Land surface temperature and vegetation index as a proxy to microclimate
The effect of global climate change on the temperature of urban areas has become more pronounced in the past couple decades, impacting population and quality of life. The United Nations (UN), the National Aeronautics and Space Administration (NASA) and the Intergovernmental Panel on Climate Change (...
- Autores:
-
Maroni, Daniela
Tibério Cardoso, Grace
Neckel, Alcindo
Stolfo Maculan, Laércio
L.S. Oliveira, Marcos
Thaines Bodah, Eliane
William Bodah, Brian
Santosh, M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8499
- Acceso en línea:
- https://hdl.handle.net/11323/8499
https://doi.org/10.1016/j.jece.2021.105796
https://repositorio.cuc.edu.co/
- Palabra clave:
- Engineering
Microclimate
Remote Sensing
Air Temperature
Global environment
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_646d72e3440e4cd2ce8dac806225f49f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8499 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Land surface temperature and vegetation index as a proxy to microclimate |
title |
Land surface temperature and vegetation index as a proxy to microclimate |
spellingShingle |
Land surface temperature and vegetation index as a proxy to microclimate Engineering Microclimate Remote Sensing Air Temperature Global environment |
title_short |
Land surface temperature and vegetation index as a proxy to microclimate |
title_full |
Land surface temperature and vegetation index as a proxy to microclimate |
title_fullStr |
Land surface temperature and vegetation index as a proxy to microclimate |
title_full_unstemmed |
Land surface temperature and vegetation index as a proxy to microclimate |
title_sort |
Land surface temperature and vegetation index as a proxy to microclimate |
dc.creator.fl_str_mv |
Maroni, Daniela Tibério Cardoso, Grace Neckel, Alcindo Stolfo Maculan, Laércio L.S. Oliveira, Marcos Thaines Bodah, Eliane William Bodah, Brian Santosh, M. |
dc.contributor.author.spa.fl_str_mv |
Maroni, Daniela Tibério Cardoso, Grace Neckel, Alcindo Stolfo Maculan, Laércio L.S. Oliveira, Marcos Thaines Bodah, Eliane William Bodah, Brian Santosh, M. |
dc.subject.spa.fl_str_mv |
Engineering Microclimate Remote Sensing Air Temperature Global environment |
topic |
Engineering Microclimate Remote Sensing Air Temperature Global environment |
description |
The effect of global climate change on the temperature of urban areas has become more pronounced in the past couple decades, impacting population and quality of life. The United Nations (UN), the National Aeronautics and Space Administration (NASA) and the Intergovernmental Panel on Climate Change (IPCC) have emphasized the impact of urban structures on microclimatic. A better understanding of these effects is important to formulate effective strategies that would contribute to address the impacts of increased urban growth. Here we address a case study of the Vila Rodrigues neighborhood, located in Passo Fundo City in southern Brazil to analyze the variations of emissivity, temperature and vegetation of the terrestrial surface, with influence of buildings. We employ Landsat satellite images, and unpublished data provided by the NASA, interpolated and classified in the QGIS software, using Bands 4, 5 and 10, converted to Gray Level (NC). This procedure allowed the spectral radiance of the reflectance temperature to be obtained. The Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) were used, with correction of emissivity and spectral error, in the identification of the surface temperature of different areas in the Villa Rodrigues. The results showed a total variation of 3.86ºC among the sampled points, which is increased by the difference in significance of the thermal balance in urban areas under open sky with buildings. We suggest that green areas and parks with abundant vegetative cover and the application of new building materials in future constructions would help to improve the urban climate, and such regulation of the local temperature on global scale is an effective step towards addressing the adverse effects from climate change. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-02T12:57:19Z |
dc.date.available.none.fl_str_mv |
2021-08-02T12:57:19Z |
dc.date.issued.none.fl_str_mv |
2021-06-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8499 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2021.105796 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8499 https://doi.org/10.1016/j.jece.2021.105796 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
M. Bonatti, M.A. Lana, L.R. D’agostini, A.C.F. de. Vasconcelos, S. Sieber, L. Eufemia, T. da. Silva-rosa, S.L. Schlindwein Social representations of climate change and climate adaptation plans in southern Brazil: challenges of genuine participation Urban Clim., 29 (2019), Article 100496, 10.1016/j.uclim.2019.100496 A. Neckel, J.L. da. Silva, P.P. Saraiva, H.A. Kujawa, J. Araldi, E.P. Paladini Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo J. Clean. Prod., 264 (2020), Article 121369, 10.1016/j.jclepro.2020.121369 L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020) (2020), Article 126838, 10.1016/j.chemosphere.2020.126838 H. Li, Y. Zhou, G. Jia, K. Zhao, J. Dong Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model Geosci. Front. (2021), Article 101141, 10.1016/j.gsf.2021.101141 P.B. Cobbinah Urban resilience in climate change hotspot Land Use Policy, 100 (2021), Article 104948, 10.1016/j.landusepol.2020.104948 PBMC, Brazilian Panel on Climate Change, In: Climate Change and Cities: Special Report of the Brazilian (Rio de Janeiro, Brazil), 2016. https://agenciabrasil.ebc.com.br/en/geral/noticia/2017–06/brazils-coastal-cities-more-vulnerable-climate-change. J.V. de. Oliveira, J.C.P. Cohen, M. Pimentel, H.L.Z. Tourinho, M.A. Lôbo, G. Sodré, A. Abdala Urban climate and environmental perception about climate change in Belém, Pará, Brazil Urban Clim., 31 (2020), Article 100579, 10.1016/j.uclim.2019.100579 T.K. Dhar, L. Khirfan A multi-scale and multi-dimensional framework for enhancing the resilience of urban form to climate change Urban Clim., 19 (2017), pp. 72-91, 10.1016/j.uclim.2016.12.004 R.M. de. Carvalho, C.F. Szlafsztein Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution Environ. Pollut., 245 (2019), pp. 844-852, 10.1016/j.envpol.2018.10.114 C.M. Nascimento, W..de.S. Mendes, N.E.Q. Silvero, R.R. Poppiel, V.M. Sayão, A.C. Dotto, N.V..dos. Santos, M.T.A. Amorim, J.A.M. Demattê, Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil attributes, J. Environ. Manage. 277 (2021), 111316. https://ezproxy.cuc.edu.co:2067/10.1016/j.jenvman.2020.111316. H. Bherwani, A. Singh, R. Kumar Assessment methods of urban microclimate and its parameters: a critical review to take the research from lab to land Urban Clim., 34 (2020), Article 100690, 10.1016/j.uclim.2020.100690 M.E. Gavito, H. Paz, F. Barragán, I. Siddique, F. Arreola-Villa, F. Pineda-García, P. Balvanera Indicators of integrative recovery of vegetation, soil and microclimate in successional fields of a tropical dry forest For. Ecol. Manag., 479 (2021), Article 118526, 10.1016/j.foreco.2020.118526 Z.L. Li, B.H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, J.A. Sobrino Satellite-derived land surface temperature: current status and perspectives Remote Sens. Environ., 131 (2013), pp. 14-37, 10.1016/j.rse.2012.12.008 R.S. Chatterjee, N. Singh, S. Thapa, D. Sharma, D. Kumar Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs Int. J. Appl. Earth Obs. Geoinf., 58 (2017), pp. 264-277, 10.1016/j.jag.2017.02.017 M. Das, A. Das Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST) – A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India Urban Clim., 32 (2020), Article 100591, 10.1016/j.uclim.2020.100591 T.D. Mushore, J. Odindi, T. Dube, T.N. Matongera, O. Mutanga Remote sensing applications in monitoring urban growth impacts on in-and-out door thermal conditions: a review R. S. A. S. E., 8 (2017), pp. 83-93, 10.1016/j.rsase.2017.08.001 Q. Vanhellemont, Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS. ISPRS J. Photogramm, Remote Sens. 166, 2020, 390–402. https://ezproxy.cuc.edu.co:2067/10.1016/j.isprsjprs.2020.06.007. J. Peng, J. Jia, Y. Liu, H. Li, J. Wu Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas Remote Sens. Environ., 215 (2018), pp. 255-267, 10.1016/j.rse.2018.06.010 F. Zullo, G. Fazio, B. Romano, A. Marucci, L. Fiorini Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): a study in the Po Valley (Italy) Sci. Total Environ., 650 (2019), pp. 1740-1751, 10.1016/j.scitotenv.2018.09.331 C. Alexander Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST) Int. J. Appl. Earth Obs. Geoinf., 86 (2020), Article 102013, 10.1016/j.jag.2019.102013 L. Sheng, X. Tang, H. You, Q. Gu, H. Hu Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China Ecol. Indic., 72 (2017), pp. 738-746, 10.1016/j.ecolind.2016.09.009 B.T.W. Putra, P. Soni Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination Infrared Phys. Technol., 81 (2017), pp. 148-156, 10.1016/j.infrared.2017.01.007 D. Gozdowski, M. Stępień, E. Panek, J. Varghese, E. Bodecka, J. Rozbicki, S. Samborski Comparison of winter wheat NDVI data derived from Landsat 8 and active optical sensor at field scale Remote Sens. Appl. Soc. Environ., 20 (2020), Article 100409, 10.1016/j.rsase.2020.100409 L. Costa, L. Nunes, Y. Ampatzidis A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms Comput. Electron. Agric., 172 (2020), Article 105334, 10.1016/j.compag.2020.105334 A. Balew, T. Korme Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images Egypt. J. Remote. Sens. Space Sci. (2020), pp. 1-16, 10.1016/j.ejrs.2020.02.001 B.J. He, Z.Q. Zhao, L.D. Shen, H.B. Wang, L.G. Li An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on Landsat 8 image Sustain. Cities Soc., 44 (2019), pp. 416-427, 10.1016/j.scs.2018.10.049 A. Guo, J. Yang, W. Sun, X. Xiao, J.X. Cecilia, C. Jin, X. Li Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature Sustain. Cities Soc., 63 (2020), Article 102443, 10.1016/j.scs.2020.102443 K.J. Gohain, P. Mohammad, A. Goswami Assessing the impact of land use land cover changes on land surface temperature over Pune city, India Quat. Int., 1 (2020), pp. 1-38, 10.1016/j.quaint.2020.04.052 T. Adulkongkaew, T. Satapanajaru, S. Charoenhirunyingyos, W. Singhirunnusorn Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand Heliyon, 6 (2020), p. 04485, 10.1016/j.heliyon.2020.e04485 M. Lemus-Canovas, J. Martin-Vide, M. Moreno-Garcia, J.A. Lopez-Bustins Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature Sci. Total Environ., 699 (2020), Article 134307, 10.1016/j.scitotenv.2019.134307 L.S. Ferreira, D.H.S. Duarte Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity Urban Clim., 27 (2019), pp. 105-123, 10.1016/j.uclim.2018.11.002 R.L.N. Wanderley, L.M. Domingues, C.A. Joly, H.R. da. Rocha Relationship between land surface temperature and fraction of anthropized area in the Atlantic forest region, Brazil Plos One, 14 (2019), pp. 1-19, 10.1371/journal.pone.0225443 W.L.F. Correia Filho, D. de, B. Santiago, J.F. de. Oliveira-Jðnior, C.A. da. Silva Junior Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, 87, Land Use Policy,, Brazil (2019), 10.1016/j.landusepol.2019.104026 R.A. Carrasco, M.M.F. Pinheiro, J. Marcato Junior, R.E. Cicerelli, P.A. Silva, L.P. Osco, A.P.M. Ramos Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil Reg. Environ. Change, 20 (2020), pp. 1-12, 10.1007/s10113-020-01664-z C.I. Portela, K.G. Massi, T. Rodrigues, E. Alcântara Impact of urban and industrial features on land surface temperature: evidences from satellite thermal indices Sustain. Cities Soc., 56 (2020), Article 102100, 10.1016/j.scs.2020.102100 V.M. Sayão, N.V. dos. Santos, W. de, S. Mendes, K.P.P. Marques, J.L. Safanelli, R.R. Poppiel, J.A.M. Demattê Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil Geo. Reg., 22 (2020), Article e00313, 10.1016/j.geodrs.2020.e00313 Ibge, Brazilian Institute of Geography and Statistics, Demographic Data of 2020 - Brazil, 2021. https://cidades.ibge.gov.br/brasil/rs/passo-fundo/panorama. Embrapa, Climate of Passo Fundo in Brazil, 2020. http://www.cnpt.embrapa.br/pesquisa/agromet/app/principal/boletim.php. L.S. Maculan, V.R. Tângari Structuring elements of the territory and the effects on the urban border of Passo Fundo R. Nac. Geren. Cid., 8 (2020), pp. 18-35, 10.17271/2318847285720202284 A. Chemura, O. Mutanga, T. Dube Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies Int. J. Appl. Earth Obs. Geoinf., 57 (2017), pp. 1-13, 10.1016/j.jag.2016.12.007 V. Rodriguez-Galiano, E. Pardo-Iguzquiza, M. Sanchez-Castillo, M. Chica-Olmo, M. Chica-Rivas Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images Int. J. Appl. Earth Obs. Geoinf., 18 (2012), pp. 515-527, 10.1016/j.jag.2011.10.002 S. Roy, S. Pandit, E.A. Eva, Md.S.H. Bagmar, M. Papia, L. Banik, T. Dube, F. Rahman, M.A. Razi Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data Urban Clim., 32 (2020), Article 100593, 10.1016/j.uclim.2020.100593 Embrapa, Meteorological measurements of Brazil, 2020. http://www.cnpt.embrapa.br/pesquisa/agromet/app/principal/graficos.php. M.L. Plume SPSS (Statistical Package for the Social Sciences) Encycl. Inf. Syst. (2003), pp. 187-196, 10.1016/b0-12-227240-4/00166-0 D. Bera, Nd Chatterjee, S. Bera Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal R. S. A. S. E., 22 (2021), Article 100502, 10.1016/j.rsase.2021.100502 K. Pandiaraj, P. Sivakumar, K.J. Prakash Machine learning based effective linear regression model for TSV layer assignment in 3DIC Microprocess. Microsyst., 83 (2021), Article 103953, 10.1016/j.micpro.2021.103953 B. Djordjević, A.S. Mane, E. Krmac Analysis of dependency and importance of key indicators for railway sustainability monitoring: a new integrated approach with dea and pearson correlation Res. Transp. Bus. Manag. (2021), Article 100650, 10.1016/j.rtbm.2021.100650 W. Zeng, T. Lu, Z. Liu, Q. Xu, H. Peng, C. Li, S. Yang, F. Yao Research on a laser ultrasonic visualization detection method for human skin tumors based on pearson correlation coefficient Opt. Laser Technol., 141 (2021), Article 107117, 10.1016/j.optlastec.2021.107117 M. Baak, R. Koopman, H. Snoek, S. Klous A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics Comput. Stat. Data Anal., 152 (2020), Article 107043, 10.1016/j.csda.2020.107043 T. Fu, X. Tang, Z. Cai, Y. Zuo, Y. Tang, X. Zhao Effect of chemical composition of black tea infusion on the color of milky tea Food Res Int, 139 (2021), Article 109945, 10.1016/j.porgcoat.2019.105459 J. Peng, Y. Hu, J. Dong, Q. Liu, Y. Liu Quantifying spatial morphology and connectivity of urban heat islands in a megacity: a radius approach Sci. Total Environ., 714 (2020), Article 136792, 10.1016/j.scitotenv.2020.136792 J.Y. Deng, N.H. Wong Impact of urban canyon geometries on outdoor thermal comfort in central business districts Sustain. Cities Soc., 53 (2020), Article 101966, 10.1016/j.scs.2019.101966 A. Vilches, Á.B. Padura, M.M. Huelva Retrofitting of homes for people in fuel poverty: approach based on household thermal comfort Energy Policy, 100 (2017), pp. 283-291, 10.1016/j.enpol.2016.10.016 P.C. Toscan, A. Neckel, C. Korcelski, L.S. Maculan, D. Maroni, T.M. Fuga, L.P. Cambrussi, H.A. Kujawa, E.T. Bodah, B.W. Bodah Urban Cemeteries in Southern Brazil: an analysis of planimetric variations, vegetation indices and temperature J. Civ. Eng. Archit., 14 (2020), pp. 617-624, 10.17265/1934-7359/2020.11.005 Z. Wu, L. Yao, M. Zhuang, Y. Ren Detecting factors controlling spatial patterns in urban land surface temperatures: a case study of Beijing Sustain. Cities Soc., 63 (2020), Article 102454, 10.1016/j.scs.2020.102454 J. Li, Y. Wang, Z. Ni, S. Chen, B. Xia An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in specific urban forms J. Clean. Prod., 271 (2020), Article 122555, 10.1016/j.jclepro.2020.122555 R.L. Hwang, T.P. Lin, F.Y. Lin Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect J. Build. Eng., 32 (2020), Article 101726, 10.1016/j.jobe.2020.101726 A. Aslam, M. Ibrahim, A. Mahmood, M. Mubashir, H.F.K. Sipra, I. Shahid, S. Ramzan, M.T. Latif, M.Y. Tahir, P.L. Show Mitigation of particulate matters and integrated approach for carbon monoxide remediation in an urban environment J. Environ. Chem. Eng., 9 (2021), Article 105546, 10.1016/j.jece.2021.105546 D. Wang, Y. Chen, L. Hu, J.A. Voogt, J.P. Gastellu-Etchegorry, E.S. Krayenhoff Modeling the angular effect of MODIS LST in urban areas: a case study of toulouse, france Remote Sens. Environ., 257 (2021), Article 112361, 10.1016/j.rse.2021.112361 A.H.M. Eldesoky, J. Gil, M.B. Pont The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions Urban Clim., 37 (2021), Article 100823, 10.1016/j.uclim.2021.100823 S. Pal, S. Ziaul Detection of land use and land cover change and land surface temperature in English Bazar urban centre Egypt. J. Remote. Sens. Space Sci., 20 (2017), pp. 125-145, 10.1016/j.ejrs.2016.11.003 S. Guha, H. Govil, N. Gill, A. Dey A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data Quat. Int. (2020), pp. 1-36, 10.1016/j.quaint.2020.06.041 H. Wu, T. Wang, Q.G. Wang, Y. Cao, Y. Qu, D. Nie Radiative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China Atmos. Environ., 247 (2021), Article 118201, 10.1016/j.atmosenv.2021.118201 Y. Liu, Q. Li, L. Yang, K. Mu, M. Zhang, J. Liu Urban heat island effects of various urban morphologies under regional climate conditions Sci. Total Environ., 743 (2020), Article 140589, 10.1016/j.scitotenv.2020.140589 C. Liotta, Y. Kervinio, H. Levrel, L. Tardieu Planning for environmental justice - reducing well-being inequalities through urban greening Environ. Sci. Policy, 112 (2020), pp. 47-60, 10.1016/j.envsci.2020.03.017 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S2213343721007739?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/1fc497ce-46e6-47ee-8823-c34fdd08d46c/download https://repositorio.cuc.edu.co/bitstreams/00f677a2-1e76-4107-acbe-bf78b090cb43/download https://repositorio.cuc.edu.co/bitstreams/0e7c1afd-fa89-4e09-94f8-40b66694ddf0/download https://repositorio.cuc.edu.co/bitstreams/221d0c29-1f79-4ed4-b552-6c0ce7e5d63a/download https://repositorio.cuc.edu.co/bitstreams/a695d67c-4508-41ad-87d3-5d1668057260/download https://repositorio.cuc.edu.co/bitstreams/29bc41ab-9bb3-4580-9903-5986f3b524ca/download |
bitstream.checksum.fl_str_mv |
4672dfe10cb723db5236aeed1b7aecc2 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 79ed47acdfa4fcd49250615014d0acd4 79ed47acdfa4fcd49250615014d0acd4 17e5c5c3735d4f830a91c7aef50a261a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166848325091328 |
spelling |
Maroni, DanielaTibério Cardoso, GraceNeckel, AlcindoStolfo Maculan, LaércioL.S. Oliveira, MarcosThaines Bodah, ElianeWilliam Bodah, BrianSantosh, M.2021-08-02T12:57:19Z2021-08-02T12:57:19Z2021-06-04https://hdl.handle.net/11323/8499https://doi.org/10.1016/j.jece.2021.105796Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The effect of global climate change on the temperature of urban areas has become more pronounced in the past couple decades, impacting population and quality of life. The United Nations (UN), the National Aeronautics and Space Administration (NASA) and the Intergovernmental Panel on Climate Change (IPCC) have emphasized the impact of urban structures on microclimatic. A better understanding of these effects is important to formulate effective strategies that would contribute to address the impacts of increased urban growth. Here we address a case study of the Vila Rodrigues neighborhood, located in Passo Fundo City in southern Brazil to analyze the variations of emissivity, temperature and vegetation of the terrestrial surface, with influence of buildings. We employ Landsat satellite images, and unpublished data provided by the NASA, interpolated and classified in the QGIS software, using Bands 4, 5 and 10, converted to Gray Level (NC). This procedure allowed the spectral radiance of the reflectance temperature to be obtained. The Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) were used, with correction of emissivity and spectral error, in the identification of the surface temperature of different areas in the Villa Rodrigues. The results showed a total variation of 3.86ºC among the sampled points, which is increased by the difference in significance of the thermal balance in urban areas under open sky with buildings. We suggest that green areas and parks with abundant vegetative cover and the application of new building materials in future constructions would help to improve the urban climate, and such regulation of the local temperature on global scale is an effective step towards addressing the adverse effects from climate change.Maroni, DanielaTibério Cardoso, GraceNeckel, AlcindoStolfo Maculan, LaércioL.S. Oliveira, MarcosThaines Bodah, ElianeWilliam Bodah, BrianSantosh, M.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/abs/pii/S2213343721007739?via%3DihubEngineeringMicroclimateRemote SensingAir TemperatureGlobal environmentLand surface temperature and vegetation index as a proxy to microclimateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionM. Bonatti, M.A. Lana, L.R. D’agostini, A.C.F. de. Vasconcelos, S. Sieber, L. Eufemia, T. da. Silva-rosa, S.L. Schlindwein Social representations of climate change and climate adaptation plans in southern Brazil: challenges of genuine participation Urban Clim., 29 (2019), Article 100496, 10.1016/j.uclim.2019.100496A. Neckel, J.L. da. Silva, P.P. Saraiva, H.A. Kujawa, J. Araldi, E.P. Paladini Estimation of the economic value of urban parks in Brazil, the case of the City of Passo Fundo J. Clean. Prod., 264 (2020), Article 121369, 10.1016/j.jclepro.2020.121369L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020) (2020), Article 126838, 10.1016/j.chemosphere.2020.126838H. Li, Y. Zhou, G. Jia, K. Zhao, J. Dong Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model Geosci. Front. (2021), Article 101141, 10.1016/j.gsf.2021.101141P.B. Cobbinah Urban resilience in climate change hotspot Land Use Policy, 100 (2021), Article 104948, 10.1016/j.landusepol.2020.104948PBMC, Brazilian Panel on Climate Change, In: Climate Change and Cities: Special Report of the Brazilian (Rio de Janeiro, Brazil), 2016. https://agenciabrasil.ebc.com.br/en/geral/noticia/2017–06/brazils-coastal-cities-more-vulnerable-climate-change.J.V. de. Oliveira, J.C.P. Cohen, M. Pimentel, H.L.Z. Tourinho, M.A. Lôbo, G. Sodré, A. Abdala Urban climate and environmental perception about climate change in Belém, Pará, Brazil Urban Clim., 31 (2020), Article 100579, 10.1016/j.uclim.2019.100579T.K. Dhar, L. Khirfan A multi-scale and multi-dimensional framework for enhancing the resilience of urban form to climate change Urban Clim., 19 (2017), pp. 72-91, 10.1016/j.uclim.2016.12.004R.M. de. Carvalho, C.F. Szlafsztein Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution Environ. Pollut., 245 (2019), pp. 844-852, 10.1016/j.envpol.2018.10.114C.M. Nascimento, W..de.S. Mendes, N.E.Q. Silvero, R.R. Poppiel, V.M. Sayão, A.C. Dotto, N.V..dos. Santos, M.T.A. Amorim, J.A.M. Demattê, Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil attributes, J. Environ. Manage. 277 (2021), 111316. https://ezproxy.cuc.edu.co:2067/10.1016/j.jenvman.2020.111316.H. Bherwani, A. Singh, R. Kumar Assessment methods of urban microclimate and its parameters: a critical review to take the research from lab to land Urban Clim., 34 (2020), Article 100690, 10.1016/j.uclim.2020.100690M.E. Gavito, H. Paz, F. Barragán, I. Siddique, F. Arreola-Villa, F. Pineda-García, P. Balvanera Indicators of integrative recovery of vegetation, soil and microclimate in successional fields of a tropical dry forest For. Ecol. Manag., 479 (2021), Article 118526, 10.1016/j.foreco.2020.118526Z.L. Li, B.H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I.F. Trigo, J.A. Sobrino Satellite-derived land surface temperature: current status and perspectives Remote Sens. Environ., 131 (2013), pp. 14-37, 10.1016/j.rse.2012.12.008R.S. Chatterjee, N. Singh, S. Thapa, D. Sharma, D. Kumar Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs Int. J. Appl. Earth Obs. Geoinf., 58 (2017), pp. 264-277, 10.1016/j.jag.2017.02.017M. Das, A. Das Assessing the relationship between local climatic zones (LCZs) and land surface temperature (LST) – A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India Urban Clim., 32 (2020), Article 100591, 10.1016/j.uclim.2020.100591T.D. Mushore, J. Odindi, T. Dube, T.N. Matongera, O. Mutanga Remote sensing applications in monitoring urban growth impacts on in-and-out door thermal conditions: a review R. S. A. S. E., 8 (2017), pp. 83-93, 10.1016/j.rsase.2017.08.001Q. Vanhellemont, Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS. ISPRS J. Photogramm, Remote Sens. 166, 2020, 390–402. https://ezproxy.cuc.edu.co:2067/10.1016/j.isprsjprs.2020.06.007.J. Peng, J. Jia, Y. Liu, H. Li, J. Wu Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas Remote Sens. Environ., 215 (2018), pp. 255-267, 10.1016/j.rse.2018.06.010F. Zullo, G. Fazio, B. Romano, A. Marucci, L. Fiorini Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): a study in the Po Valley (Italy) Sci. Total Environ., 650 (2019), pp. 1740-1751, 10.1016/j.scitotenv.2018.09.331C. Alexander Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST) Int. J. Appl. Earth Obs. Geoinf., 86 (2020), Article 102013, 10.1016/j.jag.2019.102013L. Sheng, X. Tang, H. You, Q. Gu, H. Hu Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China Ecol. Indic., 72 (2017), pp. 738-746, 10.1016/j.ecolind.2016.09.009B.T.W. Putra, P. Soni Evaluating NIR-Red and NIR-Red edge external filters with digital cameras for assessing vegetation indices under different illumination Infrared Phys. Technol., 81 (2017), pp. 148-156, 10.1016/j.infrared.2017.01.007D. Gozdowski, M. Stępień, E. Panek, J. Varghese, E. Bodecka, J. Rozbicki, S. Samborski Comparison of winter wheat NDVI data derived from Landsat 8 and active optical sensor at field scale Remote Sens. Appl. Soc. Environ., 20 (2020), Article 100409, 10.1016/j.rsase.2020.100409L. Costa, L. Nunes, Y. Ampatzidis A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms Comput. Electron. Agric., 172 (2020), Article 105334, 10.1016/j.compag.2020.105334A. Balew, T. Korme Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images Egypt. J. Remote. Sens. Space Sci. (2020), pp. 1-16, 10.1016/j.ejrs.2020.02.001B.J. He, Z.Q. Zhao, L.D. Shen, H.B. Wang, L.G. Li An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on Landsat 8 image Sustain. Cities Soc., 44 (2019), pp. 416-427, 10.1016/j.scs.2018.10.049A. Guo, J. Yang, W. Sun, X. Xiao, J.X. Cecilia, C. Jin, X. Li Impact of urban morphology and landscape characteristics on spatiotemporal heterogeneity of land surface temperature Sustain. Cities Soc., 63 (2020), Article 102443, 10.1016/j.scs.2020.102443K.J. Gohain, P. Mohammad, A. Goswami Assessing the impact of land use land cover changes on land surface temperature over Pune city, India Quat. Int., 1 (2020), pp. 1-38, 10.1016/j.quaint.2020.04.052T. Adulkongkaew, T. Satapanajaru, S. Charoenhirunyingyos, W. Singhirunnusorn Effect of land cover composition and building configuration on land surface temperature in an urban-sprawl city, case study in Bangkok Metropolitan Area, Thailand Heliyon, 6 (2020), p. 04485, 10.1016/j.heliyon.2020.e04485M. Lemus-Canovas, J. Martin-Vide, M. Moreno-Garcia, J.A. Lopez-Bustins Estimating Barcelona's metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature Sci. Total Environ., 699 (2020), Article 134307, 10.1016/j.scitotenv.2019.134307L.S. Ferreira, D.H.S. Duarte Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity Urban Clim., 27 (2019), pp. 105-123, 10.1016/j.uclim.2018.11.002R.L.N. Wanderley, L.M. Domingues, C.A. Joly, H.R. da. Rocha Relationship between land surface temperature and fraction of anthropized area in the Atlantic forest region, Brazil Plos One, 14 (2019), pp. 1-19, 10.1371/journal.pone.0225443W.L.F. Correia Filho, D. de, B. Santiago, J.F. de. Oliveira-Jðnior, C.A. da. Silva Junior Impact of urban decadal advance on land use and land cover and surface temperature in the city of Maceió, 87, Land Use Policy,, Brazil (2019), 10.1016/j.landusepol.2019.104026R.A. Carrasco, M.M.F. Pinheiro, J. Marcato Junior, R.E. Cicerelli, P.A. Silva, L.P. Osco, A.P.M. Ramos Land use/land cover change dynamics and their effects on land surface temperature in the western region of the state of São Paulo, Brazil Reg. Environ. Change, 20 (2020), pp. 1-12, 10.1007/s10113-020-01664-zC.I. Portela, K.G. Massi, T. Rodrigues, E. Alcântara Impact of urban and industrial features on land surface temperature: evidences from satellite thermal indices Sustain. Cities Soc., 56 (2020), Article 102100, 10.1016/j.scs.2020.102100V.M. Sayão, N.V. dos. Santos, W. de, S. Mendes, K.P.P. Marques, J.L. Safanelli, R.R. Poppiel, J.A.M. Demattê Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil Geo. Reg., 22 (2020), Article e00313, 10.1016/j.geodrs.2020.e00313Ibge, Brazilian Institute of Geography and Statistics, Demographic Data of 2020 - Brazil, 2021. https://cidades.ibge.gov.br/brasil/rs/passo-fundo/panorama.Embrapa, Climate of Passo Fundo in Brazil, 2020. http://www.cnpt.embrapa.br/pesquisa/agromet/app/principal/boletim.php.L.S. Maculan, V.R. Tângari Structuring elements of the territory and the effects on the urban border of Passo Fundo R. Nac. Geren. Cid., 8 (2020), pp. 18-35, 10.17271/2318847285720202284A. Chemura, O. Mutanga, T. Dube Integrating age in the detection and mapping of incongruous patches in coffee (Coffea arabica) plantations using multi-temporal Landsat 8 NDVI anomalies Int. J. Appl. Earth Obs. Geoinf., 57 (2017), pp. 1-13, 10.1016/j.jag.2016.12.007V. Rodriguez-Galiano, E. Pardo-Iguzquiza, M. Sanchez-Castillo, M. Chica-Olmo, M. Chica-Rivas Downscaling Landsat 7 ETM+ thermal imagery using land surface temperature and NDVI images Int. J. Appl. Earth Obs. Geoinf., 18 (2012), pp. 515-527, 10.1016/j.jag.2011.10.002S. Roy, S. Pandit, E.A. Eva, Md.S.H. Bagmar, M. Papia, L. Banik, T. Dube, F. Rahman, M.A. Razi Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data Urban Clim., 32 (2020), Article 100593, 10.1016/j.uclim.2020.100593Embrapa, Meteorological measurements of Brazil, 2020. http://www.cnpt.embrapa.br/pesquisa/agromet/app/principal/graficos.php.M.L. Plume SPSS (Statistical Package for the Social Sciences) Encycl. Inf. Syst. (2003), pp. 187-196, 10.1016/b0-12-227240-4/00166-0D. Bera, Nd Chatterjee, S. Bera Comparative performance of linear regression, polynomial regression and generalized additive model for canopy cover estimation in the dry deciduous forest of West Bengal R. S. A. S. E., 22 (2021), Article 100502, 10.1016/j.rsase.2021.100502K. Pandiaraj, P. Sivakumar, K.J. Prakash Machine learning based effective linear regression model for TSV layer assignment in 3DIC Microprocess. Microsyst., 83 (2021), Article 103953, 10.1016/j.micpro.2021.103953B. Djordjević, A.S. Mane, E. Krmac Analysis of dependency and importance of key indicators for railway sustainability monitoring: a new integrated approach with dea and pearson correlation Res. Transp. Bus. Manag. (2021), Article 100650, 10.1016/j.rtbm.2021.100650W. Zeng, T. Lu, Z. Liu, Q. Xu, H. Peng, C. Li, S. Yang, F. Yao Research on a laser ultrasonic visualization detection method for human skin tumors based on pearson correlation coefficient Opt. Laser Technol., 141 (2021), Article 107117, 10.1016/j.optlastec.2021.107117M. Baak, R. Koopman, H. Snoek, S. Klous A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics Comput. Stat. Data Anal., 152 (2020), Article 107043, 10.1016/j.csda.2020.107043T. Fu, X. Tang, Z. Cai, Y. Zuo, Y. Tang, X. Zhao Effect of chemical composition of black tea infusion on the color of milky tea Food Res Int, 139 (2021), Article 109945, 10.1016/j.porgcoat.2019.105459J. Peng, Y. Hu, J. Dong, Q. Liu, Y. Liu Quantifying spatial morphology and connectivity of urban heat islands in a megacity: a radius approach Sci. Total Environ., 714 (2020), Article 136792, 10.1016/j.scitotenv.2020.136792J.Y. Deng, N.H. Wong Impact of urban canyon geometries on outdoor thermal comfort in central business districts Sustain. Cities Soc., 53 (2020), Article 101966, 10.1016/j.scs.2019.101966A. Vilches, Á.B. Padura, M.M. Huelva Retrofitting of homes for people in fuel poverty: approach based on household thermal comfort Energy Policy, 100 (2017), pp. 283-291, 10.1016/j.enpol.2016.10.016P.C. Toscan, A. Neckel, C. Korcelski, L.S. Maculan, D. Maroni, T.M. Fuga, L.P. Cambrussi, H.A. Kujawa, E.T. Bodah, B.W. Bodah Urban Cemeteries in Southern Brazil: an analysis of planimetric variations, vegetation indices and temperature J. Civ. Eng. Archit., 14 (2020), pp. 617-624, 10.17265/1934-7359/2020.11.005Z. Wu, L. Yao, M. Zhuang, Y. Ren Detecting factors controlling spatial patterns in urban land surface temperatures: a case study of Beijing Sustain. Cities Soc., 63 (2020), Article 102454, 10.1016/j.scs.2020.102454J. Li, Y. Wang, Z. Ni, S. Chen, B. Xia An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in specific urban forms J. Clean. Prod., 271 (2020), Article 122555, 10.1016/j.jclepro.2020.122555R.L. Hwang, T.P. Lin, F.Y. Lin Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect J. Build. Eng., 32 (2020), Article 101726, 10.1016/j.jobe.2020.101726A. Aslam, M. Ibrahim, A. Mahmood, M. Mubashir, H.F.K. Sipra, I. Shahid, S. Ramzan, M.T. Latif, M.Y. Tahir, P.L. Show Mitigation of particulate matters and integrated approach for carbon monoxide remediation in an urban environment J. Environ. Chem. Eng., 9 (2021), Article 105546, 10.1016/j.jece.2021.105546D. Wang, Y. Chen, L. Hu, J.A. Voogt, J.P. Gastellu-Etchegorry, E.S. Krayenhoff Modeling the angular effect of MODIS LST in urban areas: a case study of toulouse, france Remote Sens. Environ., 257 (2021), Article 112361, 10.1016/j.rse.2021.112361A.H.M. Eldesoky, J. Gil, M.B. Pont The suitability of the urban local climate zone classification scheme for surface temperature studies in distinct macroclimate regions Urban Clim., 37 (2021), Article 100823, 10.1016/j.uclim.2021.100823S. Pal, S. Ziaul Detection of land use and land cover change and land surface temperature in English Bazar urban centre Egypt. J. Remote. Sens. Space Sci., 20 (2017), pp. 125-145, 10.1016/j.ejrs.2016.11.003S. Guha, H. Govil, N. Gill, A. Dey A long-term seasonal analysis on the relationship between LST and NDBI using Landsat data Quat. Int. (2020), pp. 1-36, 10.1016/j.quaint.2020.06.041H. Wu, T. Wang, Q.G. Wang, Y. Cao, Y. Qu, D. Nie Radiative effects and chemical compositions of fine particles modulating urban heat island in Nanjing, China Atmos. Environ., 247 (2021), Article 118201, 10.1016/j.atmosenv.2021.118201Y. Liu, Q. Li, L. Yang, K. Mu, M. Zhang, J. Liu Urban heat island effects of various urban morphologies under regional climate conditions Sci. Total Environ., 743 (2020), Article 140589, 10.1016/j.scitotenv.2020.140589C. Liotta, Y. Kervinio, H. Levrel, L. Tardieu Planning for environmental justice - reducing well-being inequalities through urban greening Environ. Sci. Policy, 112 (2020), pp. 47-60, 10.1016/j.envsci.2020.03.017PublicationORIGINALLand surface temperature and vegetation index as a proxy to microclimate.pdfLand surface temperature and vegetation index as a proxy to microclimate.pdfapplication/pdf108928https://repositorio.cuc.edu.co/bitstreams/1fc497ce-46e6-47ee-8823-c34fdd08d46c/download4672dfe10cb723db5236aeed1b7aecc2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/00f677a2-1e76-4107-acbe-bf78b090cb43/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0e7c1afd-fa89-4e09-94f8-40b66694ddf0/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILLand surface temperature and vegetation index as a proxy to microclimate.pdf.jpgLand surface temperature and vegetation index as a proxy to microclimate.pdf.jpgimage/jpeg54876https://repositorio.cuc.edu.co/bitstreams/221d0c29-1f79-4ed4-b552-6c0ce7e5d63a/download79ed47acdfa4fcd49250615014d0acd4MD54THUMBNAILLand surface temperature and vegetation index as a proxy to microclimate.pdf.jpgLand surface temperature and vegetation index as a proxy to microclimate.pdf.jpgimage/jpeg54876https://repositorio.cuc.edu.co/bitstreams/a695d67c-4508-41ad-87d3-5d1668057260/download79ed47acdfa4fcd49250615014d0acd4MD54TEXTLand surface temperature and vegetation index as a proxy to microclimate.pdf.txtLand surface temperature and vegetation index as a proxy to microclimate.pdf.txttext/plain2220https://repositorio.cuc.edu.co/bitstreams/29bc41ab-9bb3-4580-9903-5986f3b524ca/download17e5c5c3735d4f830a91c7aef50a261aMD5511323/8499oai:repositorio.cuc.edu.co:11323/84992024-09-17 14:17:43.265http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |