On property (Saw) and others spectral properties type Weyl-Browder theorems

An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σw(T) = Ea(T), where σw(T) is the Weyl spectrum of T and Eo a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two...

Full description

Autores:
Sanabria, José E.
Carpintero, Carlos R.
Rosas Rodriguez, Ennis Rafael
García, Orlando
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2169
Acceso en línea:
https://hdl.handle.net/11323/2169
https://repositorio.cuc.edu.co/
Palabra clave:
A-Weyl's theorem
Property (Sab)
Property (Saw)
Semi B-Fredholm operator
Rights
openAccess
License
Atribución – No comercial – Compartir igual
Description
Summary:An operator T acting on a Banach space X satisfies the property (aw) if σ(T) \ σw(T) = Ea(T), where σw(T) is the Weyl spectrum of T and Eo a(T) is the set of all eigenvalues of T of finite multiplicity that are isolated in the approximate point spectrum of T. In this paper we introduce and study two new spectral properties, namely (Saw) and (Sab), in connection with Weyl-Browder type theorems. Among other results, we prove that T satisfies property (Saw) if and only if T satisfies property (aw) and σSBF-+(T) = σw(T), where σSBF-+ (T) is the upper semi B-Weyl spectrum of T.