Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda
Introducción: En este documento se presenta una metodología multiobjetivo aplicada al problema del Planeamiento de la Expansión de la Transmisión (PET) cuando se consideran las incertidumbres en la demanda y la generación eólica. Objetivo: Obtener planes de expansión robustos que minimicen los costo...
- Autores:
-
Correa Flórez, Carlos Adrián
Sánchez Salcedo, Alejandro
Panesso Hernández, Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12268
- Palabra clave:
- multi-objective optimization
robust expansion plans
transmission expansion planning
uncertainty
wind generation
incertidumbre
generación eólica
optimización multiobjetivo
planeamiento de la expansión de la transmisión
- Rights
- openAccess
- License
- INGE CUC - 2020
id |
RCUC2_62fbde3c43521f514030571854ea09f7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12268 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
dc.title.translated.eng.fl_str_mv |
A Multi-Objective Methodology applied to the Transmission Expansion Planning Considering Wind Power and Demand Uncertainties |
title |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
spellingShingle |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda multi-objective optimization robust expansion plans transmission expansion planning uncertainty wind generation incertidumbre generación eólica optimización multiobjetivo planeamiento de la expansión de la transmisión |
title_short |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
title_full |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
title_fullStr |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
title_full_unstemmed |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
title_sort |
Metodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la Demanda |
dc.creator.fl_str_mv |
Correa Flórez, Carlos Adrián Sánchez Salcedo, Alejandro Panesso Hernández, Andrés |
dc.contributor.author.spa.fl_str_mv |
Correa Flórez, Carlos Adrián Sánchez Salcedo, Alejandro Panesso Hernández, Andrés |
dc.subject.eng.fl_str_mv |
multi-objective optimization robust expansion plans transmission expansion planning uncertainty wind generation |
topic |
multi-objective optimization robust expansion plans transmission expansion planning uncertainty wind generation incertidumbre generación eólica optimización multiobjetivo planeamiento de la expansión de la transmisión |
dc.subject.spa.fl_str_mv |
incertidumbre generación eólica optimización multiobjetivo planeamiento de la expansión de la transmisión |
description |
Introducción: En este documento se presenta una metodología multiobjetivo aplicada al problema del Planeamiento de la Expansión de la Transmisión (PET) cuando se consideran las incertidumbres en la demanda y la generación eólica. Objetivo: Obtener planes de expansión robustos que minimicen los costos de inversión y maximicen el uso del recurso eólico, teniendo en cuenta su incertidumbre y la introducida por la demanda. Metodología: La metodología propuesta se basa en la Metodología de Escenario Reducido para representar estas incertidumbres. En la formulación de la metodología se consideraron: el modelo de red en DC, los planes de expansión que minimizan la inversión, la reducción en la carga y la generación eólica. Para obtener el algoritmo multiobjetivo, utilizado para minimizar los costos de expansión y la reducción de la energía eólica, se implementó un NSGA-II mejorado y un conjunto de planes óptimos de expansión de Pareto. Resultados: Se presenta el desempeño de los planes de expansión, los cuales fueron evaluados y comparados con trabajos anteriores para demostrar la solidez del enfoque propuesto. Todas las pruebas se realizaron en los sistemas Garver e IEEE de 24 nodos. Conclusiones: Al observar el número de veces que el plan de expansión lleva a cero el corte de carga y la energía eólica desperdiciada, con respecto a un valor establecido en este trabajo, se tiene que la metodología propuesta presenta un índice de rendimiento superior al 75,16% para el sistema Garver y al 98,97% para el sistema IEEE de 24 nodos. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-27 00:00:00 2024-04-09T20:17:48Z |
dc.date.available.none.fl_str_mv |
2020-01-27 00:00:00 2024-04-09T20:17:48Z |
dc.date.issued.none.fl_str_mv |
2020-01-27 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12268 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.16.1.2020.20 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.16.1.2020.20 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.16.1.2020.20 2382-4700 |
url |
https://hdl.handle.net/11323/12268 https://doi.org/10.17981/ingecuc.16.1.2020.20 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.spa.fl_str_mv |
R. Villasana, L. Garver & S. Salon, “Transmission network planning using linear programming,” IEEE Trans. Power Appar. Syst., vol. PAS-104, no. 2, pp. 349–356, Feb. 1985. https://doi.org/10.1109/TPAS.1985.319049 R. Hemmati, R. Hooshmand & A. Khodabakhshian, “State of the art of transmission expansion planning: Comprehensive review,” Renew. Sust. Energ. Rev., vol. 23, no. 0, pp. 312–319, Jul. 2013. https://doi.org/10.1016/j.rser.2013.03.015 H. Zhang, V. Vittal, G. Heydt & J. Quintero, “A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125–1133, May. 2012. https://doi.org/10.1109/TPWRS.2011.2178000 M. Da Rocha & J. Saraiva, “A discrete evolutionary PSO based approach to the multiyear transmission expansion planning problem considering demand uncertainties,” Int. J. Electr. Power Energy Syst., vol. 45, no. 1, pp. 427–442, Feb. 2013. https://doi.org/10.1016/j.ijepes.2012.09.009 A. Escobar, R. Gallego & R. Romero, “Multistage and coordinated planning of the expansion of transmission systems,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 735–744, May. 2004. https://doi.org/10.1109/TPWRS.2004.825920 L. Garver, “Transmission network estimation using linear programming,” IEEE Trans. Power App. Syst., vol. PAS-89, no. 7, pp. 1688–1697, Sept. 1970. https://doi.org/10.1109/TPAS.1970.292825 L. Bahiense, G. Oliveira, M. Pereira & S. Granville, “A mixed integer disjunctive model for transmission network expansion,” IEEE Trans. Power Syst., vol 16, no. 3, pp. 560–565, Aug. 2001. https://doi.org/10.1109/59.932295 R. Romero & A. Monticelli, “A zero-one implicit enumeration method for optimizing investments in transmission expansion planning,” IEEE Trans. Power Syst., vol. 9, no. 3, pp. 1385–1391, Aug. 1994. https://doi.org/10.1109/59.336126 S. Binato, M. Pereira & S. Granville, “A new benders decomposition approach to solve power transmission network design problems”, IEEE Trans. Power Syst, vol. 16, no. 2, pp. 235–240, May. 2001. https://doi.org/10.1109/59.918292 S. Haffner, A. Monticelli, A. García, J. Mantovani & R. Romero, “Branch and bound algorithm for transmission system expansion planning using a transportation model, Generation, Transmission and Distribution,” IEEE Proc., vol. 147, no. 3, pp. 149–156, Sept. 2000. https://doi.org/10.1049/ip-gtd:20000337 R. Gallego, A. Monticelli & R. Romero, “Comparative studies on nonconvex optimization methods for transmission network expansion planning,” IEEE Trans. Power Syst., vol. 13, no. 3, pp. 822–828, Aug. 1998. https://doi.org/10.1109/59.708680 R. Gallego, R. Romero & A. Monticelli, “Tabu search algorithm for network synthesis,” IEEE Trans. Power Syst., vol. 15, no. 2, pp. 490–495, May. 2000. https://doi.org/10.1109/59.867130 R. A. Gallego, “Planejamento a longo prazo de sistemas de transmissao usando tecnicas de otimizacao combinatorial,” Ph.D. dissertação, FEEC DSEE, Unicamp, Campinas, BR, 1997. Disponível em http://repositorio.unicamp.br/jspui/handle/REPOSIP/260615 J. Silva & H. Gil, “Transmission planning based on heuristic methods”, in VII SEPOPE, SEPOPE, Curitiba, BR, 21-26 May. 2000. A. Escobar, R. Gallego & R. Romero, “Aplicación de algoritmos heurísticos en la construcción de la población inicial de algoritmos genéticos que resuelven el problema de planeamiento de la expansión de la transmisión,” Ing. Invest., vol. 31 no. 1, pp. 127–143, Abr. 2011. Disponible en http://www.bdigital.unal.edu.co/23559/2/20534-127631-2-PB.htm G. Orfanos, P. Georgilakis & N. Hatziargyriou, “Transmission expansion planning of systems with increasing wind power integration,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1355–1362, May. 2013. https://doi.org/10.1109/TPWRS.2012.2214242 H. Yu, C. Chung, K. Wong & J. Zhang, “A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1568–1576, Aug. 2009. https://doi.org/10.1109/TPWRS.2009.2021202 R. Bolaños & C. Correa, “Planeamiento de la transmisión considerando seguridad e incertidumbre en la demanda empleando programación no lineal y técnicas evolutivas,” Tecnura, vol. 18, no. 39, pp. 62–76, Ene. 2014. https://doi.org/10.14483/udistrital.jour.tecnura.2014.1.a05 J. López, R. Romero & L. Gallego, “Planeamiento de la expansión de sistemas de transmisión considerando contingencias y demanda incierta,” Rev. Fac. Ing. Univ. Ant., vol. 48, pp. 188–200, Jun. 2009. Disponible en http://hdl.handle.net/10495/5427 A. Domínguez, A. Escobar & R. Gallego, “Metodología de solución para planeamiento de la transmisión considerando incertidumbre en la demanda y propuestas de diferentes conductores,” Rev. EIA, vol. 11, no. 21, pp. 99–112, Jun. 2014. http://dx.doi.org/10.24050/reia.v11i21.623 H. Yu, C. Chung & K. Wong, “Robust transmission network expansion planning method with Taguchi’s Orthogonal Array Testing,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1573–1580, Aug. 2011. https://doi.org/10.1109/TPWRS.2010.2082576 A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. Fadali & M. Moeini-Aghtaie, “A multi-objective transmission expansion planning framework in deregulated power systems with wind generation,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3003–3011, Nov. 2014. https://doi.org/10.1109/TPWRS.2014.2316529 M. Moeini-Aghtaie, A. Abbaspour & M. Fotuhi-Firuzabad, “Incorporating large-scale distant wind farms in probabilistic transmission expansion planning; Part I: Theory and algorithm,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1585–1593, Aug. 2012. https://doi.org/10.1109/TPWRS.2011.2182363 J. Li, L. Ye, Y. Zeng & H. Wei, “A scenario-based robust transmission network expansion planning method for consideration of wind power uncertainties,” CSEE J. Power Energy Syst., vol. 2, no. 1, pp. 11–18, Marc. 2016. https://doi.org/10.17775/CSEEJPES.2016.00004 R. Jabr, “Robust transmission network expansion planning with uncertain renewable generation and loads,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4558–4567, Nov. 2013. https://doi.org/10.1109/TPWRS.2013.2267058 C. Ruiz & A. Conejo, “Robust transmission expansion planning,” Eur. J. Oper. Res., vol. 242, no. 2, pp. 390–401, Apr. 2015. https://doi.org/10.1016/j.ejor.2014.10.030 R. García-Bertrand & R. Mínguez, “Dynamic robust transmission network expansion planning,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2618–2628, Jul. 2017. https://doi.org/10.1109/TPWRS.2016.2629266 F. Ugranli & E. Karatepe, “Multi-objective transmission expansion planning considering minimization of curtailed wind energy,” JEPE, vol. 65, pp. 348–356, Feb. 2015. https://doi.org/10.1016/j.ijepes.2014.10.031 H. Mori & H. Kakuta, “Multi-objective transmission network expansion planning in consideration of wind farms,” in 2nd IEEE PES, ISGT Europe 2011, Manchester, UK, 5-7 Dec. 2011. https://doi.org/10.1109/ISGTEurope.2011.6162676 S. Abbasi & H. Abdi, “Multiobjective transmission expansion planning problem based on ACOPF considering load and wind power generation uncertainties,” Int. T. Electr. Energy, vol. 27, no. 6, pp. 1687–1697, Dec. 2016. https://doi.org/10.1002/etep.2312 Y. Hu, Z. Bie, Y. Lin, G. Ning, M. Chen & Y. Gao, “Multiobjective Transmission Network Planning considering the Uncertainty and Correlation of Wind Power,” J. Appl. Math., no. 2, pp. 1–2, Jul. 2014. https://doi.org/10.1155/2014/207428 C. Zhang, Q. Wang, Y. Ding & J. Østergaard, “A multi-objective model for transmission planning under uncertainties,” in IEEE EPEC 2014, EPEC, Calgary, AB, 12-14 Nov. 2014, pp. 42–47. https://doi.org/10.1109/EPEC.2014.8 H. Doagou, H. Rastegar & G. Gharehpetian, “Probabilistic multi-objective HVDC/AC transmission expansion planning considering distant wind/solar farms,” IET Sci. Meas. Technol., vol. 10, no. 2, pp. 140–149, Feb. 2016. https://doi.org/10.1049/iet-smt.2015.0173 M. Javadi, M. Saniei, H. Mashhadi & G. Gutierrez-Alcaraz, “Multi-objective expansion planning approach: distant wind farms and limited energy resources integration,” IET Renew. Power Gener., vol. 7, no. 6, pp. 652–668, Nov. 2013. https://doi.org/10.1049/iet-rpg.2012.0218 J. Qiu, Z. Dong, K. Meng, Y. Xu, J. Zhao & Y. Zheng, “Multi-objective transmission expansion planning in a smart grid using a decomposition-based evolutionary algorithm”, IET Gener. Transm. Dis., vol. 10, no. 16, pp. 4024–4031, Dec. 2016. https://doi.org/10.1049/iet-gtd.2016.0259 S. Lumbreras & A. Ramos, “The new challenges to transmission expansion planning. survey of recent practice and literature review”, Electr. Pow. Syst. Res., vol. 134, pp. 19–29, May. 2016. https://doi.org/10.1016/j.epsr.2015.10.013 C. Florez, G. Garcia & A. Salcedo, “Expansion of transmission networks considering large wind power penetration and demand uncertainty,” IEEE Lat. Am. T., vol. 14, no. 3, pp. 1235–1244, Mar. 2016. https://doi.org/10.1109/TLA.2016.7459604 R. Romero, A. Monticelli, A. Garcia & S. Haffner, “Test systems and mathematical models for transmission network expansion planning, Generation, Transmission and Distribution,” IEEE Proc., vol. 149, no. 1, pp. 27–36, Jan. 2002. https://doi.org/10.1049/ip-gtd:20020026 C. Correa, R. Bolaños & A. Garces, “Environmental transmission expansion planning using non-linear programming and evolutionary techniques,” in IEEE SIFAE 2012, SIFAE, Barranquilla, CO, 25-26 Oct, 2012. https://doi.org/10.1109/SIFAE.2012.6478893 C. Correa, R. Bolaños & A. Escobar, “Multi-objective transmission expansion planning considering multiple generation scenarios,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 398–409, Nov. 2014. https://doi.org/10.1016/j.ijepes.2014.04.063 K. Deb, S. Agrawal, A. Pratap & T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, KanGAL, IITs, Kanpur, IN, Technical report. K. Deb, A. Pratap, S. Agarwal & T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE T. Evolut. Comput., vol. 6, no. 2, pp. 182–197, May. 2002. https://doi.org/10.1109/4235.996017 Y. Hu, Z. Bie, T. Ding & Y. Lin, “An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning,” App. Energy, vol. 167, pp. 280–293, Apr. 2016. https://doi.org/10.1016/j.apenergy.2015.10.148 G. Aghajani & N. Ghadimi, “Multi-objective energy management in a micro-grid,” Energy Rep., vol. 4, pp. 218–225, Nov. 2018. https://doi.org/10.1016/j.egyr.2017.10.002 C. Correa, R. Bolaños & A. Garcés, “Enhanced multiobjective algorithm for transmission expansion planning considering N−1 security criterion,” Int. Trans. Electr. Energ. Syst., vol. 25, no. 10, pp. 2225–2246, Jun. 2014. https://doi.org/10.1002/etep.1958 C. A. Flórez, “Planeamiento multiobjetivo de la expansión de la transmisión considerando múltiples escenarios de generación,” M.S. Disertación, UTP, Pereira, CO, 2008. K. Deb, Multi-objective Optimization using Evolutionary Algorithms. New York, USA: Wiley, 2001. R. Romero, A. Monticelli, A. Garcia & S. Haffner, “Test systems and mathematical models for transmission network expansion planning, Generation, Transmission and Distribution,” IEEE Proc., vol. 149, no. 1, pp. 27–36, Aug. 2002. https://doi.org/10.1049/ip-gtd:20020026 R. Fang & D. Hill, “A new strategy for transmission expansion in competitive electricity markets,” IEEE Trans. Power. Syst., vol. 18, no. 1, pp. 374–380, Feb. 2003. https://doi.org/10.1109/TPWRS.2002.807083 R. Romero & A. Monticelli, “A hierarchical decomposition approach for transmission network expansion planning,” IEEE Trans. Power. Syst., vol. 9, no. 1, pp. 373–380, Feb. 1994. https://doi.org/10.1109/59.317588 |
dc.relation.citationendpage.none.fl_str_mv |
284 |
dc.relation.citationstartpage.none.fl_str_mv |
267 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
16 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2793/2777 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2793/3480 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2793/3526 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2020 : (Enero-Junio) |
dc.rights.spa.fl_str_mv |
INGE CUC - 2020 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2020 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/2793 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/dabdc476-5de8-4ae8-8463-75481e905f3d/download |
bitstream.checksum.fl_str_mv |
cc09b0008e6f5b03efcf0dd5ae6b1c8c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760819537444864 |
spelling |
Correa Flórez, Carlos AdriánSánchez Salcedo, AlejandroPanesso Hernández, Andrés2020-01-27 00:00:002024-04-09T20:17:48Z2020-01-27 00:00:002024-04-09T20:17:48Z2020-01-270122-6517https://hdl.handle.net/11323/12268https://doi.org/10.17981/ingecuc.16.1.2020.2010.17981/ingecuc.16.1.2020.202382-4700Introducción: En este documento se presenta una metodología multiobjetivo aplicada al problema del Planeamiento de la Expansión de la Transmisión (PET) cuando se consideran las incertidumbres en la demanda y la generación eólica. Objetivo: Obtener planes de expansión robustos que minimicen los costos de inversión y maximicen el uso del recurso eólico, teniendo en cuenta su incertidumbre y la introducida por la demanda. Metodología: La metodología propuesta se basa en la Metodología de Escenario Reducido para representar estas incertidumbres. En la formulación de la metodología se consideraron: el modelo de red en DC, los planes de expansión que minimizan la inversión, la reducción en la carga y la generación eólica. Para obtener el algoritmo multiobjetivo, utilizado para minimizar los costos de expansión y la reducción de la energía eólica, se implementó un NSGA-II mejorado y un conjunto de planes óptimos de expansión de Pareto. Resultados: Se presenta el desempeño de los planes de expansión, los cuales fueron evaluados y comparados con trabajos anteriores para demostrar la solidez del enfoque propuesto. Todas las pruebas se realizaron en los sistemas Garver e IEEE de 24 nodos. Conclusiones: Al observar el número de veces que el plan de expansión lleva a cero el corte de carga y la energía eólica desperdiciada, con respecto a un valor establecido en este trabajo, se tiene que la metodología propuesta presenta un índice de rendimiento superior al 75,16% para el sistema Garver y al 98,97% para el sistema IEEE de 24 nodos.Introduction: This paper presents a multi-objective methodology applied to the Transmission Expansion Planning problem when demand and large wind generation uncertainties are considered. Objective: Obtain robust expansion plans that minimize investment costs and maximize the use of the wind resource, considering its uncertainty and the demand influences. Method: The proposed methodology is based on Reduced Scenario Methodology to represent these uncertainties. The proposed methodology considers the DC model of the network, the obtained expansion plans that minimize the investment, the load shedding and the wind generation curtailment, in its formulation. To obtain the multi-objective algorithm, used to minimize expansion costs and wind power curtailment, an enhanced NSGA-II and a set of Pareto optimal expansion plans were implemented. Results:  The expansion plans performances were evaluated and compared with previous work, in order to demonstrate the proposed approach robustness. All tests were carried out on Garver and the IEEE 24-bus RTS systems. Conclusions: Observing the number of times that the expansion plan takes to zero the load cut and the wasted wind energy, with respect to a value established in this paper, the proposed methodology has a performance index higher than 75,16% for the Garver system and 98,97% for the IEEE system of 24 nodes.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2793multi-objective optimizationrobust expansion planstransmission expansion planninguncertaintywind generationincertidumbregeneración eólicaoptimización multiobjetivoplaneamiento de la expansión de la transmisiónMetodología Multiobjetivo para el Planeamiento de la Expansión de la Transmisión considerando Incertidumbres en la Generación Eólica y la DemandaA Multi-Objective Methodology applied to the Transmission Expansion Planning Considering Wind Power and Demand UncertaintiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc R. Villasana, L. Garver & S. Salon, “Transmission network planning using linear programming,” IEEE Trans. Power Appar. Syst., vol. PAS-104, no. 2, pp. 349–356, Feb. 1985. https://doi.org/10.1109/TPAS.1985.319049 R. Hemmati, R. Hooshmand & A. Khodabakhshian, “State of the art of transmission expansion planning: Comprehensive review,” Renew. Sust. Energ. Rev., vol. 23, no. 0, pp. 312–319, Jul. 2013. https://doi.org/10.1016/j.rser.2013.03.015 H. Zhang, V. Vittal, G. Heydt & J. Quintero, “A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1125–1133, May. 2012. https://doi.org/10.1109/TPWRS.2011.2178000 M. Da Rocha & J. Saraiva, “A discrete evolutionary PSO based approach to the multiyear transmission expansion planning problem considering demand uncertainties,” Int. J. Electr. Power Energy Syst., vol. 45, no. 1, pp. 427–442, Feb. 2013. https://doi.org/10.1016/j.ijepes.2012.09.009 A. Escobar, R. Gallego & R. Romero, “Multistage and coordinated planning of the expansion of transmission systems,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 735–744, May. 2004. https://doi.org/10.1109/TPWRS.2004.825920 L. Garver, “Transmission network estimation using linear programming,” IEEE Trans. Power App. Syst., vol. PAS-89, no. 7, pp. 1688–1697, Sept. 1970. https://doi.org/10.1109/TPAS.1970.292825 L. Bahiense, G. Oliveira, M. Pereira & S. Granville, “A mixed integer disjunctive model for transmission network expansion,” IEEE Trans. Power Syst., vol 16, no. 3, pp. 560–565, Aug. 2001. https://doi.org/10.1109/59.932295 R. Romero & A. Monticelli, “A zero-one implicit enumeration method for optimizing investments in transmission expansion planning,” IEEE Trans. Power Syst., vol. 9, no. 3, pp. 1385–1391, Aug. 1994. https://doi.org/10.1109/59.336126 S. Binato, M. Pereira & S. Granville, “A new benders decomposition approach to solve power transmission network design problems”, IEEE Trans. Power Syst, vol. 16, no. 2, pp. 235–240, May. 2001. https://doi.org/10.1109/59.918292 S. Haffner, A. Monticelli, A. García, J. Mantovani & R. Romero, “Branch and bound algorithm for transmission system expansion planning using a transportation model, Generation, Transmission and Distribution,” IEEE Proc., vol. 147, no. 3, pp. 149–156, Sept. 2000. https://doi.org/10.1049/ip-gtd:20000337 R. Gallego, A. Monticelli & R. Romero, “Comparative studies on nonconvex optimization methods for transmission network expansion planning,” IEEE Trans. Power Syst., vol. 13, no. 3, pp. 822–828, Aug. 1998. https://doi.org/10.1109/59.708680 R. Gallego, R. Romero & A. Monticelli, “Tabu search algorithm for network synthesis,” IEEE Trans. Power Syst., vol. 15, no. 2, pp. 490–495, May. 2000. https://doi.org/10.1109/59.867130 R. A. Gallego, “Planejamento a longo prazo de sistemas de transmissao usando tecnicas de otimizacao combinatorial,” Ph.D. dissertação, FEEC DSEE, Unicamp, Campinas, BR, 1997. Disponível em http://repositorio.unicamp.br/jspui/handle/REPOSIP/260615 J. Silva & H. Gil, “Transmission planning based on heuristic methods”, in VII SEPOPE, SEPOPE, Curitiba, BR, 21-26 May. 2000. A. Escobar, R. Gallego & R. Romero, “Aplicación de algoritmos heurísticos en la construcción de la población inicial de algoritmos genéticos que resuelven el problema de planeamiento de la expansión de la transmisión,” Ing. Invest., vol. 31 no. 1, pp. 127–143, Abr. 2011. Disponible en http://www.bdigital.unal.edu.co/23559/2/20534-127631-2-PB.htm G. Orfanos, P. Georgilakis & N. Hatziargyriou, “Transmission expansion planning of systems with increasing wind power integration,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1355–1362, May. 2013. https://doi.org/10.1109/TPWRS.2012.2214242 H. Yu, C. Chung, K. Wong & J. Zhang, “A chance constrained transmission network expansion planning method with consideration of load and wind farm uncertainties,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1568–1576, Aug. 2009. https://doi.org/10.1109/TPWRS.2009.2021202 R. Bolaños & C. Correa, “Planeamiento de la transmisión considerando seguridad e incertidumbre en la demanda empleando programación no lineal y técnicas evolutivas,” Tecnura, vol. 18, no. 39, pp. 62–76, Ene. 2014. https://doi.org/10.14483/udistrital.jour.tecnura.2014.1.a05 J. López, R. Romero & L. Gallego, “Planeamiento de la expansión de sistemas de transmisión considerando contingencias y demanda incierta,” Rev. Fac. Ing. Univ. Ant., vol. 48, pp. 188–200, Jun. 2009. Disponible en http://hdl.handle.net/10495/5427 A. Domínguez, A. Escobar & R. Gallego, “Metodología de solución para planeamiento de la transmisión considerando incertidumbre en la demanda y propuestas de diferentes conductores,” Rev. EIA, vol. 11, no. 21, pp. 99–112, Jun. 2014. http://dx.doi.org/10.24050/reia.v11i21.623 H. Yu, C. Chung & K. Wong, “Robust transmission network expansion planning method with Taguchi’s Orthogonal Array Testing,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1573–1580, Aug. 2011. https://doi.org/10.1109/TPWRS.2010.2082576 A. Arabali, M. Ghofrani, M. Etezadi-Amoli, M. Fadali & M. Moeini-Aghtaie, “A multi-objective transmission expansion planning framework in deregulated power systems with wind generation,” IEEE Trans. Power Syst., vol. 29, no. 6, pp. 3003–3011, Nov. 2014. https://doi.org/10.1109/TPWRS.2014.2316529 M. Moeini-Aghtaie, A. Abbaspour & M. Fotuhi-Firuzabad, “Incorporating large-scale distant wind farms in probabilistic transmission expansion planning; Part I: Theory and algorithm,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1585–1593, Aug. 2012. https://doi.org/10.1109/TPWRS.2011.2182363 J. Li, L. Ye, Y. Zeng & H. Wei, “A scenario-based robust transmission network expansion planning method for consideration of wind power uncertainties,” CSEE J. Power Energy Syst., vol. 2, no. 1, pp. 11–18, Marc. 2016. https://doi.org/10.17775/CSEEJPES.2016.00004 R. Jabr, “Robust transmission network expansion planning with uncertain renewable generation and loads,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4558–4567, Nov. 2013. https://doi.org/10.1109/TPWRS.2013.2267058 C. Ruiz & A. Conejo, “Robust transmission expansion planning,” Eur. J. Oper. Res., vol. 242, no. 2, pp. 390–401, Apr. 2015. https://doi.org/10.1016/j.ejor.2014.10.030 R. García-Bertrand & R. Mínguez, “Dynamic robust transmission network expansion planning,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 2618–2628, Jul. 2017. https://doi.org/10.1109/TPWRS.2016.2629266 F. Ugranli & E. Karatepe, “Multi-objective transmission expansion planning considering minimization of curtailed wind energy,” JEPE, vol. 65, pp. 348–356, Feb. 2015. https://doi.org/10.1016/j.ijepes.2014.10.031 H. Mori & H. Kakuta, “Multi-objective transmission network expansion planning in consideration of wind farms,” in 2nd IEEE PES, ISGT Europe 2011, Manchester, UK, 5-7 Dec. 2011. https://doi.org/10.1109/ISGTEurope.2011.6162676 S. Abbasi & H. Abdi, “Multiobjective transmission expansion planning problem based on ACOPF considering load and wind power generation uncertainties,” Int. T. Electr. Energy, vol. 27, no. 6, pp. 1687–1697, Dec. 2016. https://doi.org/10.1002/etep.2312 Y. Hu, Z. Bie, Y. Lin, G. Ning, M. Chen & Y. Gao, “Multiobjective Transmission Network Planning considering the Uncertainty and Correlation of Wind Power,” J. Appl. Math., no. 2, pp. 1–2, Jul. 2014. https://doi.org/10.1155/2014/207428 C. Zhang, Q. Wang, Y. Ding & J. Østergaard, “A multi-objective model for transmission planning under uncertainties,” in IEEE EPEC 2014, EPEC, Calgary, AB, 12-14 Nov. 2014, pp. 42–47. https://doi.org/10.1109/EPEC.2014.8 H. Doagou, H. Rastegar & G. Gharehpetian, “Probabilistic multi-objective HVDC/AC transmission expansion planning considering distant wind/solar farms,” IET Sci. Meas. Technol., vol. 10, no. 2, pp. 140–149, Feb. 2016. https://doi.org/10.1049/iet-smt.2015.0173 M. Javadi, M. Saniei, H. Mashhadi & G. Gutierrez-Alcaraz, “Multi-objective expansion planning approach: distant wind farms and limited energy resources integration,” IET Renew. Power Gener., vol. 7, no. 6, pp. 652–668, Nov. 2013. https://doi.org/10.1049/iet-rpg.2012.0218 J. Qiu, Z. Dong, K. Meng, Y. Xu, J. Zhao & Y. Zheng, “Multi-objective transmission expansion planning in a smart grid using a decomposition-based evolutionary algorithm”, IET Gener. Transm. Dis., vol. 10, no. 16, pp. 4024–4031, Dec. 2016. https://doi.org/10.1049/iet-gtd.2016.0259 S. Lumbreras & A. Ramos, “The new challenges to transmission expansion planning. survey of recent practice and literature review”, Electr. Pow. Syst. Res., vol. 134, pp. 19–29, May. 2016. https://doi.org/10.1016/j.epsr.2015.10.013 C. Florez, G. Garcia & A. Salcedo, “Expansion of transmission networks considering large wind power penetration and demand uncertainty,” IEEE Lat. Am. T., vol. 14, no. 3, pp. 1235–1244, Mar. 2016. https://doi.org/10.1109/TLA.2016.7459604 R. Romero, A. Monticelli, A. Garcia & S. Haffner, “Test systems and mathematical models for transmission network expansion planning, Generation, Transmission and Distribution,” IEEE Proc., vol. 149, no. 1, pp. 27–36, Jan. 2002. https://doi.org/10.1049/ip-gtd:20020026 C. Correa, R. Bolaños & A. Garces, “Environmental transmission expansion planning using non-linear programming and evolutionary techniques,” in IEEE SIFAE 2012, SIFAE, Barranquilla, CO, 25-26 Oct, 2012. https://doi.org/10.1109/SIFAE.2012.6478893 C. Correa, R. Bolaños & A. Escobar, “Multi-objective transmission expansion planning considering multiple generation scenarios,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 398–409, Nov. 2014. https://doi.org/10.1016/j.ijepes.2014.04.063 K. Deb, S. Agrawal, A. Pratap & T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, KanGAL, IITs, Kanpur, IN, Technical report. K. Deb, A. Pratap, S. Agarwal & T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE T. Evolut. Comput., vol. 6, no. 2, pp. 182–197, May. 2002. https://doi.org/10.1109/4235.996017 Y. Hu, Z. Bie, T. Ding & Y. Lin, “An NSGA-II based multi-objective optimization for combined gas and electricity network expansion planning,” App. Energy, vol. 167, pp. 280–293, Apr. 2016. https://doi.org/10.1016/j.apenergy.2015.10.148 G. Aghajani & N. Ghadimi, “Multi-objective energy management in a micro-grid,” Energy Rep., vol. 4, pp. 218–225, Nov. 2018. https://doi.org/10.1016/j.egyr.2017.10.002 C. Correa, R. Bolaños & A. Garcés, “Enhanced multiobjective algorithm for transmission expansion planning considering N−1 security criterion,” Int. Trans. Electr. Energ. Syst., vol. 25, no. 10, pp. 2225–2246, Jun. 2014. https://doi.org/10.1002/etep.1958 C. A. Flórez, “Planeamiento multiobjetivo de la expansión de la transmisión considerando múltiples escenarios de generación,” M.S. Disertación, UTP, Pereira, CO, 2008. K. Deb, Multi-objective Optimization using Evolutionary Algorithms. New York, USA: Wiley, 2001. R. Romero, A. Monticelli, A. Garcia & S. Haffner, “Test systems and mathematical models for transmission network expansion planning, Generation, Transmission and Distribution,” IEEE Proc., vol. 149, no. 1, pp. 27–36, Aug. 2002. https://doi.org/10.1049/ip-gtd:20020026 R. Fang & D. Hill, “A new strategy for transmission expansion in competitive electricity markets,” IEEE Trans. Power. Syst., vol. 18, no. 1, pp. 374–380, Feb. 2003. https://doi.org/10.1109/TPWRS.2002.807083 R. Romero & A. Monticelli, “A hierarchical decomposition approach for transmission network expansion planning,” IEEE Trans. Power. Syst., vol. 9, no. 1, pp. 373–380, Feb. 1994. https://doi.org/10.1109/59.317588284267116https://revistascientificas.cuc.edu.co/ingecuc/article/download/2793/2777https://revistascientificas.cuc.edu.co/ingecuc/article/download/2793/3480https://revistascientificas.cuc.edu.co/ingecuc/article/download/2793/3526Núm. 1 , Año 2020 : (Enero-Junio)PublicationOREORE.xmltext/xml2797https://repositorio.cuc.edu.co/bitstreams/dabdc476-5de8-4ae8-8463-75481e905f3d/downloadcc09b0008e6f5b03efcf0dd5ae6b1c8cMD5111323/12268oai:repositorio.cuc.edu.co:11323/122682024-09-17 12:50:08.61http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |