Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla
Empirical propagation models are widely used to calculate path losses in a wireless channel in different types of scenarios, and their results are considered when selecting the location of base stations and planning their coverage area. The Walfisch-Ikegami, Stanford University Interim (SUI) and COS...
- Autores:
-
Barrios-Ulloa, Alexis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8739
- Acceso en línea:
- https://hdl.handle.net/11323/8739
https://doi.org/10.17981/cesta.02.01.2021.03
https://repositorio.cuc.edu.co/
- Palabra clave:
- Error de predicción
Error relativo
Entorno urbano
Modelo de propagación empírico
Pérdida por trayectoria
Empirical propagation model
Prediction error
Relative error
Trajectory loss
Urban setting
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_63a8b54129ef9c3a522ec30daa856dac |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8739 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
dc.title.translated.spa.fl_str_mv |
Comparison of radio wave propagations models of a wireless channel in the urban environment of the city of Barranquilla |
title |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
spellingShingle |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla Error de predicción Error relativo Entorno urbano Modelo de propagación empírico Pérdida por trayectoria Empirical propagation model Prediction error Relative error Trajectory loss Urban setting |
title_short |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
title_full |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
title_fullStr |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
title_full_unstemmed |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
title_sort |
Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla |
dc.creator.fl_str_mv |
Barrios-Ulloa, Alexis |
dc.contributor.author.spa.fl_str_mv |
Barrios-Ulloa, Alexis |
dc.subject.proposal.spa.fl_str_mv |
Error de predicción Error relativo Entorno urbano Modelo de propagación empírico Pérdida por trayectoria |
topic |
Error de predicción Error relativo Entorno urbano Modelo de propagación empírico Pérdida por trayectoria Empirical propagation model Prediction error Relative error Trajectory loss Urban setting |
dc.subject.proposal.eng.fl_str_mv |
Empirical propagation model Prediction error Relative error Trajectory loss Urban setting |
description |
Empirical propagation models are widely used to calculate path losses in a wireless channel in different types of scenarios, and their results are considered when selecting the location of base stations and planning their coverage area. The Walfisch-Ikegami, Stanford University Interim (SUI) and COST-231 Hata models were evaluated in this work in order to estimate their effectiveness. The power in a receiver operating in the 1900 MHz band was measured in different locations in an urban area of Barranquilla, Colombia, and the data obtained was used in the comparison. The effectiveness of the loss prediction by the models was analyzed through the calculation of the relative error and prediction error, showing that the Walfisch-Ikegami presented the lowest relative error compared to the SUI type B and the COST-231 Hata. The error values obtained were high, which indicates that the evaluated models do not correctly predict the losses measured in the considered scenario. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-21T20:27:57Z |
dc.date.available.none.fl_str_mv |
2021-09-21T20:27:57Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Barrios Ulloa, A. R. (2021). Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en el área urbana de la ciudad de Barranquilla. Computer and Electronic Sciences: Theory and Applications, 2(1), 31–38. https://doi.org/10.17981/cesta.02.01.2021.03 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8739 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/cesta.02.01.2021.03 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/cesta.02.01.2021.03 |
dc.identifier.eissn.spa.fl_str_mv |
2745-0090 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Barrios Ulloa, A. R. (2021). Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en el área urbana de la ciudad de Barranquilla. Computer and Electronic Sciences: Theory and Applications, 2(1), 31–38. https://doi.org/10.17981/cesta.02.01.2021.03 10.17981/cesta.02.01.2021.03 2745-0090 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8739 https://doi.org/10.17981/cesta.02.01.2021.03 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Computer and Electronic Sciences: Theory and Applications Computer and Electronic Sciences: Theory and Applications |
dc.relation.references.spa.fl_str_mv |
[1] T. S. Rappaport, Wireless Communications: Principles and practice, 2 ed. NJ, USA: Prentice Hall, 2002. [2] N. Blaunstein & C. Christodoulou, Radio propagation and adaptative antennas for wireless communications. NJ, USA: Wiley, 2007. [3] S. M. Tasmeeh Ahsan, F. Jahan & N. M. Proma, “Inspection of picocell’s performance using different models in different regions,” presente at 5th Int Conf Comput Commun Syst, ICCCS 2020, SHG, CN, pp. 891–894, 2020. http://doi.org/10.1109/ ICCCS49078.2020.9118503 [4] COST telecomunications, COST Action 231. Digital mobile radio towards future generation systems, BRU, BE: EC, Final report, EUR 18957, 1999. Available: https://op.europa.eu/en/publication-detail/-/publication/f2f42003-4028-4496-af95-beaa38fd475f [5] R. Saidi, N. Cherrid & T. Bentahar, “Study of the Prediction of Way Weakening in Mobile Radio Service: Applied to a Part of the City of Batna-Algeria,” presented at Int. Conf. Adv. Syst. Emergent Technol, IC_ASET 2020, Hammamet, TUN, pp. 389–393, 15-18 Dec 2020. http://doi.org/10.1109/IC_ASET49463.2020.9318308 [6] R. Drozdova & V. Akhpashev, “Ordinay Least Squares in COST 231 HATA Key parameters optimization base on experimental data,” in 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON, NOV, RU, pp. 21–23, 18-22 Sept 2017. http://doi.org/10.1109/SIBIRCON.2017.8109878 [7] H. S. Jo, C. Park, E. Lee, H. K. Choi & J. Park, “Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and gaussian process,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–23, 2020. http:// doi.org/10.3390/s20071927 [8] A. Barrios, R. Arjona & R. Álvarez, “Comparación de modelos de radiopropagación en el área suburbana de la ciudad de Barranquilla,” Rev Colomb Tecnol Av, vol. 2, no. 32, pp. 78–85, 2018. Disponible en http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/RCTA/article/view/3029 [9] UIT-R, “Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 GHz Serie P,” Geneva, Switzerland: ITU, P.1411-7, 2013. Available: https://www.itu.int/rec/R-REC-P.1411-7-201309-S/en [10] S. Mohanty & S. Mishra, “Performance evaluation of wireless propagation models for long term evolution using NS-3,” presente at 2015 Int Conf Man Mach Interfacing, MAMI, BBSR, IMD, 17-19 Dec. 2016. http://doi.org/10.1109/MAMI.2015.7456599 [11] W. Bhupuak & S. Tooprakai, “Path loss comparison in 850 MHz and 1800 MHz frequency bands,” presented at 13th Int Conf Electr Eng Comput Telecommun Inf Technol, ECTI-CON, CNX, TH, 28 Jun.-1 Jul 2016. http://doi.org/10.1109/ECTICon.2016.7561295 [12] H. Xu, C. Shi, W. Zhang & Y. Yang, “Field testing, modeling and comparison of multi frequency band propagation characteristics for cellular networks,” presented at 2016 IEEE Int Conf Commun, ICC 2016, KUL, MY, 22-27 May 2016. http://doi. org/10.1109/ICC.2016.7510961 [13] T. Acar, F. Caliskan & E. Aydin, “Comparison of computer-based propagation models with experimental data collected in an urban area at 1800 MHz,” presented at 2015 IEEE 16th Annu Wirel Microw Technol Conf, WAMICON, CB, FL, USA, 13-15 Apr 2015. http://doi.org/10.1109/WAMICON.2015.7120381 [14] N. Belhadj, B. Oueslati & T. Aguili, “Adjustment of Cost231 Walfisch-Ikegami model for HSPA+ in Tunisian urban environments,” presented at 2nd World Symposium on Web Applications and Networking, WSWAN, DTTZ, TN, 21-23 Mar 2015. http://doi.org/10.1109/WSWAN.2015.7210330 [15] L. Schirru, M. B. Lodi, A. Fanti & G. Mazzarella, “Improved COST 231-WI Model for Irregular Built-Up Areas 2 Modified Version of the Cost 231 Walfisch-Ikegami Model 1 Introduction 4 Results 3 Measurement Campaign,” presented at XXXIV General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science, URSI GASS 2020, ROM, IT, 29 Aug-5 Sept 2020. Available from https://www.ursi.org/proceedings/procGA20/papers/Schirruetal.pdf [16] V. S. Anusha, G. K. Nithya & S. N. Rao, “A comprehensive survey of electromagnetic propagation models,” presented at 2017 IEEE Int Conf Commun Signal Process, ICCSP, MÄS, IN, 6-8 Apr 2017. http://doi.org/10.1109/ICCSP.2017.8286627 [17] P. K. Sharma, D. Sharma & T. V. Sai, “Optimization of propagation path loss model in 4G wireless communication systems,” presented at 2nd Int Conf Inven Syst Control, ICISC, CJB, IN, 19-20 Jan 2018. http://doi.org/10.1109/ICISC.2018.8399004 [18] A. Mahmood, S. Khan, S. Hussain & M. Zeeshan, “Performance Analysis of Multi-User Downlink PD-NOMA under sui Fading Channel Models,” IEEE Access, vol. 9, pp. 52851–52859, Mar 2021. http://doi.org/10.1109/ACCESS.2021.3070147 [19] UIT-R, Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 GHz Serie P, Geneva, Switzerland: ITU, P.1411-10, 2019. Available: https://www.itu.int/rec/R-REC-P.1411-10-201908-I/es [20] C. Phillips, D. Sicker & D. Grunwald, “A survey of wireless path loss prediction and coverage mapping methods,” IEEE Commun Surv Tutorials, vol. 15, no. 1, pp. 255–270, Mar 2012. http://doi.org/10.1109/SURV.2012.022412.00172 [21] A. Bhuvaneshwari & T. Sathyasavithri, “Comparative analysis of mobile radio path loss models for suburban environment in Southern India,” presented at 2013 Int Conf Emerg Trends VLSI Embed Syst Nano Electron Telecommun Syst, ICEVENT, TVM, IN, 7-9 Jan 2013. http://doi.org/10.1109/ICEVENT.2013.6496544 |
dc.relation.citationendpage.none.fl_str_mv |
38 |
dc.relation.citationstartpage.none.fl_str_mv |
31 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
2 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
CESTA |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.source.spa.fl_str_mv |
Computer and Electronic Sciences: Theory and Applications |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/CESTA/article/view/3380 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/592192e0-9d43-426c-963e-bb466264a3f4/download https://repositorio.cuc.edu.co/bitstreams/781ee2ba-6a7c-4db2-995f-c9eaa78388e8/download https://repositorio.cuc.edu.co/bitstreams/0601ae10-9ab6-4d82-8318-4561a7ae30ea/download https://repositorio.cuc.edu.co/bitstreams/fb1dbc60-5ad8-4f59-88b4-2356b5d9f260/download https://repositorio.cuc.edu.co/bitstreams/2b7e14fb-2a89-480a-9f6a-dccb9f02f5e5/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 5f8d1a005e805565a9ecddfb14c12c72 e30e9215131d99561d40d6b0abbe9bad 26f3825845d6d79a4ab0c287312716a7 a64a54d4b27e10f0faa3bcdd0d3a64ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166900330266624 |
spelling |
Barrios-Ulloa, Alexis2021-09-21T20:27:57Z2021-09-21T20:27:57Z2021Barrios Ulloa, A. R. (2021). Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en el área urbana de la ciudad de Barranquilla. Computer and Electronic Sciences: Theory and Applications, 2(1), 31–38. https://doi.org/10.17981/cesta.02.01.2021.03https://hdl.handle.net/11323/8739https://doi.org/10.17981/cesta.02.01.2021.0310.17981/cesta.02.01.2021.032745-0090Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Empirical propagation models are widely used to calculate path losses in a wireless channel in different types of scenarios, and their results are considered when selecting the location of base stations and planning their coverage area. The Walfisch-Ikegami, Stanford University Interim (SUI) and COST-231 Hata models were evaluated in this work in order to estimate their effectiveness. The power in a receiver operating in the 1900 MHz band was measured in different locations in an urban area of Barranquilla, Colombia, and the data obtained was used in the comparison. The effectiveness of the loss prediction by the models was analyzed through the calculation of the relative error and prediction error, showing that the Walfisch-Ikegami presented the lowest relative error compared to the SUI type B and the COST-231 Hata. The error values obtained were high, which indicates that the evaluated models do not correctly predict the losses measured in the considered scenario.Los modelos de propagación empíricos son ampliamente usados para calcular las pérdidas por trayectoria en un canal inalámbrico en diferentes tipos de escenarios, y sus resultados son tenidos en cuenta al momento de seleccionar la ubicación de estaciones base y planificar su área de cobertura. Los modelos Walfisch-Ikegami, Interino de la Universidad de Stanford (SUI) y COST-231 Hata fueron evaluados en este trabajo con el propósito de estimar su efectividad. La potencia en un receptor operando en la banda de 1900 MHz fue medida en diferentes ubicaciones de una zona urbana de Barranquilla, Colombia, y los datos obtenidos se utilizaron en la comparación. La efectividad de la predicción de pérdidas por parte de los modelos fue analizada a través del cálculo del error relativo y error de predicción, mostrando que el Walfisch-Ikegami presentó menor error relativo en comparación con el SUI tipo B y el COST-231 Hata. Los valores de error obtenidos fueron altos, lo cual indica que los modelos evaluados no predicen adecuadamente las pérdidas medidas en el escenario considerado.Barrios, Alexis-will be generated-orcid-0000-0002-6525-4533-6008 páginasapplication/pdfspaCorporación Universidad de la CostaBarranquillaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computer and Electronic Sciences: Theory and Applicationshttps://revistascientificas.cuc.edu.co/CESTA/article/view/3380Comparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de BarranquillaComparison of radio wave propagations models of a wireless channel in the urban environment of the city of BarranquillaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionComputer and Electronic Sciences: Theory and ApplicationsComputer and Electronic Sciences: Theory and Applications[1] T. S. Rappaport, Wireless Communications: Principles and practice, 2 ed. NJ, USA: Prentice Hall, 2002.[2] N. Blaunstein & C. Christodoulou, Radio propagation and adaptative antennas for wireless communications. NJ, USA: Wiley, 2007.[3] S. M. Tasmeeh Ahsan, F. Jahan & N. M. Proma, “Inspection of picocell’s performance using different models in different regions,” presente at 5th Int Conf Comput Commun Syst, ICCCS 2020, SHG, CN, pp. 891–894, 2020. http://doi.org/10.1109/ ICCCS49078.2020.9118503[4] COST telecomunications, COST Action 231. Digital mobile radio towards future generation systems, BRU, BE: EC, Final report, EUR 18957, 1999. Available: https://op.europa.eu/en/publication-detail/-/publication/f2f42003-4028-4496-af95-beaa38fd475f[5] R. Saidi, N. Cherrid & T. Bentahar, “Study of the Prediction of Way Weakening in Mobile Radio Service: Applied to a Part of the City of Batna-Algeria,” presented at Int. Conf. Adv. Syst. Emergent Technol, IC_ASET 2020, Hammamet, TUN, pp. 389–393, 15-18 Dec 2020. http://doi.org/10.1109/IC_ASET49463.2020.9318308[6] R. Drozdova & V. Akhpashev, “Ordinay Least Squares in COST 231 HATA Key parameters optimization base on experimental data,” in 2017 International Multi-Conference on Engineering, Computer and Information Sciences, SIBIRCON, NOV, RU, pp. 21–23, 18-22 Sept 2017. http://doi.org/10.1109/SIBIRCON.2017.8109878[7] H. S. Jo, C. Park, E. Lee, H. K. Choi & J. Park, “Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network and gaussian process,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–23, 2020. http:// doi.org/10.3390/s20071927[8] A. Barrios, R. Arjona & R. Álvarez, “Comparación de modelos de radiopropagación en el área suburbana de la ciudad de Barranquilla,” Rev Colomb Tecnol Av, vol. 2, no. 32, pp. 78–85, 2018. Disponible en http://revistas.unipamplona.edu.co/ojs_viceinves/index.php/RCTA/article/view/3029[9] UIT-R, “Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 GHz Serie P,” Geneva, Switzerland: ITU, P.1411-7, 2013. Available: https://www.itu.int/rec/R-REC-P.1411-7-201309-S/en[10] S. Mohanty & S. Mishra, “Performance evaluation of wireless propagation models for long term evolution using NS-3,” presente at 2015 Int Conf Man Mach Interfacing, MAMI, BBSR, IMD, 17-19 Dec. 2016. http://doi.org/10.1109/MAMI.2015.7456599[11] W. Bhupuak & S. Tooprakai, “Path loss comparison in 850 MHz and 1800 MHz frequency bands,” presented at 13th Int Conf Electr Eng Comput Telecommun Inf Technol, ECTI-CON, CNX, TH, 28 Jun.-1 Jul 2016. http://doi.org/10.1109/ECTICon.2016.7561295[12] H. Xu, C. Shi, W. Zhang & Y. Yang, “Field testing, modeling and comparison of multi frequency band propagation characteristics for cellular networks,” presented at 2016 IEEE Int Conf Commun, ICC 2016, KUL, MY, 22-27 May 2016. http://doi. org/10.1109/ICC.2016.7510961[13] T. Acar, F. Caliskan & E. Aydin, “Comparison of computer-based propagation models with experimental data collected in an urban area at 1800 MHz,” presented at 2015 IEEE 16th Annu Wirel Microw Technol Conf, WAMICON, CB, FL, USA, 13-15 Apr 2015. http://doi.org/10.1109/WAMICON.2015.7120381[14] N. Belhadj, B. Oueslati & T. Aguili, “Adjustment of Cost231 Walfisch-Ikegami model for HSPA+ in Tunisian urban environments,” presented at 2nd World Symposium on Web Applications and Networking, WSWAN, DTTZ, TN, 21-23 Mar 2015. http://doi.org/10.1109/WSWAN.2015.7210330[15] L. Schirru, M. B. Lodi, A. Fanti & G. Mazzarella, “Improved COST 231-WI Model for Irregular Built-Up Areas 2 Modified Version of the Cost 231 Walfisch-Ikegami Model 1 Introduction 4 Results 3 Measurement Campaign,” presented at XXXIV General Assembly and Scientific Symposium (GASS) of the International Union of Radio Science, URSI GASS 2020, ROM, IT, 29 Aug-5 Sept 2020. Available from https://www.ursi.org/proceedings/procGA20/papers/Schirruetal.pdf[16] V. S. Anusha, G. K. Nithya & S. N. Rao, “A comprehensive survey of electromagnetic propagation models,” presented at 2017 IEEE Int Conf Commun Signal Process, ICCSP, MÄS, IN, 6-8 Apr 2017. http://doi.org/10.1109/ICCSP.2017.8286627[17] P. K. Sharma, D. Sharma & T. V. Sai, “Optimization of propagation path loss model in 4G wireless communication systems,” presented at 2nd Int Conf Inven Syst Control, ICISC, CJB, IN, 19-20 Jan 2018. http://doi.org/10.1109/ICISC.2018.8399004[18] A. Mahmood, S. Khan, S. Hussain & M. Zeeshan, “Performance Analysis of Multi-User Downlink PD-NOMA under sui Fading Channel Models,” IEEE Access, vol. 9, pp. 52851–52859, Mar 2021. http://doi.org/10.1109/ACCESS.2021.3070147[19] UIT-R, Datos de propagación y métodos de predicción para la planificación de los sistemas de radiocomunicaciones de exteriores de corto alcance y redes de radiocomunicaciones de área local en la gama de frecuencias de 300 MHz a 100 GHz Serie P, Geneva, Switzerland: ITU, P.1411-10, 2019. Available: https://www.itu.int/rec/R-REC-P.1411-10-201908-I/es[20] C. Phillips, D. Sicker & D. Grunwald, “A survey of wireless path loss prediction and coverage mapping methods,” IEEE Commun Surv Tutorials, vol. 15, no. 1, pp. 255–270, Mar 2012. http://doi.org/10.1109/SURV.2012.022412.00172[21] A. Bhuvaneshwari & T. Sathyasavithri, “Comparative analysis of mobile radio path loss models for suburban environment in Southern India,” presented at 2013 Int Conf Emerg Trends VLSI Embed Syst Nano Electron Telecommun Syst, ICEVENT, TVM, IN, 7-9 Jan 2013. http://doi.org/10.1109/ICEVENT.2013.6496544383112CESTAError de predicciónError relativoEntorno urbanoModelo de propagación empíricoPérdida por trayectoriaEmpirical propagation modelPrediction errorRelative errorTrajectory lossUrban settingPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/592192e0-9d43-426c-963e-bb466264a3f4/download42fd4ad1e89814f5e4a476b409eb708cMD52ORIGINALComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla.pdfComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla.pdfapplication/pdf956637https://repositorio.cuc.edu.co/bitstreams/781ee2ba-6a7c-4db2-995f-c9eaa78388e8/download5f8d1a005e805565a9ecddfb14c12c72MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0601ae10-9ab6-4d82-8318-4561a7ae30ea/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla.pdf.jpgComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla.pdf.jpgimage/jpeg64898https://repositorio.cuc.edu.co/bitstreams/fb1dbc60-5ad8-4f59-88b4-2356b5d9f260/download26f3825845d6d79a4ab0c287312716a7MD54TEXTComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla.pdf.txtComparación de modelos de propagación de ondas de radio de un canal inalámbrico en un entorno urbano de la ciudad de Barranquilla.pdf.txttext/plain27347https://repositorio.cuc.edu.co/bitstreams/2b7e14fb-2a89-480a-9f6a-dccb9f02f5e5/downloada64a54d4b27e10f0faa3bcdd0d3a64ffMD5511323/8739oai:repositorio.cuc.edu.co:11323/87392024-09-17 14:23:45.71http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |