Analysis of the behavior of phase change material in solar energy storage using computational tools
In this study, the temperature profile of the sodium nitrate phase change material NaNO3 is characterized, using a spherical macro encapsulation technique to increase the heat transfer properties, simulating through computer tools the behavior of this material when it is used as an alternative sourc...
- Autores:
-
Martinez-Fabregas, Jonathan
Díaz Saenz, Carlos
Carpintero Durango, Javier Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7143
- Acceso en línea:
- https://hdl.handle.net/11323/7143
https://repositorio.cuc.edu.co/
- Palabra clave:
- Phase change materials (PCM)
NaNO3
Heat latent
Computational fluid dynamics CFD
Melting temperature
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_62a533aa5f05eb7a57a8b33939b468a9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7143 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
title |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
spellingShingle |
Analysis of the behavior of phase change material in solar energy storage using computational tools Phase change materials (PCM) NaNO3 Heat latent Computational fluid dynamics CFD Melting temperature |
title_short |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
title_full |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
title_fullStr |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
title_full_unstemmed |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
title_sort |
Analysis of the behavior of phase change material in solar energy storage using computational tools |
dc.creator.fl_str_mv |
Martinez-Fabregas, Jonathan Díaz Saenz, Carlos Carpintero Durango, Javier Andrés |
dc.contributor.author.spa.fl_str_mv |
Martinez-Fabregas, Jonathan Díaz Saenz, Carlos Carpintero Durango, Javier Andrés |
dc.subject.spa.fl_str_mv |
Phase change materials (PCM) NaNO3 Heat latent Computational fluid dynamics CFD Melting temperature |
topic |
Phase change materials (PCM) NaNO3 Heat latent Computational fluid dynamics CFD Melting temperature |
description |
In this study, the temperature profile of the sodium nitrate phase change material NaNO3 is characterized, using a spherical macro encapsulation technique to increase the heat transfer properties, simulating through computer tools the behavior of this material when it is used as an alternative source of energy for heat. exchange processes, where the primary energy source has interruptions in the heat supply, the data obtained show for the proposed model that the system is capable of maintaining the outlet temperature for at least 20s and a temperature drop of 50K for 60s, being promising data for the use of these materials in heat exchange processes as is the energy support of solar collectors. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-10-15T16:27:11Z |
dc.date.available.none.fl_str_mv |
2020-10-15T16:27:11Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0453-2198 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7143 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0453-2198 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7143 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] P. Zhang, Z. N. Meng, H. Zhu, Y. L. Wang, and S. P. Peng, “Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam,” Appl. Energy, vol. 185, pp. 1971–1983, 2017, doi:10.1016/j.apenergy.2015.10.075. [2] K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, “Heat transfer studies of photovoltaic panel coupled with phase change material,” Sol. Energy, vol. 140, pp. 151–161, 2016, doi: 10.1016/j.solener.2016.11.006. [3] Y. B. Tao, Y. You, and Y. L. He, “Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material,” Appl. Therm. Eng., vol. 93, pp. 476–485, 2016, doi:10.1016/j.applthermaleng.2015.10.016. [4] H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Appl. Energy, vol. 176, pp. 221–232, 2016, doi: 10.1016/j.apenergy.2016.05.050. [5] C. Wang, T. Lin, N. Li, and H. Zheng, “Heat transfer enhancement of phase change composite material: Copper foam/paraffin,” Renew. Energy, vol. 96, pp. 960–965, 2016, doi: 10.1016/j.renene.2016.04.039. [6] E. M. Languri, H. B. Rokni, J. Alvarado, B. Takabi, and M. Kong, “Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: A numerical and analytical study,” Int. J. Heat Mass Transf., vol. 118, pp. 872–878, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.130. [7] A. M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian, and A. A. Al-Abidi, “Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique,” Heat Transf. Eng., vol. 39, no. 12, pp. 1067–1080, 2018, doi: 10.1080/01457632.2017.1358488. [8] Y. Li, J. Darkwa, and G. Kokogiannakis, “Heat transfer analysis of an integrated double skin façade and phase change material blind system,” Build. Environ., vol. 125, pp. 111–121, 2017, doi: 10.1016/j.buildenv.2017.08.034. [9] J. Yang, L. Yang, C. Xu, and X. Du, “Experimental study on enhancement of thermal energy storage with phasechange material,” Appl. Energy, vol. 169, pp. 164–176, 2016, doi: 10.1016/j.apenergy.2016.02.028. [10] D. Zou et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, no. September 2018, pp. 1196–1202, 2019, doi: 10.1016/j.enconman.2018.11.064. [11] R. Heydarian, M. B. Shafii, A. Rezaee Shirin-Abadi, R. Ghasempour, and M. Alhuyi Nazari, “Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1603–1613, 2019, doi: 10.1007/s10973-019-08062-6. [12] G. Zhang, G. Cui, B. Dou, Z. Wang, and M. A. Goula, “An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux,” Energy Convers. Manag., vol. 171, no. June, pp. 699–709, 2018, doi: 10.1016/j.enconman.2018.06.029. [13] L. W. Fan et al., “An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage,” Appl. Therm. Eng., vol. 100, pp. 1063–1075, 2016, doi: 10.1016/j.applthermaleng.2016.02.125. [14] G. Jiang, J. Huang, M. Liu, and M. Cao, “Experiment and simulation of thermal management for a tube-shell Liion battery pack with composite phase change material,” Appl. Therm. Eng., vol. 120, pp. 1–9, 2017, doi:10.1016/j.applthermaleng.2017.03.107. [15] W. Youssef, Y. T. Ge, and S. A. Tassou, “CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes,” Energy Convers. Manag., vol. 157, no. December 2017, pp. 498–510, 2018, doi: 10.1016/j.enconman.2017.12.036. [16] Q. Mao, H. Chen, Y. Zhao, and H. Wu, “A novel heat transfer model of a phase change material using in solar power plant,” Appl. Therm. Eng., vol. 129, pp. 557–563, 2018, doi: 10.1016/j.applthermaleng.2017.10.038. [17] Y. B. Tao and Y. L. He, “A review of phase change material and performance enhancement method for latent heat storage system,” Renew. Sustain. Energy Rev., vol. 93, no. April, pp. 245–259, 2018, doi: 10.1016/j.rser.2018.05.028. [18] F. Wang, W. Lin, Z. Ling, and X. Fang, “A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance,” Sol. Energy Mater. Sol. Cells, vol. 191, no. June 2018, pp. 218–234, 2019, doi: 10.1016/j.solmat.2018.11.016. [19] J. Sarkar and S. Bhattacharyya, “Application of graphene and graphene-based materials in clean energy-related devices Minghui,” Arch. Thermodyn., vol. 33, no. 4, pp. 23–40, 2012, doi: 10.1002/er. [20] M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, and H. El-Ghetany, “Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM),” Desalination, vol. 381, pp. 26–37, 2016, doi: 10.1016/j.desal.2015.11.031. [21] A. Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, “Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate,” Sol. Energy, vol. 146, pp. 417–429, 2017, doi: 10.1016/j.solener.2017.01.070 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Technology Reports of Kansai University |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.researchgate.net/publication/342211977_Analysis_of_the_Behavior_of_Phase_Change_Material_in_Solar_Energy_Storage_Using_Computational_Tools |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4a2954d7-a45f-44b7-a551-cd143dc8db66/download https://repositorio.cuc.edu.co/bitstreams/a47032e2-9d97-4246-a73d-d67aefb5213d/download https://repositorio.cuc.edu.co/bitstreams/b40bc2c5-96c4-409b-9cd2-091e6fdb7d2d/download https://repositorio.cuc.edu.co/bitstreams/91b15917-a54f-44b3-8f15-59e54c6b6f6a/download https://repositorio.cuc.edu.co/bitstreams/8e4b120e-225d-4c37-902c-58428d8bc281/download |
bitstream.checksum.fl_str_mv |
70072068a29e4a783e1b04ff86ca2d70 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 4e4afe8b9df03865910be0d549492c68 8350657875cb1e128ebbc943957b839b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760699102199808 |
spelling |
Martinez-Fabregas, JonathanDíaz Saenz, CarlosCarpintero Durango, Javier Andrés2020-10-15T16:27:11Z2020-10-15T16:27:11Z20200453-2198https://hdl.handle.net/11323/7143Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this study, the temperature profile of the sodium nitrate phase change material NaNO3 is characterized, using a spherical macro encapsulation technique to increase the heat transfer properties, simulating through computer tools the behavior of this material when it is used as an alternative source of energy for heat. exchange processes, where the primary energy source has interruptions in the heat supply, the data obtained show for the proposed model that the system is capable of maintaining the outlet temperature for at least 20s and a temperature drop of 50K for 60s, being promising data for the use of these materials in heat exchange processes as is the energy support of solar collectors.Martinez-Fabregas, Jonathan-will be generated-orcid-0000-0001-5809-065X-600Díaz Saenz, CarlosCarpintero Durango, Javier Andrés-will be generated-orcid-0000-0002-1758-0596-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Technology Reports of Kansai Universityhttps://www.researchgate.net/publication/342211977_Analysis_of_the_Behavior_of_Phase_Change_Material_in_Solar_Energy_Storage_Using_Computational_ToolsPhase change materials (PCM)NaNO3Heat latentComputational fluid dynamics CFDMelting temperatureAnalysis of the behavior of phase change material in solar energy storage using computational toolsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Zhang, Z. N. Meng, H. Zhu, Y. L. Wang, and S. P. Peng, “Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam,” Appl. Energy, vol. 185, pp. 1971–1983, 2017, doi:10.1016/j.apenergy.2015.10.075.[2] K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, “Heat transfer studies of photovoltaic panel coupled with phase change material,” Sol. Energy, vol. 140, pp. 151–161, 2016, doi: 10.1016/j.solener.2016.11.006.[3] Y. B. Tao, Y. You, and Y. L. He, “Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material,” Appl. Therm. Eng., vol. 93, pp. 476–485, 2016, doi:10.1016/j.applthermaleng.2015.10.016.[4] H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Appl. Energy, vol. 176, pp. 221–232, 2016, doi: 10.1016/j.apenergy.2016.05.050.[5] C. Wang, T. Lin, N. Li, and H. Zheng, “Heat transfer enhancement of phase change composite material: Copper foam/paraffin,” Renew. Energy, vol. 96, pp. 960–965, 2016, doi: 10.1016/j.renene.2016.04.039.[6] E. M. Languri, H. B. Rokni, J. Alvarado, B. Takabi, and M. Kong, “Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: A numerical and analytical study,” Int. J. Heat Mass Transf., vol. 118, pp. 872–878, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.130.[7] A. M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian, and A. A. Al-Abidi, “Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique,” Heat Transf. Eng., vol. 39, no. 12, pp. 1067–1080, 2018, doi: 10.1080/01457632.2017.1358488.[8] Y. Li, J. Darkwa, and G. Kokogiannakis, “Heat transfer analysis of an integrated double skin façade and phase change material blind system,” Build. Environ., vol. 125, pp. 111–121, 2017, doi: 10.1016/j.buildenv.2017.08.034.[9] J. Yang, L. Yang, C. Xu, and X. Du, “Experimental study on enhancement of thermal energy storage with phasechange material,” Appl. Energy, vol. 169, pp. 164–176, 2016, doi: 10.1016/j.apenergy.2016.02.028.[10] D. Zou et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, no. September 2018, pp. 1196–1202, 2019, doi: 10.1016/j.enconman.2018.11.064.[11] R. Heydarian, M. B. Shafii, A. Rezaee Shirin-Abadi, R. Ghasempour, and M. Alhuyi Nazari, “Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1603–1613, 2019, doi: 10.1007/s10973-019-08062-6.[12] G. Zhang, G. Cui, B. Dou, Z. Wang, and M. A. Goula, “An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux,” Energy Convers. Manag., vol. 171, no. June, pp. 699–709, 2018, doi: 10.1016/j.enconman.2018.06.029.[13] L. W. Fan et al., “An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage,” Appl. Therm. Eng., vol. 100, pp. 1063–1075, 2016, doi: 10.1016/j.applthermaleng.2016.02.125.[14] G. Jiang, J. Huang, M. Liu, and M. Cao, “Experiment and simulation of thermal management for a tube-shell Liion battery pack with composite phase change material,” Appl. Therm. Eng., vol. 120, pp. 1–9, 2017, doi:10.1016/j.applthermaleng.2017.03.107.[15] W. Youssef, Y. T. Ge, and S. A. Tassou, “CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes,” Energy Convers. Manag., vol. 157, no. December 2017, pp. 498–510, 2018, doi: 10.1016/j.enconman.2017.12.036.[16] Q. Mao, H. Chen, Y. Zhao, and H. Wu, “A novel heat transfer model of a phase change material using in solar power plant,” Appl. Therm. Eng., vol. 129, pp. 557–563, 2018, doi: 10.1016/j.applthermaleng.2017.10.038.[17] Y. B. Tao and Y. L. He, “A review of phase change material and performance enhancement method for latent heat storage system,” Renew. Sustain. Energy Rev., vol. 93, no. April, pp. 245–259, 2018, doi: 10.1016/j.rser.2018.05.028.[18] F. Wang, W. Lin, Z. Ling, and X. Fang, “A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance,” Sol. Energy Mater. Sol. Cells, vol. 191, no. June 2018, pp. 218–234, 2019, doi: 10.1016/j.solmat.2018.11.016.[19] J. Sarkar and S. Bhattacharyya, “Application of graphene and graphene-based materials in clean energy-related devices Minghui,” Arch. Thermodyn., vol. 33, no. 4, pp. 23–40, 2012, doi: 10.1002/er.[20] M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, and H. El-Ghetany, “Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM),” Desalination, vol. 381, pp. 26–37, 2016, doi: 10.1016/j.desal.2015.11.031.[21] A. Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, “Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate,” Sol. Energy, vol. 146, pp. 417–429, 2017, doi: 10.1016/j.solener.2017.01.070PublicationORIGINALAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdfAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdfapplication/pdf256646https://repositorio.cuc.edu.co/bitstreams/4a2954d7-a45f-44b7-a551-cd143dc8db66/download70072068a29e4a783e1b04ff86ca2d70MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a47032e2-9d97-4246-a73d-d67aefb5213d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b40bc2c5-96c4-409b-9cd2-091e6fdb7d2d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.jpgAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.jpgimage/jpeg38012https://repositorio.cuc.edu.co/bitstreams/91b15917-a54f-44b3-8f15-59e54c6b6f6a/download4e4afe8b9df03865910be0d549492c68MD54TEXTAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.txtAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.txttext/plain969https://repositorio.cuc.edu.co/bitstreams/8e4b120e-225d-4c37-902c-58428d8bc281/download8350657875cb1e128ebbc943957b839bMD5511323/7143oai:repositorio.cuc.edu.co:11323/71432024-09-17 10:17:01.522http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |