Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
Density-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion en...
- Autores:
-
Amaya Roncancio, S.
Linares, D.
Sapag, K.
Restrepo Parra, E.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9284
- Acceso en línea:
- https://hdl.handle.net/11323/9284
https://doi.org/10.1016/j.molstruc.2022.132397.
https://repositorio.cuc.edu.co/
- Palabra clave:
- GGA-PBE
Binding energy
Hollow site
Bridge site
Diffusion coefficient
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_5ed789d10286deb02461cc3967a7495a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9284 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
title |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
spellingShingle |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces GGA-PBE Binding energy Hollow site Bridge site Diffusion coefficient |
title_short |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
title_full |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
title_fullStr |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
title_full_unstemmed |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
title_sort |
Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces |
dc.creator.fl_str_mv |
Amaya Roncancio, S. Linares, D. Sapag, K. Restrepo Parra, E. |
dc.contributor.author.spa.fl_str_mv |
Amaya Roncancio, S. Linares, D. Sapag, K. Restrepo Parra, E. |
dc.subject.proposal.eng.fl_str_mv |
GGA-PBE Binding energy Hollow site Bridge site Diffusion coefficient |
topic |
GGA-PBE Binding energy Hollow site Bridge site Diffusion coefficient |
description |
Density-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion energy barrier was calculated for both clean surfaces and those with hydrogen, and it was found that hydrogen produced binding energies for carbon and oxygen. These bonds stabilized the binding of hydrogen with the Fe(100) surface. For all of the surface species studied here, the energy barrier was increased when hydrogen was coadsorbed, from 1.29 eV to 1.46 eV for C, from 0.33 eV to 0.53 eV for O and from 0.11 eV to 0.15 eV for H. An approximation of the diffusion coefficient was obtained from energy barrier calculations and a pre-exponential factor of diffusion was calculated. Carbon exhibited low diffusion at the surface under experimental temperatures, while oxygen diffusion was activated above 450 K and hydrogen was diffused in all the temperature ranges investigated |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-22T14:44:51Z |
dc.date.available.none.fl_str_mv |
2022-06-22T14:44:51Z 2023-01-05 |
dc.date.issued.none.fl_str_mv |
2022-01-05 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397. |
dc.identifier.issn.spa.fl_str_mv |
0022-2860 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9284 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.molstruc.2022.132397. |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.molstruc.2022.132397. |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397. 0022-2860 10.1016/j.molstruc.2022.132397. Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9284 https://doi.org/10.1016/j.molstruc.2022.132397. https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Molecular Structure |
dc.relation.references.spa.fl_str_mv |
[1] H. Xing, P. Hu, S. Li, Y. Zuo, J. Han, X. Hua, K. Wang, F. Yang, P. Feng, T. Chang, Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review, J. Mater. Sci. Technol. 62 (2021) 180–194. [2] E. del V Gómez, S. Amaya-Roncancio, L.B. Avalle, D.H. Linares, M.C. Gimenez, DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces, Appl. Surf. Sci. 420 (2017) 1–8. [3] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) 917–1002. [4] L. Qiao, X. Zhang, S. Wang, S. Yu, X. Hu, L. Wang, Y. Zeng, W. Zheng, First-prin- ciples investigations on the adsorption and diffusion of carbon atoms on the surface and in the subsurface of Co (111) related to the growth of graphene, RSC Adv. 4 (2014) 34237–34243. [5] D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austen- ite from first principles, Phys. Rev. B 67 (214103) (2003) 1–11, doi:10.1103/ PhysRevB.67.214103. [6] Z. Zuo, W. Huang, P. Han, Z. Li, A density functional theory study of CH 4 dehydrogenation on Co (111), Appl. Surf. Sci. 256 (20) (2010) 5929–5934, doi:10.1016/j.apsusc.2010.03.078. [7] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorp- tion and diffusion on and in transition metal surfaces: a DFT study, Surf. Sci. 606 (7–8) (2012) 679–689, doi:10.1016/j.susc.2011.12.017. [8] D.C. Sorescu, First-principles calculations of the adsorption and hydrogenation reactions of CH x (x = 0, 4) species on a Fe (100) surface, Phys. Rev. B 73 (2006) 155420. [9] M.T.M. Koper, R.A. Santen, Interaction of H, O and OH with metal surfaces, J. Electroanal. Chem. 472 (1999) 126–136. [10] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles, Phys. Rev. B 71 (045402) (2005) 1–6. [11] C.F. Huo, J. Ren, Y.W. Li, J. Wang, H. Jiao, CO dissociation on clean and hydrogen precovered Fe(111) surfaces, J. Catal. 249 (2007) 174–184. [12] S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas, Influence of coadsorbed H in CO dissociation and CH n formation on Fe(1 0 0): a DFT study, Appl. Surf. Sci. 346 (2015) 438–442. [13] S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag, DFT study of hydro- gen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100), J. Phys. Chem. C 120 (2016) 10830–10837. [14] L. Xu, D. Kirvassilis, Y. Bai, M. Mavrikakis, Atomic and molecular adsorption on Fe(110), Surf. Sci. 667 (2018) 54–65. [15] L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces, Surf. Sci. 606 (2012) 1400–1404. [16] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source soft- ware project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502. [17] https://www.quantum-espresso.org/pseudopotentials, 2014 (accessed 13 March 2019). [18] JP. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. [19] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integra- tion in metals, Phys. Rev. B 40 (1989) 3616–3621. [20] D.C. Sorescu, First principles calculations of the adsorption and diffusion of hydrogen on Fe (100) surface and in the bulk, Catal.Today 105 (2005) 44–65. [21] G. Henkelman, BP. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904. [22] A. Kokalj, Graphics and graphical user interfaces as tools in simulations of mat- ter at the atomic scale, Comput. Mater. Sci. 28 (2003) 155–168. [23] T. Li, X. Wen, Y.W. Li, H. Jiao, Surface carbon hydrogenation on precovered Fe(110) with spectator-coverage-dependent chain initiation and propagation, J. Phys. Chem. C 123 (42) (2019) 25657–25667. [24] T. Li, X. Wen, Y.W. Li, H. Jiao, Successive dissociation of CO, CH4, C2H6, and CH3CHO on Fe(110): retrosynthetic understanding of FTS mechanism, J. Phys. Chem. C 122 (2018) 28846–28855. [25] S.J. Lombardo, A.T. Bell, A review of theoretical models of adsorption, diffusion, and reaction of gases on metal surfaces, Surf. Sci. Rep. 13 (1991) 1–72. [26] F. Cinquini, F. Delbecq, P. Sautet, A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy, Phys. Chem. Chem. Phys. 11 (2009) 11546–11556. [27] M.T. Curnan, C.M. Andolina, M. Li, Q. Zhu, H. Chi, WA. Saidi, J.C. Yang, Connect- ing oxide nucleation and growth to oxygen diffusion energetics on stepped Cu(011) Surfaces: an experimental and theoretical study, J. Phys. Chem. C 123 (1) (2019) 452–463. [28] M.C. Giménez, M.G. Del Pópolo, E.P.M. Leiva, S.G. Garcia, Theoretical consider- ations of electrochemical phase formation for an Ideal Frank-van der Merwe system, J. Electrochem. Soc. 149 (2002) E109–E116. [29] M.C. Giménez, MG. Del Pópolo, EP.M. Leiva, Kinetic Monte Carlo study of electrochemical growth in a heteroepitaxial system, Langmuir 18 (2002) 9087–9094. [30] M.E. Dry, T. Shingles, L.J. Boshoff, Rate of the Fischer-Tropsch reaction over iron catalysis, J. Catal. 25 (1972) 99–104. [31] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer–Tropsch syn- thesis with in situ H2 O removal-directions of membrane development, Micro- porous Mesoporous Mater. 115 (2008) 123–136. 8 |
dc.relation.citationendpage.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
1255 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Published by Elsevier B.V. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2022 Published by Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0022286022000709 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e8458a44-0f4c-4a77-83ca-2360391cc281/download https://repositorio.cuc.edu.co/bitstreams/6d5b955d-3b4d-4385-8623-a735ffdeed2a/download https://repositorio.cuc.edu.co/bitstreams/c30126be-94cd-41d9-b978-9d020bf1f87d/download https://repositorio.cuc.edu.co/bitstreams/347487ec-dae0-4f2e-ae86-fb0523f5f309/download |
bitstream.checksum.fl_str_mv |
e65971934540bcb8a760c782ed5b41b2 e30e9215131d99561d40d6b0abbe9bad 24a79ba31faee15cab2ebc09fb944a82 5ea960e3b30f9e5f0cac60838020dd34 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760771229548544 |
spelling |
Amaya Roncancio, S.Linares, D.Sapag, K.Restrepo Parra, E.2022-06-22T14:44:51Z2023-01-052022-06-22T14:44:51Z2022-01-05S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397.0022-2860https://hdl.handle.net/11323/9284https://doi.org/10.1016/j.molstruc.2022.132397.10.1016/j.molstruc.2022.132397.Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Density-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion energy barrier was calculated for both clean surfaces and those with hydrogen, and it was found that hydrogen produced binding energies for carbon and oxygen. These bonds stabilized the binding of hydrogen with the Fe(100) surface. For all of the surface species studied here, the energy barrier was increased when hydrogen was coadsorbed, from 1.29 eV to 1.46 eV for C, from 0.33 eV to 0.53 eV for O and from 0.11 eV to 0.15 eV for H. An approximation of the diffusion coefficient was obtained from energy barrier calculations and a pre-exponential factor of diffusion was calculated. Carbon exhibited low diffusion at the surface under experimental temperatures, while oxygen diffusion was activated above 450 K and hydrogen was diffused in all the temperature ranges investigatedElsevier8 páginasapplication/pdfengAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Published by Elsevier B.V.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDiffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfacesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S0022286022000709NetherlandsJournal of Molecular Structure[1] H. Xing, P. Hu, S. Li, Y. Zuo, J. Han, X. Hua, K. Wang, F. Yang, P. Feng, T. Chang, Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review, J. Mater. Sci. Technol. 62 (2021) 180–194.[2] E. del V Gómez, S. Amaya-Roncancio, L.B. Avalle, D.H. Linares, M.C. Gimenez, DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces, Appl. Surf. Sci. 420 (2017) 1–8.[3] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) 917–1002.[4] L. Qiao, X. Zhang, S. Wang, S. Yu, X. Hu, L. Wang, Y. Zeng, W. Zheng, First-prin- ciples investigations on the adsorption and diffusion of carbon atoms on the surface and in the subsurface of Co (111) related to the growth of graphene, RSC Adv. 4 (2014) 34237–34243.[5] D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austen- ite from first principles, Phys. Rev. B 67 (214103) (2003) 1–11, doi:10.1103/ PhysRevB.67.214103.[6] Z. Zuo, W. Huang, P. Han, Z. Li, A density functional theory study of CH 4 dehydrogenation on Co (111), Appl. Surf. Sci. 256 (20) (2010) 5929–5934, doi:10.1016/j.apsusc.2010.03.078.[7] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorp- tion and diffusion on and in transition metal surfaces: a DFT study, Surf. Sci. 606 (7–8) (2012) 679–689, doi:10.1016/j.susc.2011.12.017.[8] D.C. Sorescu, First-principles calculations of the adsorption and hydrogenation reactions of CH x (x = 0, 4) species on a Fe (100) surface, Phys. Rev. B 73 (2006) 155420.[9] M.T.M. Koper, R.A. Santen, Interaction of H, O and OH with metal surfaces, J. Electroanal. Chem. 472 (1999) 126–136.[10] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles, Phys. Rev. B 71 (045402) (2005) 1–6.[11] C.F. Huo, J. Ren, Y.W. Li, J. Wang, H. Jiao, CO dissociation on clean and hydrogen precovered Fe(111) surfaces, J. Catal. 249 (2007) 174–184.[12] S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas, Influence of coadsorbed H in CO dissociation and CH n formation on Fe(1 0 0): a DFT study, Appl. Surf. Sci. 346 (2015) 438–442.[13] S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag, DFT study of hydro- gen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100), J. Phys. Chem. C 120 (2016) 10830–10837.[14] L. Xu, D. Kirvassilis, Y. Bai, M. Mavrikakis, Atomic and molecular adsorption on Fe(110), Surf. Sci. 667 (2018) 54–65.[15] L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces, Surf. Sci. 606 (2012) 1400–1404.[16] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source soft- ware project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.[17] https://www.quantum-espresso.org/pseudopotentials, 2014 (accessed 13 March 2019).[18] JP. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.[19] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integra- tion in metals, Phys. Rev. B 40 (1989) 3616–3621.[20] D.C. Sorescu, First principles calculations of the adsorption and diffusion of hydrogen on Fe (100) surface and in the bulk, Catal.Today 105 (2005) 44–65.[21] G. Henkelman, BP. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.[22] A. Kokalj, Graphics and graphical user interfaces as tools in simulations of mat- ter at the atomic scale, Comput. Mater. Sci. 28 (2003) 155–168.[23] T. Li, X. Wen, Y.W. Li, H. Jiao, Surface carbon hydrogenation on precovered Fe(110) with spectator-coverage-dependent chain initiation and propagation, J. Phys. Chem. C 123 (42) (2019) 25657–25667.[24] T. Li, X. Wen, Y.W. Li, H. Jiao, Successive dissociation of CO, CH4, C2H6, and CH3CHO on Fe(110): retrosynthetic understanding of FTS mechanism, J. Phys. Chem. C 122 (2018) 28846–28855.[25] S.J. Lombardo, A.T. Bell, A review of theoretical models of adsorption, diffusion, and reaction of gases on metal surfaces, Surf. Sci. Rep. 13 (1991) 1–72.[26] F. Cinquini, F. Delbecq, P. Sautet, A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy, Phys. Chem. Chem. Phys. 11 (2009) 11546–11556.[27] M.T. Curnan, C.M. Andolina, M. Li, Q. Zhu, H. Chi, WA. Saidi, J.C. Yang, Connect- ing oxide nucleation and growth to oxygen diffusion energetics on stepped Cu(011) Surfaces: an experimental and theoretical study, J. Phys. Chem. C 123 (1) (2019) 452–463.[28] M.C. Giménez, M.G. Del Pópolo, E.P.M. Leiva, S.G. Garcia, Theoretical consider- ations of electrochemical phase formation for an Ideal Frank-van der Merwe system, J. Electrochem. Soc. 149 (2002) E109–E116.[29] M.C. Giménez, MG. Del Pópolo, EP.M. Leiva, Kinetic Monte Carlo study of electrochemical growth in a heteroepitaxial system, Langmuir 18 (2002) 9087–9094.[30] M.E. Dry, T. Shingles, L.J. Boshoff, Rate of the Fischer-Tropsch reaction over iron catalysis, J. Catal. 25 (1972) 99–104.[31] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer–Tropsch syn- thesis with in situ H2 O removal-directions of membrane development, Micro- porous Mesoporous Mater. 115 (2008) 123–136. 8811255GGA-PBEBinding energyHollow siteBridge siteDiffusion coefficientPublicationORIGINALDiffusion of hydrogen.pdfDiffusion of hydrogen.pdfapplication/pdf2132229https://repositorio.cuc.edu.co/bitstreams/e8458a44-0f4c-4a77-83ca-2360391cc281/downloade65971934540bcb8a760c782ed5b41b2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6d5b955d-3b4d-4385-8623-a735ffdeed2a/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTDiffusion of hydrogen.pdf.txtDiffusion of hydrogen.pdf.txttext/plain41488https://repositorio.cuc.edu.co/bitstreams/c30126be-94cd-41d9-b978-9d020bf1f87d/download24a79ba31faee15cab2ebc09fb944a82MD53THUMBNAILDiffusion of hydrogen.pdf.jpgDiffusion of hydrogen.pdf.jpgimage/jpeg16269https://repositorio.cuc.edu.co/bitstreams/347487ec-dae0-4f2e-ae86-fb0523f5f309/download5ea960e3b30f9e5f0cac60838020dd34MD5411323/9284oai:repositorio.cuc.edu.co:11323/92842024-09-17 11:04:35.413https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |