Analysis of the behavior of phase change material in solar energy storage using computational tools

In this study, the temperature profile of the sodium nitrate phase change material NaNO3 is characterized, using a spherical macro encapsulation technique to increase the heat transfer properties, simulating through computer tools the behavior of this material when it is used as an alternative sourc...

Full description

Autores:
Martinez-Fabregas, Jonathan
Díaz Saenz, Carlos
Carpintero Durango, Javier Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7143
Acceso en línea:
https://hdl.handle.net/11323/7143
https://repositorio.cuc.edu.co/
Palabra clave:
Phase change materials (PCM)
NaNO3
Heat latent
Computational fluid dynamics CFD
Melting temperature
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_62a533aa5f05eb7a57a8b33939b468a9
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7143
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Analysis of the behavior of phase change material in solar energy storage using computational tools
title Analysis of the behavior of phase change material in solar energy storage using computational tools
spellingShingle Analysis of the behavior of phase change material in solar energy storage using computational tools
Phase change materials (PCM)
NaNO3
Heat latent
Computational fluid dynamics CFD
Melting temperature
title_short Analysis of the behavior of phase change material in solar energy storage using computational tools
title_full Analysis of the behavior of phase change material in solar energy storage using computational tools
title_fullStr Analysis of the behavior of phase change material in solar energy storage using computational tools
title_full_unstemmed Analysis of the behavior of phase change material in solar energy storage using computational tools
title_sort Analysis of the behavior of phase change material in solar energy storage using computational tools
dc.creator.fl_str_mv Martinez-Fabregas, Jonathan
Díaz Saenz, Carlos
Carpintero Durango, Javier Andrés
dc.contributor.author.spa.fl_str_mv Martinez-Fabregas, Jonathan
Díaz Saenz, Carlos
Carpintero Durango, Javier Andrés
dc.subject.spa.fl_str_mv Phase change materials (PCM)
NaNO3
Heat latent
Computational fluid dynamics CFD
Melting temperature
topic Phase change materials (PCM)
NaNO3
Heat latent
Computational fluid dynamics CFD
Melting temperature
description In this study, the temperature profile of the sodium nitrate phase change material NaNO3 is characterized, using a spherical macro encapsulation technique to increase the heat transfer properties, simulating through computer tools the behavior of this material when it is used as an alternative source of energy for heat. exchange processes, where the primary energy source has interruptions in the heat supply, the data obtained show for the proposed model that the system is capable of maintaining the outlet temperature for at least 20s and a temperature drop of 50K for 60s, being promising data for the use of these materials in heat exchange processes as is the energy support of solar collectors.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-15T16:27:11Z
dc.date.available.none.fl_str_mv 2020-10-15T16:27:11Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0453-2198
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7143
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0453-2198
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7143
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] P. Zhang, Z. N. Meng, H. Zhu, Y. L. Wang, and S. P. Peng, “Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam,” Appl. Energy, vol. 185, pp. 1971–1983, 2017, doi:10.1016/j.apenergy.2015.10.075.
[2] K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, “Heat transfer studies of photovoltaic panel coupled with phase change material,” Sol. Energy, vol. 140, pp. 151–161, 2016, doi: 10.1016/j.solener.2016.11.006.
[3] Y. B. Tao, Y. You, and Y. L. He, “Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material,” Appl. Therm. Eng., vol. 93, pp. 476–485, 2016, doi:10.1016/j.applthermaleng.2015.10.016.
[4] H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Appl. Energy, vol. 176, pp. 221–232, 2016, doi: 10.1016/j.apenergy.2016.05.050.
[5] C. Wang, T. Lin, N. Li, and H. Zheng, “Heat transfer enhancement of phase change composite material: Copper foam/paraffin,” Renew. Energy, vol. 96, pp. 960–965, 2016, doi: 10.1016/j.renene.2016.04.039.
[6] E. M. Languri, H. B. Rokni, J. Alvarado, B. Takabi, and M. Kong, “Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: A numerical and analytical study,” Int. J. Heat Mass Transf., vol. 118, pp. 872–878, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.130.
[7] A. M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian, and A. A. Al-Abidi, “Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique,” Heat Transf. Eng., vol. 39, no. 12, pp. 1067–1080, 2018, doi: 10.1080/01457632.2017.1358488.
[8] Y. Li, J. Darkwa, and G. Kokogiannakis, “Heat transfer analysis of an integrated double skin façade and phase change material blind system,” Build. Environ., vol. 125, pp. 111–121, 2017, doi: 10.1016/j.buildenv.2017.08.034.
[9] J. Yang, L. Yang, C. Xu, and X. Du, “Experimental study on enhancement of thermal energy storage with phasechange material,” Appl. Energy, vol. 169, pp. 164–176, 2016, doi: 10.1016/j.apenergy.2016.02.028.
[10] D. Zou et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, no. September 2018, pp. 1196–1202, 2019, doi: 10.1016/j.enconman.2018.11.064.
[11] R. Heydarian, M. B. Shafii, A. Rezaee Shirin-Abadi, R. Ghasempour, and M. Alhuyi Nazari, “Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1603–1613, 2019, doi: 10.1007/s10973-019-08062-6.
[12] G. Zhang, G. Cui, B. Dou, Z. Wang, and M. A. Goula, “An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux,” Energy Convers. Manag., vol. 171, no. June, pp. 699–709, 2018, doi: 10.1016/j.enconman.2018.06.029.
[13] L. W. Fan et al., “An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage,” Appl. Therm. Eng., vol. 100, pp. 1063–1075, 2016, doi: 10.1016/j.applthermaleng.2016.02.125.
[14] G. Jiang, J. Huang, M. Liu, and M. Cao, “Experiment and simulation of thermal management for a tube-shell Liion battery pack with composite phase change material,” Appl. Therm. Eng., vol. 120, pp. 1–9, 2017, doi:10.1016/j.applthermaleng.2017.03.107.
[15] W. Youssef, Y. T. Ge, and S. A. Tassou, “CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes,” Energy Convers. Manag., vol. 157, no. December 2017, pp. 498–510, 2018, doi: 10.1016/j.enconman.2017.12.036.
[16] Q. Mao, H. Chen, Y. Zhao, and H. Wu, “A novel heat transfer model of a phase change material using in solar power plant,” Appl. Therm. Eng., vol. 129, pp. 557–563, 2018, doi: 10.1016/j.applthermaleng.2017.10.038.
[17] Y. B. Tao and Y. L. He, “A review of phase change material and performance enhancement method for latent heat storage system,” Renew. Sustain. Energy Rev., vol. 93, no. April, pp. 245–259, 2018, doi: 10.1016/j.rser.2018.05.028.
[18] F. Wang, W. Lin, Z. Ling, and X. Fang, “A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance,” Sol. Energy Mater. Sol. Cells, vol. 191, no. June 2018, pp. 218–234, 2019, doi: 10.1016/j.solmat.2018.11.016.
[19] J. Sarkar and S. Bhattacharyya, “Application of graphene and graphene-based materials in clean energy-related devices Minghui,” Arch. Thermodyn., vol. 33, no. 4, pp. 23–40, 2012, doi: 10.1002/er.
[20] M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, and H. El-Ghetany, “Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM),” Desalination, vol. 381, pp. 26–37, 2016, doi: 10.1016/j.desal.2015.11.031.
[21] A. Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, “Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate,” Sol. Energy, vol. 146, pp. 417–429, 2017, doi: 10.1016/j.solener.2017.01.070
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Technology Reports of Kansai University
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.researchgate.net/publication/342211977_Analysis_of_the_Behavior_of_Phase_Change_Material_in_Solar_Energy_Storage_Using_Computational_Tools
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4a2954d7-a45f-44b7-a551-cd143dc8db66/download
https://repositorio.cuc.edu.co/bitstreams/a47032e2-9d97-4246-a73d-d67aefb5213d/download
https://repositorio.cuc.edu.co/bitstreams/b40bc2c5-96c4-409b-9cd2-091e6fdb7d2d/download
https://repositorio.cuc.edu.co/bitstreams/91b15917-a54f-44b3-8f15-59e54c6b6f6a/download
https://repositorio.cuc.edu.co/bitstreams/8e4b120e-225d-4c37-902c-58428d8bc281/download
bitstream.checksum.fl_str_mv 70072068a29e4a783e1b04ff86ca2d70
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
4e4afe8b9df03865910be0d549492c68
8350657875cb1e128ebbc943957b839b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760699102199808
spelling Martinez-Fabregas, JonathanDíaz Saenz, CarlosCarpintero Durango, Javier Andrés2020-10-15T16:27:11Z2020-10-15T16:27:11Z20200453-2198https://hdl.handle.net/11323/7143Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this study, the temperature profile of the sodium nitrate phase change material NaNO3 is characterized, using a spherical macro encapsulation technique to increase the heat transfer properties, simulating through computer tools the behavior of this material when it is used as an alternative source of energy for heat. exchange processes, where the primary energy source has interruptions in the heat supply, the data obtained show for the proposed model that the system is capable of maintaining the outlet temperature for at least 20s and a temperature drop of 50K for 60s, being promising data for the use of these materials in heat exchange processes as is the energy support of solar collectors.Martinez-Fabregas, Jonathan-will be generated-orcid-0000-0001-5809-065X-600Díaz Saenz, CarlosCarpintero Durango, Javier Andrés-will be generated-orcid-0000-0002-1758-0596-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Technology Reports of Kansai Universityhttps://www.researchgate.net/publication/342211977_Analysis_of_the_Behavior_of_Phase_Change_Material_in_Solar_Energy_Storage_Using_Computational_ToolsPhase change materials (PCM)NaNO3Heat latentComputational fluid dynamics CFDMelting temperatureAnalysis of the behavior of phase change material in solar energy storage using computational toolsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Zhang, Z. N. Meng, H. Zhu, Y. L. Wang, and S. P. Peng, “Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam,” Appl. Energy, vol. 185, pp. 1971–1983, 2017, doi:10.1016/j.apenergy.2015.10.075.[2] K. Kant, A. Shukla, A. Sharma, and P. H. Biwole, “Heat transfer studies of photovoltaic panel coupled with phase change material,” Sol. Energy, vol. 140, pp. 151–161, 2016, doi: 10.1016/j.solener.2016.11.006.[3] Y. B. Tao, Y. You, and Y. L. He, “Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material,” Appl. Therm. Eng., vol. 93, pp. 476–485, 2016, doi:10.1016/j.applthermaleng.2015.10.016.[4] H. Wang, F. Wang, Z. Li, Y. Tang, B. Yu, and W. Yuan, “Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material,” Appl. Energy, vol. 176, pp. 221–232, 2016, doi: 10.1016/j.apenergy.2016.05.050.[5] C. Wang, T. Lin, N. Li, and H. Zheng, “Heat transfer enhancement of phase change composite material: Copper foam/paraffin,” Renew. Energy, vol. 96, pp. 960–965, 2016, doi: 10.1016/j.renene.2016.04.039.[6] E. M. Languri, H. B. Rokni, J. Alvarado, B. Takabi, and M. Kong, “Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils: A numerical and analytical study,” Int. J. Heat Mass Transf., vol. 118, pp. 872–878, 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.130.[7] A. M. Abdulateef, S. Mat, J. Abdulateef, K. Sopian, and A. A. Al-Abidi, “Thermal Performance Enhancement of Triplex Tube Latent Thermal Storage Using Fins-Nano-Phase Change Material Technique,” Heat Transf. Eng., vol. 39, no. 12, pp. 1067–1080, 2018, doi: 10.1080/01457632.2017.1358488.[8] Y. Li, J. Darkwa, and G. Kokogiannakis, “Heat transfer analysis of an integrated double skin façade and phase change material blind system,” Build. Environ., vol. 125, pp. 111–121, 2017, doi: 10.1016/j.buildenv.2017.08.034.[9] J. Yang, L. Yang, C. Xu, and X. Du, “Experimental study on enhancement of thermal energy storage with phasechange material,” Appl. Energy, vol. 169, pp. 164–176, 2016, doi: 10.1016/j.apenergy.2016.02.028.[10] D. Zou et al., “Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module,” Energy Convers. Manag., vol. 180, no. September 2018, pp. 1196–1202, 2019, doi: 10.1016/j.enconman.2018.11.064.[11] R. Heydarian, M. B. Shafii, A. Rezaee Shirin-Abadi, R. Ghasempour, and M. Alhuyi Nazari, “Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1603–1613, 2019, doi: 10.1007/s10973-019-08062-6.[12] G. Zhang, G. Cui, B. Dou, Z. Wang, and M. A. Goula, “An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat flux,” Energy Convers. Manag., vol. 171, no. June, pp. 699–709, 2018, doi: 10.1016/j.enconman.2018.06.029.[13] L. W. Fan et al., “An experimental and numerical investigation of constrained melting heat transfer of a phase change material in a circumferentially finned spherical capsule for thermal energy storage,” Appl. Therm. Eng., vol. 100, pp. 1063–1075, 2016, doi: 10.1016/j.applthermaleng.2016.02.125.[14] G. Jiang, J. Huang, M. Liu, and M. Cao, “Experiment and simulation of thermal management for a tube-shell Liion battery pack with composite phase change material,” Appl. Therm. Eng., vol. 120, pp. 1–9, 2017, doi:10.1016/j.applthermaleng.2017.03.107.[15] W. Youssef, Y. T. Ge, and S. A. Tassou, “CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes,” Energy Convers. Manag., vol. 157, no. December 2017, pp. 498–510, 2018, doi: 10.1016/j.enconman.2017.12.036.[16] Q. Mao, H. Chen, Y. Zhao, and H. Wu, “A novel heat transfer model of a phase change material using in solar power plant,” Appl. Therm. Eng., vol. 129, pp. 557–563, 2018, doi: 10.1016/j.applthermaleng.2017.10.038.[17] Y. B. Tao and Y. L. He, “A review of phase change material and performance enhancement method for latent heat storage system,” Renew. Sustain. Energy Rev., vol. 93, no. April, pp. 245–259, 2018, doi: 10.1016/j.rser.2018.05.028.[18] F. Wang, W. Lin, Z. Ling, and X. Fang, “A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance,” Sol. Energy Mater. Sol. Cells, vol. 191, no. June 2018, pp. 218–234, 2019, doi: 10.1016/j.solmat.2018.11.016.[19] J. Sarkar and S. Bhattacharyya, “Application of graphene and graphene-based materials in clean energy-related devices Minghui,” Arch. Thermodyn., vol. 33, no. 4, pp. 23–40, 2012, doi: 10.1002/er.[20] M. Asbik, O. Ansari, A. Bah, N. Zari, A. Mimet, and H. El-Ghetany, “Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM),” Desalination, vol. 381, pp. 26–37, 2016, doi: 10.1016/j.desal.2015.11.031.[21] A. Hasan, J. Sarwar, H. Alnoman, and S. Abdelbaqi, “Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate,” Sol. Energy, vol. 146, pp. 417–429, 2017, doi: 10.1016/j.solener.2017.01.070PublicationORIGINALAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdfAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdfapplication/pdf256646https://repositorio.cuc.edu.co/bitstreams/4a2954d7-a45f-44b7-a551-cd143dc8db66/download70072068a29e4a783e1b04ff86ca2d70MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a47032e2-9d97-4246-a73d-d67aefb5213d/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b40bc2c5-96c4-409b-9cd2-091e6fdb7d2d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.jpgAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.jpgimage/jpeg38012https://repositorio.cuc.edu.co/bitstreams/91b15917-a54f-44b3-8f15-59e54c6b6f6a/download4e4afe8b9df03865910be0d549492c68MD54TEXTAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.txtAnalysis of the Behavior of Phase Change Material in Solar Energy Storage Using Computational Tools .pdf.txttext/plain969https://repositorio.cuc.edu.co/bitstreams/8e4b120e-225d-4c37-902c-58428d8bc281/download8350657875cb1e128ebbc943957b839bMD5511323/7143oai:repositorio.cuc.edu.co:11323/71432024-09-17 10:17:01.522http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==