On property (Saw) and others spectral properties type Weyl-Browder theorems
An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σw(T) = Ea(T), where σw(T) is the Weyl spectrum of T and Eo a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two...
- Autores:
-
Sanabria, José E.
Carpintero, Carlos R.
Rosas Rodriguez, Ennis Rafael
García, Orlando
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/2169
- Acceso en línea:
- https://hdl.handle.net/11323/2169
https://repositorio.cuc.edu.co/
- Palabra clave:
- A-Weyl's theorem
Property (Sab)
Property (Saw)
Semi B-Fredholm operator
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_641223b5ee4319287d2d05baf326e036 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/2169 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
title |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
spellingShingle |
On property (Saw) and others spectral properties type Weyl-Browder theorems A-Weyl's theorem Property (Sab) Property (Saw) Semi B-Fredholm operator |
title_short |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
title_full |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
title_fullStr |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
title_full_unstemmed |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
title_sort |
On property (Saw) and others spectral properties type Weyl-Browder theorems |
dc.creator.fl_str_mv |
Sanabria, José E. Carpintero, Carlos R. Rosas Rodriguez, Ennis Rafael García, Orlando |
dc.contributor.author.spa.fl_str_mv |
Sanabria, José E. Carpintero, Carlos R. Rosas Rodriguez, Ennis Rafael García, Orlando |
dc.subject.spa.fl_str_mv |
A-Weyl's theorem Property (Sab) Property (Saw) Semi B-Fredholm operator |
topic |
A-Weyl's theorem Property (Sab) Property (Saw) Semi B-Fredholm operator |
description |
An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σw(T) = Ea(T), where σw(T) is the Weyl spectrum of T and Eo a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF-+(T) = σw(T), where σSBF-+ (T) is the upper semi B-Weyl spectrum of T. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2019-01-23T21:57:18Z |
dc.date.available.none.fl_str_mv |
2019-01-23T21:57:18Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
00347426 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/2169 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
00347426 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/2169 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004. [2] , Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251–263. [3] P. Aiena, E. Aponte, and E. Balzan, Weyl type Theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), 1–20. [4] P. Aiena, M. T. Biondi, and C. Carpintero, On drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839–2848. [5] P. Aiena, C. Carpintero, and E. Rosas, Some characterization of operators satisfying a-Browder’s theorem, J. Math. Anal. Appl. 311 (2005), 530–544. [6] P. Aiena and L. Miller, On generalized a-Browder’s theorem, Studia Math. 180 (2007), 285–299. [7] M. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5 (2008), 371–378. [8] M. Amouch and H. Zguitti, On the equivalence of Browder’s theorem and generalized Browder’s theorem, Glasgow Math. J. 48 (2006), 179–185. [9] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140 (2000), 163–175. [10] M. Berkani, M. Kachad, H. Zariouh, and H. Zguitti, Variations on aBrowder-type theorems, Sarajevo J. Math. 9 (2013), 271–281. [11] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376. [12] M. Berkani, M. Sarih, and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399–409. [13] M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica 134 (2009), 369–378. [14] , New extended Weyl type theorems, Mat. Vesnik 62 (2010), 145– 154. [15] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. [16] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69. [17] A. Gupta and N. Kashayap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2011), 1–7. [18] , Variations on Weyl type theorems, Int. J. Contemp. Math. Sciences 8 (2012), 189–198. [19] V. Rakoˇcevi´c, On a class of operators, Mat. Vesnik 37 (1985), 423–426. [20] , Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. [21] M. H. M. Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math. 11 (2014), 729–744. [22] M. H. M. Rashid and T. Prasad, Variations of Weyl type theorems, Ann Funct. Anal. Math. 4 (2013), 40–52. [23] , Property (Sw) for bounded linear operators, Asia-European J. Math. 8 (2015), 14 pages, DOI: 10.1142/S1793557115500126. [24] J. Sanabria, C. Carpintero, E. Rosas, and O. Garc´ıa, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141–154. [25] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94–103. [26] , New version of property (az), Mat. Vesnik 66 (2014), 317–322. [27] H. Zariouh and H. Zguitti, Variations on Browder’s theorem, Acta Math. Univ. Comenianae 81 (2012), 255–264. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Revista Colombiana de Matematicas |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3e765def-a45e-4f87-8fd9-4986fe60b00d/download https://repositorio.cuc.edu.co/bitstreams/3a30dd4a-c240-4b01-833d-f7c50208bc30/download https://repositorio.cuc.edu.co/bitstreams/f0c543c1-933f-45a2-8777-659c33d997af/download https://repositorio.cuc.edu.co/bitstreams/1507ebf8-7839-44a9-93bb-9084acd3cab1/download |
bitstream.checksum.fl_str_mv |
8cdc5de60046ad9ae296bea0ab7fa919 8a4605be74aa9ea9d79846c1fba20a33 56d59c95a01e4d1859f971c3020d281d b03deca22aaaab9c1020a0302efe82f0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760771053387776 |
spelling |
Sanabria, José E.Carpintero, Carlos R.Rosas Rodriguez, Ennis RafaelGarcía, Orlando2019-01-23T21:57:18Z2019-01-23T21:57:18Z201700347426https://hdl.handle.net/11323/2169Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σw(T) = Ea(T), where σw(T) is the Weyl spectrum of T and Eo a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF-+(T) = σw(T), where σSBF-+ (T) is the upper semi B-Weyl spectrum of T.Sanabria, José E.-713a9d59-342c-4562-b3d6-c06f5b214126-0Carpintero, Carlos R.-fe383790-b687-4109-8367-f91f6e274a1c-0Rosas Rodriguez, Ennis Rafael-0000-0001-8123-9344-600García, Orlando-3ec99ae8-85d0-4a8a-a21f-6cc390d93d03-0engRevista Colombiana de MatematicasAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A-Weyl's theoremProperty (Sab)Property (Saw)Semi B-Fredholm operatorOn property (Saw) and others spectral properties type Weyl-Browder theoremsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer, 2004. [2] , Quasi-Fredholm operators and localized SVEP, Acta Sci. Math. (Szeged) 73 (2007), 251–263. [3] P. Aiena, E. Aponte, and E. Balzan, Weyl type Theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66 (2010), 1–20. [4] P. Aiena, M. T. Biondi, and C. Carpintero, On drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839–2848. [5] P. Aiena, C. Carpintero, and E. Rosas, Some characterization of operators satisfying a-Browder’s theorem, J. Math. Anal. Appl. 311 (2005), 530–544. [6] P. Aiena and L. Miller, On generalized a-Browder’s theorem, Studia Math. 180 (2007), 285–299. [7] M. Amouch and M. Berkani, On the property (gw), Mediterr. J. Math. 5 (2008), 371–378. [8] M. Amouch and H. Zguitti, On the equivalence of Browder’s theorem and generalized Browder’s theorem, Glasgow Math. J. 48 (2006), 179–185. [9] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140 (2000), 163–175. [10] M. Berkani, M. Kachad, H. Zariouh, and H. Zguitti, Variations on aBrowder-type theorems, Sarajevo J. Math. 9 (2013), 271–281. [11] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376. [12] M. Berkani, M. Sarih, and H. Zariouh, Browder-type theorems and SVEP, Mediterr. J. Math. 8 (2011), 399–409. [13] M. Berkani and H. Zariouh, Extended Weyl type theorems, Math. Bohemica 134 (2009), 369–378. [14] , New extended Weyl type theorems, Mat. Vesnik 62 (2010), 145– 154. [15] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. [16] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61–69. [17] A. Gupta and N. Kashayap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2011), 1–7. [18] , Variations on Weyl type theorems, Int. J. Contemp. Math. Sciences 8 (2012), 189–198. [19] V. Rakoˇcevi´c, On a class of operators, Mat. Vesnik 37 (1985), 423–426. [20] , Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. [21] M. H. M. Rashid, Properties (t) and (gt) for bounded linear operators, Mediterr. J. Math. 11 (2014), 729–744. [22] M. H. M. Rashid and T. Prasad, Variations of Weyl type theorems, Ann Funct. Anal. Math. 4 (2013), 40–52. [23] , Property (Sw) for bounded linear operators, Asia-European J. Math. 8 (2015), 14 pages, DOI: 10.1142/S1793557115500126. [24] J. Sanabria, C. Carpintero, E. Rosas, and O. Garc´ıa, On generalized property (v) for bounded linear operators, Studia Math. 212 (2012), 141–154. [25] H. Zariouh, Property (gz) for bounded linear operators, Mat. Vesnik 65 (2013), 94–103. [26] , New version of property (az), Mat. Vesnik 66 (2014), 317–322. [27] H. Zariouh and H. Zguitti, Variations on Browder’s theorem, Acta Math. Univ. Comenianae 81 (2012), 255–264.PublicationORIGINALOn property (Saw) and others spectral properties type Weyl-Browder theorems.pdfOn property (Saw) and others spectral properties type Weyl-Browder theorems.pdfapplication/pdf1393448https://repositorio.cuc.edu.co/bitstreams/3e765def-a45e-4f87-8fd9-4986fe60b00d/download8cdc5de60046ad9ae296bea0ab7fa919MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3a30dd4a-c240-4b01-833d-f7c50208bc30/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOn property (Saw) and others spectral properties type Weyl-Browder theorems.pdf.jpgOn property (Saw) and others spectral properties type Weyl-Browder theorems.pdf.jpgimage/jpeg38999https://repositorio.cuc.edu.co/bitstreams/f0c543c1-933f-45a2-8777-659c33d997af/download56d59c95a01e4d1859f971c3020d281dMD54TEXTOn property (Saw) and others spectral properties type Weyl-Browder theorems.pdf.txtOn property (Saw) and others spectral properties type Weyl-Browder theorems.pdf.txttext/plain34688https://repositorio.cuc.edu.co/bitstreams/1507ebf8-7839-44a9-93bb-9084acd3cab1/downloadb03deca22aaaab9c1020a0302efe82f0MD5511323/2169oai:repositorio.cuc.edu.co:11323/21692024-09-17 11:04:29.858open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |