired? Disentangling number sense and early number competencies. Frontiers in Psychology, 9, 1–13. https://doi.org/10.3389/fpsyg.2018.00571Spelke, E. S. (2017). Core Knowledge, Language, and Number. Language Learning and Development, 13(2), 147–170, https://doi.org/10.1080/15475441.2016.1263572Szkudlarek, E. & Brannon, E. M. (2017). Does the approximate number system serve as a foundation for symbolic mathematics? Language learning and development: the official journal of the Society for Language Development, 13(2), 171–190. https://doi.org/10.1080/15475441.2016.1263573Träff, L. O., Östergren, R. & Skagerlund, K. (2020). Development of early domain-specific and domain-general cognitive precursors of high and low math achievers in grade 6. Child Neuropsychology, 26(8), 1065–1090. https://doi.org/10.1080/09297049.2020.1739259Vanbinst, K., Ghesquiere, P. & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6(3), 129–136. https://doi.org/10.1111/j.1751- 228X.2012.01148.xXenidou-Dervou, I., Van Luit, J. E. H., Kroesbergen, E. H., Friso-van den Bos, I., Jonkman, L. M., Van der Schoot, M. & Van Lieshout, E. (2018). Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Developmental Science, 21(6), 1–51. https://doi.org/10.1111/desc.12671Zhou, X., Wei, W., Zhang, Y., Cui, J. & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1–13. https://doi.org/10.3389/ fpsyg.2015.01364514311Numerical cognitionApproximate number systemWorking memoryCognitive developmentCognición numéricaDesarrollo cognitivoSistema de aproximación numéricaMemoria de trabajoPrecursoresPublicationORIGINALInteraction between domain-specific and domain-general abilities in math´s competence.pdfInteraction between domain-specific and domain-general abilities in math´s competence.pdfArtículoapplication/pdf503330https://repositorio.cuc.edu.co/bitstreams/b0918456-7719-41e6-9cf8-5bbf4c715b3a/download9fbcb03b6525bb069a352fa7d77b5800MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/d6f7e99b-07fa-454d-8360-9c34429dbb1d/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTInteraction between domain-specific and domain-general abilities in math´s competence.pdf.txtInteraction between domain-specific and domain-general abilities in math´s competence.pdf.txtExtracted texttext/plain28048https://repositorio.cuc.edu.co/bitstreams/28f52a62-d45c-4f07-b233-5f77e3c74727/download4025f0e945776697c7e173d6ad1b8de2MD53THUMBNAILInteraction between domain-specific and domain-general abilities in math´s competence.pdf.jpgInteraction between domain-specific and domain-general abilities in math´s competence.pdf.jpgGenerated Thumbnailimage/jpeg11912https://repositorio.cuc.edu.co/bitstreams/b34d4ef8-4e44-4539-ac5b-c1e426dff90e/download60422ff2f19d0abc7d6b487579b5e02bMD5411323/10116oai:repositorio.cuc.edu.co:11323/101162024-09-17 10:57:30.049https://creativecommons.org/licenses/by-nc-nd/4.0/Copyright (c) 2020 Journal of Applied Cognitive Neuroscienceopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=