Metaheuristic algorithm for the construction of mixed covering arrays of different strength levels to be used in the design of Black Box software test cases
Introducción— Actualmente, la calidad del software en una característica fundamental para asegurarse un espacio en el mercado global que día a día es más competitivo y exigente. Las pruebas de software permiten a las empresas desarrolladoras de software encontrar y corregir fallos y con ello elevar...
- Autores:
-
Lopez Realpe, Andres Rodrigo
MUÑOZ ORDOÑEZ, JORGE ARMANDO
Cobos, Carlos Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10178
- Acceso en línea:
- https://hdl.handle.net/11323/10178
https://repositorio.cuc.edu.co/
- Palabra clave:
- Arreglos de cobertura
Algoritmos metaheurísticos
Algoritmos codiciosos
Recocido simulado
Arreglos de cobertura Mixtos
Covering Arrays
Mixed covering arrays
Metaheuristic algorithms
Greedy algorithms
Simulated annealing
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Summary: | Introducción— Actualmente, la calidad del software en una característica fundamental para asegurarse un espacio en el mercado global que día a día es más competitivo y exigente. Las pruebas de software permiten a las empresas desarrolladoras de software encontrar y corregir fallos y con ello elevar la calidad de sus productos. El costo de las pruebas hoy se estima en un 50% del costo total del desarrollo de software, por esto se hace necesario encontrar formas menos costosas que garanticen altos niveles de detección de fallos. En este escenario, las pruebas de caja negra tienen un papel fundamental y dentro de estas pruebas los enfoques combinatoriales son una de las mejores opciones. En las pruebas combinatorias se hace necesario que los usuarios probadores (testers) cuenten con una herramienta que les proporcione el menor número de casos de prueba con la mayor cobertura (detección de fallos) de acuerdo con los parámetros del método (procedimiento, función u otro) que desea probar, y este es el objetivo principal de este trabajo. Objetivo— En este artículo se presenta un algoritmo que soporta la generación de casos de prueba en pruebas de caja negra basado en la creación de Arreglos de Cobertura Mixta (MCA). Estos arreglos permiten generar el menor número de casos de prueba requeridos para probar una unidad de código con la mayor cobertura requerida (mayor posibilidad de detectar fallos). El algoritmo propuesto construye una solución inicial basado en un algoritmo codicioso (greedy) y luego mejora esta solución a través de un proceso iterativo orientado por recocido simulado (algoritmo metaheurístico) y tres formas de definir soluciones vecinas. Metodología— La investigación se realizó siguiendo el Patrón de Investigación Iterativa propuesto por Pratt. Primero se identificaron los principales problemas reportados en el estado del arte para la construcción de MCA, luego se realizó una revisión de las propuestas de solución a estos problemas. Después se creó un primer algoritmo y luego se fue modificando en forma iterativa este algoritmo, incluyendo y removiendo componentes de acuerdo con resultados experimentales de su funcionamiento. Cuando se obtuvo la versión deseada, se realizó un proceso de afinamiento de parámetros y se comparó con los mejores resultados presentados en la literatura, resultados obtenidos por diferentes algoritmos. Resultados— El algoritmo propuesto obtiene MCA que son competitivos (en promedio 3 casos de prueba adicionales) frente a los mejores reportados en el estado del arte en un tiempo corto de ejecución, aspecto que es de especial interés para los probadores de software. Conclusiones— Se confirmó que el enfoque codicioso y metaheurístico basado en recocido simulado es una buena alternativa para la construcción de un MCA. Los algoritmos de construcción de soluciones vecinas son claves para encontrar el MCA requerido y en un menor tiempo de ejecución. |
---|