Mitigation of distortions in radio-over-fiber systems using machine learning

Introduction— The ever-growing number of users connected to internet via mobile devices has driven to increase the research in the paradigm of hybrid optical networks called Radio-over-Fiber. These networks take advantages of the bandwidth given by the optical fiber and the mobility given by wireles...

Full description

Autores:
Torres Vahos, Diego Fernando
Escobar, Alejandro
Díaz Rodriguez, Cristian Alexis
Granada Torres, Jhon James
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10262
Acceso en línea:
https://hdl.handle.net/11323/10262
https://repositorio.cuc.edu.co/
Palabra clave:
Asymmetrical demodulation
Machine learning
Millimeter wave band
Radio-over-fiber
Support vector machine
Aprendizaje automático
Banda de ondas milimétricas
Demodulación asimétrica
Máquina de soporte vectorial
Radio-sobre-fibra
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_5fb51506bb166b00e483b39a59a4bbdc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10262
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Mitigation of distortions in radio-over-fiber systems using machine learning
dc.title.translated.none.fl_str_mv Mitigación de distorsiones en sistemas de radio-sobre-fibra usando aprendizaje automático
title Mitigation of distortions in radio-over-fiber systems using machine learning
spellingShingle Mitigation of distortions in radio-over-fiber systems using machine learning
Asymmetrical demodulation
Machine learning
Millimeter wave band
Radio-over-fiber
Support vector machine
Aprendizaje automático
Banda de ondas milimétricas
Demodulación asimétrica
Máquina de soporte vectorial
Radio-sobre-fibra
title_short Mitigation of distortions in radio-over-fiber systems using machine learning
title_full Mitigation of distortions in radio-over-fiber systems using machine learning
title_fullStr Mitigation of distortions in radio-over-fiber systems using machine learning
title_full_unstemmed Mitigation of distortions in radio-over-fiber systems using machine learning
title_sort Mitigation of distortions in radio-over-fiber systems using machine learning
dc.creator.fl_str_mv Torres Vahos, Diego Fernando
Escobar, Alejandro
Díaz Rodriguez, Cristian Alexis
Granada Torres, Jhon James
dc.contributor.author.none.fl_str_mv Torres Vahos, Diego Fernando
Escobar, Alejandro
Díaz Rodriguez, Cristian Alexis
Granada Torres, Jhon James
dc.subject.proposal.eng.fl_str_mv Asymmetrical demodulation
Machine learning
Millimeter wave band
Radio-over-fiber
Support vector machine
topic Asymmetrical demodulation
Machine learning
Millimeter wave band
Radio-over-fiber
Support vector machine
Aprendizaje automático
Banda de ondas milimétricas
Demodulación asimétrica
Máquina de soporte vectorial
Radio-sobre-fibra
dc.subject.proposal.spa.fl_str_mv Aprendizaje automático
Banda de ondas milimétricas
Demodulación asimétrica
Máquina de soporte vectorial
Radio-sobre-fibra
description Introduction— The ever-growing number of users connected to internet via mobile devices has driven to increase the research in the paradigm of hybrid optical networks called Radio-over-Fiber. These networks take advantages of the bandwidth given by the optical fiber and the mobility given by wireless transmissions, avoiding the bottleneck of optical-to-electrical conversion interfaces. However, the chromatic dispersion of the optical fiber generates distortions in the radiofrequency signals optically modulated, limiting the reach of transmission. Objective— To improve the performance of a Radioover-Fiber system in terms of bit-error-rate, using nonsymmetrical demodulation by means of the machine learning algorithm Support Vector Machine. Methodology— A Radio-over-Fiber System is simulated in the specialized software VPIDesignSuite. The radiofrequency signals are modulated at 16 and 64-QAM formats with different laser linewidths and transmitted over optical fiber. The Support Vector Machine algorithm is applied to carry out nonsymmetrical demodulation. Results— The implementation of the machine learning algorithm for signal demodulation significantly improves the network performance, reaching transmissions up to 30 km. It implies a reduction of the bit-error-rate up to two orders of magnitude in comparison with conventional demodulation. Conclusions— Mitigation of distortions in terms of bit-error-rate is demonstrated in a Radio-over-Fiber system using nonsymmetrical demodulation by using the Support Vector Machine algorithm. Thus, the proposed technique can be suitable for future high-capacity access networks.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-06-23T22:20:37Z
dc.date.available.none.fl_str_mv 2023-06-23T22:20:37Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv D. Torres Vahos, A. Escobar Pérez, C. Diaz Rodríguez & J. Granada Torres, “Mitigation of Distortions in Radio-OverFiber Systems Using Machine Learning”, INGE CUC, vol. 17, no. 2, pp. 234–244, 2021. DOI: http://doi.org/10.17981/ ingecuc.17.2.2021.21
dc.identifier.issn.spa.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10262
dc.identifier.doi.none.fl_str_mv 10.17981/ ingecuc.17.2.2021.21
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv D. Torres Vahos, A. Escobar Pérez, C. Diaz Rodríguez & J. Granada Torres, “Mitigation of Distortions in Radio-OverFiber Systems Using Machine Learning”, INGE CUC, vol. 17, no. 2, pp. 234–244, 2021. DOI: http://doi.org/10.17981/ ingecuc.17.2.2021.21
0122-6517
10.17981/ ingecuc.17.2.2021.21
2382-4700
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10262
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
dc.relation.references.spa.fl_str_mv [1] I. Guvenc, S. Gezici, Z. Sahinoglu & U. Kozat (Eds.), Reliable communications for short-range wireless systems.NY, USA, CUP, pp. 1–3, 2011. vv10.1017/CBO9780511974366
[2] R. A. González, “Diseño y simulación de arreglos de antena en la frecuencia de 72 ghz (banda–e) para empleo en redes móviles 5g,” in Desarrollo e innovacion en ingenieria, E. Serna, Ed., MED, CO, Fundacioniai, pp. 255–263, 2018.
[3] J. Leyva y D. Beltrán, “La comunicación inalámbrica a través de la banda de los 60 ghz,,” RUS, vol. 8, no. 2, pp. 89–96, 2016. Disponible en https://rus.ucf.edu.cu/index.php/rus/article/view/373
[4] Nan Guo, R. C. Qiu, Shaomin S. Mo & Kazuaki Takahashi, “60- GHzMillimeter-Wave Radio: Principle, Technology, and New Results,” EURASIP J Wirel Commun Netw, pp. 1–8, 2007. https://doi. org/10.1155/2007/68253
[5] M. A. Ilgaz & B. Batagelj, “Proposal for distribution of a low-phase-noise oscillator signal in forthcoming fifth-generation mobile network by radio-over-fibre technology,” presented at 58th International Symposium, ELMAR, ZAD, HR, pp. 13–16, 2016. https://doi.org/10.1109/ELMAR.2016.7731744
[6] N. Kathpal & A. K. Garg, “Analysis of radio over fiber system for mitigating four-wave mixing effect,” Digit Commun Netw, vol. 6, no. 1, pp. 115–122, 2020. https://doi.org/10.1016/j.dcan.2019.01.003
[7] S. Chaudhary, D. Thakur & A. Sharma, “10 gbps-60 ghz rof transmission system for 5g applications,” J Opt Commun Netw, vol. 40, no. 3, pp. 281–284, 2019. https://doi.org/10.1515/joc-2017-0079
[8] J. J. Granada, C. M. Serpa, G. M. Varón, y N. Guerrero, “Hacia la próxima generación de sistemas de Radio sobre Fibra de banda ancha: retos tecnológicos en la banda de las ondas milimétricas,” Ing Des, vol. 29, no. 2, pp. 242–265, 2011. Disponible en https://rcientificas.uninorte.edu.co/index.php/ingenieria/ article/view/3627
[9] H. B. Kim & A. Wolisz, “A radio over fiber based wireless access network architecture for rural areas,” presented at WCNM, CiteSeer, DRS, GE, 2005. Disponible en http://www.eecs.tu-berlin.de/fileadmin/ fg112/Papers/RoFAccessISTFinal.pdf
[10] S. Constaín, I. Mantilla, G. C. Rueda, L. F. Trujillo y J. Barrera, Plan 5g Colombia el futuro digital es de todos. BO, CO: Mintic, 2019. Recuperado de https://mintic.gov.co/micrositios/plan_5g//764/articles-162230_recurso_1.pdf
[11] J. J. G. Torres, G. M. V. Durán & N. G. González, “Chromatic dispersion effects in a radio over fiber system with psk modulation and coherent detection,” presented at COLCOM, ICESI, CA, CO, pp. 1–6, 2012. https://doi.org/10.1109/ColComCon.2012.6233655
[12] N. Guerrero, D. Zibar, X. Yu & I. T. Monroy, “Optical phase-modulated radio-over-fiber links with kmeans algorithm for digital demodulation of 8psk subcarrier multiplexed signals,” presented at OFC, OSA/OPC, SD, CA, USA, 2010. https://doi.org/10.1364/OFC.2010.OML3
[13] M. Amini & E. Balarastaghi, “Universal neural network demodulator for software defined radio,” Int J Mach Learn Comput, vol. 1, no. 3, pp. 305–310, 2011. Available from http://www.ijmlc.org/papers/45- L335.pdf
[14] Y. Huang, Y. Chen & J. Yu, “Nonlinearity mitigation of rof signal using machine learning based classifier,” presented at ACPC, OSA/OPC, SUI, GD, CHN, pp. 1–3, 2017. https://doi.org/10.1364/ACPC.2017. Su2A.28
[15] E. A. Fernandez, J. J. G. Torres, A. M. C. Soto & N. G. González, “Demodulation of m-ary non-symmetrical constellations using clustering techniques in optical communication systems,” presented at LACCI, IEEE, CTG, CO, pp. 1–6, 2016. https://doi.org/10.1109/LA-CCI.2016.7885720
[16] Y. Cui, M. Zhang, D. Wang, S. Liu, Z. Li & G.-K. Chang, “Bit-based support vector machine nonlinear detector for millimeter-wave radio-over-fiber mobile fronthaul systems,” Opt Express, vol. 25, no. 21, pp. 26186–26197, 2017. https://doi.org/10.1364/OE.25.026186
[17] J. Mitchell, “Radio over fiber networks: Advances and challenges,” presented at ECOC '09, IEEE, WIE, AUT, pp. 1–4, 2009. Available: https://conference.vde.com/ecoc-2009/about/Pages/About%20ECOC%20 2009.aspx
[18] S. P. Singh & N. Singh, “Nonlinear Effects in Optical Fibers: Origin, Management and Applications,” PIER, vol. 73, pp. 249–275, 2007. https://doi.org/10.2528/PIER07040201
[19] G. D. V. Revelo, J. R. O. Arroyave, D. P. T. Vallejo & N. G. Gómez, “Descripción y análisis de desempeño de sistemas de radio sobre fibra con enlaces de 900mhz con modulaciones en fase y en cuadratura,” Rev Politec, vol. 9, no. 16, pp. 51–62, 2013. Recuperado de https://revistas.elpoli.edu.co/index.php/pol/article/ view/330
[20] J. Granada, A. Cárdenas & N. Guerrero, “A novel dispersion monitoring technique in w-band radio-overfiber signals using clustering on asynchronous histograms,” Ing Invest, vol. 34, no. 3, pp. 76–80, 2014. https://doi.org/10.15446/ing.investig.v34n3.42902
[21] J. Zander, “On the cost structure of future wideband wireless access,” presented at 47th Vehicular Technology, VTS, PHO, AZ, USA, pp. 1773–1776, 1997. https://doi.org/10.1109/VETEC.1997.605863
[22] D. Sinha, A. K. Verma & S. Kumar, “Software defined radio: Operation, challenges and possible solutions,” presented at 10th ISCO, ISCO, COVAI, IN, pp. 1–5, 2016. https://doi.org/10.1109/ISCO.2016.7727079
[23] M. Rico-Martinez, C. C. C. Vasquez, S. I. Rodriguez, G. M. V. Duran & I. T. Monroy, “Comparison of performance between OFDM and GFDM in a 3.5GHz band 5G hybrid Fiber-Wireless link using SDR,” presented at MWP, IEE, TLSE, FR, pp. 1–4, 2018. https://doi.org/10.1109/MWP.2018.8552915
[24] S. Agrawal & K. Sharma.5g millimeter wave (mmwave) communication system with software defined radio (sdr),” Data Brief ,vol. 23, pp. 8–15, 2016. https://doi.org/10.1016/j.dib.2018.12.003
[25] R. K. Miranda, J. P. C. da Costa, F. Roemer, F. Raschke, T. Eishima, Y. Nakamura & G. Del Galdo, “Implementation of improved software defined radio modulation scheme and command and telemetry software interface for small satellites in 5g systems,” presented at ICOF, OFDM, Essen, GE, pp. 1–7, 2016.Available from https://lasp.unb.br/wp-content/uploads/papers/ICOF16_Miranda.pdf
[26] X. Xiong, W. Xiang, K. Zheng, H. Shen & X. Wei, “An open source SDR-based NOMA system for 5G networks,” IEEE Wirel Commun, vol. 22, no. 6, pp. 24–32, Dec. 2015. https://doi.org/10.1109/ MWC.2015.7368821
[27] H. M. Hizan, T. Kanesan, S. Kh. Sadon, A. Ibrahim, M. A. Ismail, S. M. Hassan, R. Sanusi, A. Yusof, F. Maskuriy & S. M. Mitani, “Multiservice wireless network testbed design using SDR and RoF platforms,” presented at APACE, AP/MTT/EMC, LGK, ML, pp. 369–372, 2016. https://doi.org/10.1109/ APACE.2016.7916462
[28] M. Rico-Martínez, A. Morales, V. Mehmeri, R. Puerta, M. Varón & I. T. Monroy, “Procedure to measure real time latency using software defined radio in a w-band fiber-wireless link,” Microw Opt Technol Lett, vol. 59, no. 12, pp. 3147–3151, 2017. https://doi.org/10.1002/mop.30904
[29] D. Konstantinou, A. Morales, I. Aghmari, S. Rommel, T. R. Raddo, U. Johannsen & I. T. Monroy, “Highspeed wireless access in forested rural areas using analog radio-over-fiber technology,” presented at LAOP, OSA, LI, PE, pp. 1–2, 2018. https://doi.org/10.1364/LAOP.2018.Tu2B.4
[30] J. David Cepeda, S. I. Rodríguez, M. Rico-Martínez, C. Daniel Muñoz, M. Varón & I. T. Monroy, “Performance evaluation of a real time OFDM radio over fiber system at 2.5 GHz using software defined radio SDR,” presented at IMOC, SBMO/IEEE MTT-S, Aguas de Lindoia, BR, pp. 1–5, 2017. https://doi. org/10.1109/IMOC.2017.8121094
[31] J. Sánchez, J. Nieto, M. Vázquez & V. Velázquez, “Umbral adaptivo para sistemas de comunicaciones ópticas inalámbricas por medio de algoritmos de agrupamiento,” RCS, vol. 108, pp. 127–134, 2015. https:// doi.org/10.13053/rcs-108-1-14
[32] V. Jakkula, Tutorial on support vector machine (svm).WSU. WA, USA, School of EECS, , 2006.Available from https://course.ccs.neu.edu/cs5100f11/resources/jakkula.pdf
[33] J. A. Resendiz, “Las Máquinas de Soporte Vectorial para identificación en Línea,” Tesis Maestria, IPN, CDMX, MX, 2002.Recuperado de https://www.ctrl.cinvestav.mx/~yuw/pdf/MaTesJAR.pdf
dc.relation.citationendpage.spa.fl_str_mv 244
dc.relation.citationstartpage.spa.fl_str_mv 234
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 17
dc.rights.spa.fl_str_mv Derechos de autor 2021 INGE CUC
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Derechos de autor 2021 INGE CUC
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/3467
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a47dc272-6744-4952-9d17-5dd9d0f65446/download
https://repositorio.cuc.edu.co/bitstreams/833f2ef5-7fad-44f7-ae9f-aba15d712228/download
https://repositorio.cuc.edu.co/bitstreams/b185b66f-73fe-4c97-9a9f-2cd57e7458c4/download
https://repositorio.cuc.edu.co/bitstreams/e4d500bf-2dfa-4026-b7b0-d83ab05d1799/download
bitstream.checksum.fl_str_mv ee6b09a56c4b8dd7c7304d7c5b706398
2f9959eaf5b71fae44bbf9ec84150c7a
11d5007b27991a3f53e7c1b4a37e1627
c8f3b176f7a20e81a0ff33c1425d6d98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760723963936768
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos de autor 2021 INGE CUChttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Vahos, Diego FernandoEscobar, AlejandroDíaz Rodriguez, Cristian AlexisGranada Torres, Jhon James2023-06-23T22:20:37Z2023-06-23T22:20:37Z2021D. Torres Vahos, A. Escobar Pérez, C. Diaz Rodríguez & J. Granada Torres, “Mitigation of Distortions in Radio-OverFiber Systems Using Machine Learning”, INGE CUC, vol. 17, no. 2, pp. 234–244, 2021. DOI: http://doi.org/10.17981/ ingecuc.17.2.2021.210122-6517https://hdl.handle.net/11323/1026210.17981/ ingecuc.17.2.2021.212382-4700Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction— The ever-growing number of users connected to internet via mobile devices has driven to increase the research in the paradigm of hybrid optical networks called Radio-over-Fiber. These networks take advantages of the bandwidth given by the optical fiber and the mobility given by wireless transmissions, avoiding the bottleneck of optical-to-electrical conversion interfaces. However, the chromatic dispersion of the optical fiber generates distortions in the radiofrequency signals optically modulated, limiting the reach of transmission. Objective— To improve the performance of a Radioover-Fiber system in terms of bit-error-rate, using nonsymmetrical demodulation by means of the machine learning algorithm Support Vector Machine. Methodology— A Radio-over-Fiber System is simulated in the specialized software VPIDesignSuite. The radiofrequency signals are modulated at 16 and 64-QAM formats with different laser linewidths and transmitted over optical fiber. The Support Vector Machine algorithm is applied to carry out nonsymmetrical demodulation. Results— The implementation of the machine learning algorithm for signal demodulation significantly improves the network performance, reaching transmissions up to 30 km. It implies a reduction of the bit-error-rate up to two orders of magnitude in comparison with conventional demodulation. Conclusions— Mitigation of distortions in terms of bit-error-rate is demonstrated in a Radio-over-Fiber system using nonsymmetrical demodulation by using the Support Vector Machine algorithm. Thus, the proposed technique can be suitable for future high-capacity access networks.Introducción— El constante crecimiento de usuarios conectados a internet por medio de dispositivos móviles ha conllevado a incrementar la investigación en el paradigma de las redes híbridas conocido como Radio-sobreFibra. Estas redes aprovechan las ventajas del ancho de banda de la fibra óptica y la movilidad de las transmisiones inalámbricas, evitando el cuello de botella que se da por la conversión óptico a eléctrico. No obstante, la dispersión cromática propia de la fibra óptica genera distorsiones en la señal de radiofrecuencia modulada ópticamente, lo cual limita su alcance. Objetivo— Mejorar el desempeño de un sistema de radio sobre fibra en términos de la tasa de error de bit, usando demodulación no simétrica por medio del algoritmo de aprendizaje automático Máquina de Soporte Vectorial. Metodología— Se simula un sistema de Radio-sobreFibra en el software especializado VPIDesignSuite. Se transmiten señales de radiofrecuencia moduladas en formatos 16 y 64-QAM con diferentes anchos de línea de láser sobre fibra óptica. Se aplica el algoritmo Máquina de Soporte Vectorial para la demodulación de la señal. Resultados— La implementación del algoritmo de aprendizaje automático para la demodulación de la señal mejora significativamente el desempeño de la red permitiendo alcanzar los 30 km de transmisión por fibra óptica. Esto implica una reducción de la tasa de error de bit hasta en dos órdenes de magnitud en comparación con la demodulación tradicional. Conclusiones— Se demuestra que con el uso de umbrales asimétricos usando algoritmo de Máquina de Soporte Vectorial se logran mitigar distorsiones en términos de la tasa de error de bit. Así, esta técnica se hace atractiva para futuras redes de acceso de alta capacidad.11 páginasapplication/pdfengCorporación Universidad de la CostaColombiahttps://revistascientificas.cuc.edu.co/ingecuc/article/view/3467Mitigation of distortions in radio-over-fiber systems using machine learningMitigación de distorsiones en sistemas de radio-sobre-fibra usando aprendizaje automáticoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85INGE CUC[1] I. Guvenc, S. Gezici, Z. Sahinoglu & U. Kozat (Eds.), Reliable communications for short-range wireless systems.NY, USA, CUP, pp. 1–3, 2011. vv10.1017/CBO9780511974366[2] R. A. González, “Diseño y simulación de arreglos de antena en la frecuencia de 72 ghz (banda–e) para empleo en redes móviles 5g,” in Desarrollo e innovacion en ingenieria, E. Serna, Ed., MED, CO, Fundacioniai, pp. 255–263, 2018.[3] J. Leyva y D. Beltrán, “La comunicación inalámbrica a través de la banda de los 60 ghz,,” RUS, vol. 8, no. 2, pp. 89–96, 2016. Disponible en https://rus.ucf.edu.cu/index.php/rus/article/view/373[4] Nan Guo, R. C. Qiu, Shaomin S. Mo & Kazuaki Takahashi, “60- GHzMillimeter-Wave Radio: Principle, Technology, and New Results,” EURASIP J Wirel Commun Netw, pp. 1–8, 2007. https://doi. org/10.1155/2007/68253[5] M. A. Ilgaz & B. Batagelj, “Proposal for distribution of a low-phase-noise oscillator signal in forthcoming fifth-generation mobile network by radio-over-fibre technology,” presented at 58th International Symposium, ELMAR, ZAD, HR, pp. 13–16, 2016. https://doi.org/10.1109/ELMAR.2016.7731744[6] N. Kathpal & A. K. Garg, “Analysis of radio over fiber system for mitigating four-wave mixing effect,” Digit Commun Netw, vol. 6, no. 1, pp. 115–122, 2020. https://doi.org/10.1016/j.dcan.2019.01.003[7] S. Chaudhary, D. Thakur & A. Sharma, “10 gbps-60 ghz rof transmission system for 5g applications,” J Opt Commun Netw, vol. 40, no. 3, pp. 281–284, 2019. https://doi.org/10.1515/joc-2017-0079[8] J. J. Granada, C. M. Serpa, G. M. Varón, y N. Guerrero, “Hacia la próxima generación de sistemas de Radio sobre Fibra de banda ancha: retos tecnológicos en la banda de las ondas milimétricas,” Ing Des, vol. 29, no. 2, pp. 242–265, 2011. Disponible en https://rcientificas.uninorte.edu.co/index.php/ingenieria/ article/view/3627[9] H. B. Kim & A. Wolisz, “A radio over fiber based wireless access network architecture for rural areas,” presented at WCNM, CiteSeer, DRS, GE, 2005. Disponible en http://www.eecs.tu-berlin.de/fileadmin/ fg112/Papers/RoFAccessISTFinal.pdf[10] S. Constaín, I. Mantilla, G. C. Rueda, L. F. Trujillo y J. Barrera, Plan 5g Colombia el futuro digital es de todos. BO, CO: Mintic, 2019. Recuperado de https://mintic.gov.co/micrositios/plan_5g//764/articles-162230_recurso_1.pdf[11] J. J. G. Torres, G. M. V. Durán & N. G. González, “Chromatic dispersion effects in a radio over fiber system with psk modulation and coherent detection,” presented at COLCOM, ICESI, CA, CO, pp. 1–6, 2012. https://doi.org/10.1109/ColComCon.2012.6233655[12] N. Guerrero, D. Zibar, X. Yu & I. T. Monroy, “Optical phase-modulated radio-over-fiber links with kmeans algorithm for digital demodulation of 8psk subcarrier multiplexed signals,” presented at OFC, OSA/OPC, SD, CA, USA, 2010. https://doi.org/10.1364/OFC.2010.OML3[13] M. Amini & E. Balarastaghi, “Universal neural network demodulator for software defined radio,” Int J Mach Learn Comput, vol. 1, no. 3, pp. 305–310, 2011. Available from http://www.ijmlc.org/papers/45- L335.pdf[14] Y. Huang, Y. Chen & J. Yu, “Nonlinearity mitigation of rof signal using machine learning based classifier,” presented at ACPC, OSA/OPC, SUI, GD, CHN, pp. 1–3, 2017. https://doi.org/10.1364/ACPC.2017. Su2A.28[15] E. A. Fernandez, J. J. G. Torres, A. M. C. Soto & N. G. González, “Demodulation of m-ary non-symmetrical constellations using clustering techniques in optical communication systems,” presented at LACCI, IEEE, CTG, CO, pp. 1–6, 2016. https://doi.org/10.1109/LA-CCI.2016.7885720[16] Y. Cui, M. Zhang, D. Wang, S. Liu, Z. Li & G.-K. Chang, “Bit-based support vector machine nonlinear detector for millimeter-wave radio-over-fiber mobile fronthaul systems,” Opt Express, vol. 25, no. 21, pp. 26186–26197, 2017. https://doi.org/10.1364/OE.25.026186[17] J. Mitchell, “Radio over fiber networks: Advances and challenges,” presented at ECOC '09, IEEE, WIE, AUT, pp. 1–4, 2009. Available: https://conference.vde.com/ecoc-2009/about/Pages/About%20ECOC%20 2009.aspx[18] S. P. Singh & N. Singh, “Nonlinear Effects in Optical Fibers: Origin, Management and Applications,” PIER, vol. 73, pp. 249–275, 2007. https://doi.org/10.2528/PIER07040201[19] G. D. V. Revelo, J. R. O. Arroyave, D. P. T. Vallejo & N. G. Gómez, “Descripción y análisis de desempeño de sistemas de radio sobre fibra con enlaces de 900mhz con modulaciones en fase y en cuadratura,” Rev Politec, vol. 9, no. 16, pp. 51–62, 2013. Recuperado de https://revistas.elpoli.edu.co/index.php/pol/article/ view/330[20] J. Granada, A. Cárdenas & N. Guerrero, “A novel dispersion monitoring technique in w-band radio-overfiber signals using clustering on asynchronous histograms,” Ing Invest, vol. 34, no. 3, pp. 76–80, 2014. https://doi.org/10.15446/ing.investig.v34n3.42902[21] J. Zander, “On the cost structure of future wideband wireless access,” presented at 47th Vehicular Technology, VTS, PHO, AZ, USA, pp. 1773–1776, 1997. https://doi.org/10.1109/VETEC.1997.605863[22] D. Sinha, A. K. Verma & S. Kumar, “Software defined radio: Operation, challenges and possible solutions,” presented at 10th ISCO, ISCO, COVAI, IN, pp. 1–5, 2016. https://doi.org/10.1109/ISCO.2016.7727079[23] M. Rico-Martinez, C. C. C. Vasquez, S. I. Rodriguez, G. M. V. Duran & I. T. Monroy, “Comparison of performance between OFDM and GFDM in a 3.5GHz band 5G hybrid Fiber-Wireless link using SDR,” presented at MWP, IEE, TLSE, FR, pp. 1–4, 2018. https://doi.org/10.1109/MWP.2018.8552915[24] S. Agrawal & K. Sharma.5g millimeter wave (mmwave) communication system with software defined radio (sdr),” Data Brief ,vol. 23, pp. 8–15, 2016. https://doi.org/10.1016/j.dib.2018.12.003[25] R. K. Miranda, J. P. C. da Costa, F. Roemer, F. Raschke, T. Eishima, Y. Nakamura & G. Del Galdo, “Implementation of improved software defined radio modulation scheme and command and telemetry software interface for small satellites in 5g systems,” presented at ICOF, OFDM, Essen, GE, pp. 1–7, 2016.Available from https://lasp.unb.br/wp-content/uploads/papers/ICOF16_Miranda.pdf[26] X. Xiong, W. Xiang, K. Zheng, H. Shen & X. Wei, “An open source SDR-based NOMA system for 5G networks,” IEEE Wirel Commun, vol. 22, no. 6, pp. 24–32, Dec. 2015. https://doi.org/10.1109/ MWC.2015.7368821[27] H. M. Hizan, T. Kanesan, S. Kh. Sadon, A. Ibrahim, M. A. Ismail, S. M. Hassan, R. Sanusi, A. Yusof, F. Maskuriy & S. M. Mitani, “Multiservice wireless network testbed design using SDR and RoF platforms,” presented at APACE, AP/MTT/EMC, LGK, ML, pp. 369–372, 2016. https://doi.org/10.1109/ APACE.2016.7916462[28] M. Rico-Martínez, A. Morales, V. Mehmeri, R. Puerta, M. Varón & I. T. Monroy, “Procedure to measure real time latency using software defined radio in a w-band fiber-wireless link,” Microw Opt Technol Lett, vol. 59, no. 12, pp. 3147–3151, 2017. https://doi.org/10.1002/mop.30904[29] D. Konstantinou, A. Morales, I. Aghmari, S. Rommel, T. R. Raddo, U. Johannsen & I. T. Monroy, “Highspeed wireless access in forested rural areas using analog radio-over-fiber technology,” presented at LAOP, OSA, LI, PE, pp. 1–2, 2018. https://doi.org/10.1364/LAOP.2018.Tu2B.4[30] J. David Cepeda, S. I. Rodríguez, M. Rico-Martínez, C. Daniel Muñoz, M. Varón & I. T. Monroy, “Performance evaluation of a real time OFDM radio over fiber system at 2.5 GHz using software defined radio SDR,” presented at IMOC, SBMO/IEEE MTT-S, Aguas de Lindoia, BR, pp. 1–5, 2017. https://doi. org/10.1109/IMOC.2017.8121094[31] J. Sánchez, J. Nieto, M. Vázquez & V. Velázquez, “Umbral adaptivo para sistemas de comunicaciones ópticas inalámbricas por medio de algoritmos de agrupamiento,” RCS, vol. 108, pp. 127–134, 2015. https:// doi.org/10.13053/rcs-108-1-14[32] V. Jakkula, Tutorial on support vector machine (svm).WSU. WA, USA, School of EECS, , 2006.Available from https://course.ccs.neu.edu/cs5100f11/resources/jakkula.pdf[33] J. A. Resendiz, “Las Máquinas de Soporte Vectorial para identificación en Línea,” Tesis Maestria, IPN, CDMX, MX, 2002.Recuperado de https://www.ctrl.cinvestav.mx/~yuw/pdf/MaTesJAR.pdf244234217Asymmetrical demodulationMachine learningMillimeter wave bandRadio-over-fiberSupport vector machineAprendizaje automáticoBanda de ondas milimétricasDemodulación asimétricaMáquina de soporte vectorialRadio-sobre-fibraPublicationORIGINALMitigation of Distortions in Radio-Over-Fiber Systems Using Machine Learning.pdfMitigation of Distortions in Radio-Over-Fiber Systems Using Machine Learning.pdfArtículoapplication/pdf2328720https://repositorio.cuc.edu.co/bitstreams/a47dc272-6744-4952-9d17-5dd9d0f65446/downloadee6b09a56c4b8dd7c7304d7c5b706398MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/833f2ef5-7fad-44f7-ae9f-aba15d712228/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTMitigation of Distortions in Radio-Over-Fiber Systems Using Machine Learning.pdf.txtMitigation of Distortions in Radio-Over-Fiber Systems Using Machine Learning.pdf.txtExtracted texttext/plain35369https://repositorio.cuc.edu.co/bitstreams/b185b66f-73fe-4c97-9a9f-2cd57e7458c4/download11d5007b27991a3f53e7c1b4a37e1627MD53THUMBNAILMitigation of Distortions in Radio-Over-Fiber Systems Using Machine Learning.pdf.jpgMitigation of Distortions in Radio-Over-Fiber Systems Using Machine Learning.pdf.jpgGenerated Thumbnailimage/jpeg13164https://repositorio.cuc.edu.co/bitstreams/e4d500bf-2dfa-4026-b7b0-d83ab05d1799/downloadc8f3b176f7a20e81a0ff33c1425d6d98MD5411323/10262oai:repositorio.cuc.edu.co:11323/102622024-09-17 10:48:55.984https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos de autor 2021 INGE CUCopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=