Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces

Density-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion en...

Full description

Autores:
Amaya Roncancio, S.
Linares, D.
Sapag, K.
Restrepo Parra, E.
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9284
Acceso en línea:
https://hdl.handle.net/11323/9284
https://doi.org/10.1016/j.molstruc.2022.132397.
https://repositorio.cuc.edu.co/
Palabra clave:
GGA-PBE
Binding energy
Hollow site
Bridge site
Diffusion coefficient
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_5ed789d10286deb02461cc3967a7495a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9284
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
title Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
spellingShingle Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
GGA-PBE
Binding energy
Hollow site
Bridge site
Diffusion coefficient
title_short Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
title_full Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
title_fullStr Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
title_full_unstemmed Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
title_sort Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces
dc.creator.fl_str_mv Amaya Roncancio, S.
Linares, D.
Sapag, K.
Restrepo Parra, E.
dc.contributor.author.spa.fl_str_mv Amaya Roncancio, S.
Linares, D.
Sapag, K.
Restrepo Parra, E.
dc.subject.proposal.eng.fl_str_mv GGA-PBE
Binding energy
Hollow site
Bridge site
Diffusion coefficient
topic GGA-PBE
Binding energy
Hollow site
Bridge site
Diffusion coefficient
description Density-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion energy barrier was calculated for both clean surfaces and those with hydrogen, and it was found that hydrogen produced binding energies for carbon and oxygen. These bonds stabilized the binding of hydrogen with the Fe(100) surface. For all of the surface species studied here, the energy barrier was increased when hydrogen was coadsorbed, from 1.29 eV to 1.46 eV for C, from 0.33 eV to 0.53 eV for O and from 0.11 eV to 0.15 eV for H. An approximation of the diffusion coefficient was obtained from energy barrier calculations and a pre-exponential factor of diffusion was calculated. Carbon exhibited low diffusion at the surface under experimental temperatures, while oxygen diffusion was activated above 450 K and hydrogen was diffused in all the temperature ranges investigated
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-22T14:44:51Z
dc.date.available.none.fl_str_mv 2022-06-22T14:44:51Z
2023-01-05
dc.date.issued.none.fl_str_mv 2022-01-05
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397.
dc.identifier.issn.spa.fl_str_mv 0022-2860
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9284
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.molstruc.2022.132397.
dc.identifier.doi.spa.fl_str_mv 10.1016/j.molstruc.2022.132397.
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397.
0022-2860
10.1016/j.molstruc.2022.132397.
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9284
https://doi.org/10.1016/j.molstruc.2022.132397.
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Structure
dc.relation.references.spa.fl_str_mv [1] H. Xing, P. Hu, S. Li, Y. Zuo, J. Han, X. Hua, K. Wang, F. Yang, P. Feng, T. Chang, Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review, J. Mater. Sci. Technol. 62 (2021) 180–194.
[2] E. del V Gómez, S. Amaya-Roncancio, L.B. Avalle, D.H. Linares, M.C. Gimenez, DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces, Appl. Surf. Sci. 420 (2017) 1–8.
[3] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) 917–1002.
[4] L. Qiao, X. Zhang, S. Wang, S. Yu, X. Hu, L. Wang, Y. Zeng, W. Zheng, First-prin- ciples investigations on the adsorption and diffusion of carbon atoms on the surface and in the subsurface of Co (111) related to the growth of graphene, RSC Adv. 4 (2014) 34237–34243.
[5] D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austen- ite from first principles, Phys. Rev. B 67 (214103) (2003) 1–11, doi:10.1103/ PhysRevB.67.214103.
[6] Z. Zuo, W. Huang, P. Han, Z. Li, A density functional theory study of CH 4 dehydrogenation on Co (111), Appl. Surf. Sci. 256 (20) (2010) 5929–5934, doi:10.1016/j.apsusc.2010.03.078.
[7] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorp- tion and diffusion on and in transition metal surfaces: a DFT study, Surf. Sci. 606 (7–8) (2012) 679–689, doi:10.1016/j.susc.2011.12.017.
[8] D.C. Sorescu, First-principles calculations of the adsorption and hydrogenation reactions of CH x (x = 0, 4) species on a Fe (100) surface, Phys. Rev. B 73 (2006) 155420.
[9] M.T.M. Koper, R.A. Santen, Interaction of H, O and OH with metal surfaces, J. Electroanal. Chem. 472 (1999) 126–136.
[10] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles, Phys. Rev. B 71 (045402) (2005) 1–6.
[11] C.F. Huo, J. Ren, Y.W. Li, J. Wang, H. Jiao, CO dissociation on clean and hydrogen precovered Fe(111) surfaces, J. Catal. 249 (2007) 174–184.
[12] S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas, Influence of coadsorbed H in CO dissociation and CH n formation on Fe(1 0 0): a DFT study, Appl. Surf. Sci. 346 (2015) 438–442.
[13] S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag, DFT study of hydro- gen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100), J. Phys. Chem. C 120 (2016) 10830–10837.
[14] L. Xu, D. Kirvassilis, Y. Bai, M. Mavrikakis, Atomic and molecular adsorption on Fe(110), Surf. Sci. 667 (2018) 54–65.
[15] L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces, Surf. Sci. 606 (2012) 1400–1404.
[16] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source soft- ware project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.
[17] https://www.quantum-espresso.org/pseudopotentials, 2014 (accessed 13 March 2019).
[18] JP. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.
[19] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integra- tion in metals, Phys. Rev. B 40 (1989) 3616–3621.
[20] D.C. Sorescu, First principles calculations of the adsorption and diffusion of hydrogen on Fe (100) surface and in the bulk, Catal.Today 105 (2005) 44–65.
[21] G. Henkelman, BP. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.
[22] A. Kokalj, Graphics and graphical user interfaces as tools in simulations of mat- ter at the atomic scale, Comput. Mater. Sci. 28 (2003) 155–168.
[23] T. Li, X. Wen, Y.W. Li, H. Jiao, Surface carbon hydrogenation on precovered Fe(110) with spectator-coverage-dependent chain initiation and propagation, J. Phys. Chem. C 123 (42) (2019) 25657–25667.
[24] T. Li, X. Wen, Y.W. Li, H. Jiao, Successive dissociation of CO, CH4, C2H6, and CH3CHO on Fe(110): retrosynthetic understanding of FTS mechanism, J. Phys. Chem. C 122 (2018) 28846–28855.
[25] S.J. Lombardo, A.T. Bell, A review of theoretical models of adsorption, diffusion, and reaction of gases on metal surfaces, Surf. Sci. Rep. 13 (1991) 1–72.
[26] F. Cinquini, F. Delbecq, P. Sautet, A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy, Phys. Chem. Chem. Phys. 11 (2009) 11546–11556.
[27] M.T. Curnan, C.M. Andolina, M. Li, Q. Zhu, H. Chi, WA. Saidi, J.C. Yang, Connect- ing oxide nucleation and growth to oxygen diffusion energetics on stepped Cu(011) Surfaces: an experimental and theoretical study, J. Phys. Chem. C 123 (1) (2019) 452–463.
[28] M.C. Giménez, M.G. Del Pópolo, E.P.M. Leiva, S.G. Garcia, Theoretical consider- ations of electrochemical phase formation for an Ideal Frank-van der Merwe system, J. Electrochem. Soc. 149 (2002) E109–E116.
[29] M.C. Giménez, MG. Del Pópolo, EP.M. Leiva, Kinetic Monte Carlo study of electrochemical growth in a heteroepitaxial system, Langmuir 18 (2002) 9087–9094.
[30] M.E. Dry, T. Shingles, L.J. Boshoff, Rate of the Fischer-Tropsch reaction over iron catalysis, J. Catal. 25 (1972) 99–104.
[31] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer–Tropsch syn- thesis with in situ H2 O removal-directions of membrane development, Micro- porous Mesoporous Mater. 115 (2008) 123–136. 8
dc.relation.citationendpage.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 1255
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Published by Elsevier B.V.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Published by Elsevier B.V.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0022286022000709
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9284/1/Diffusion%20of%20hydrogen.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9284/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9284/3/Diffusion%20of%20hydrogen.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9284/4/Diffusion%20of%20hydrogen.pdf.jpg
bitstream.checksum.fl_str_mv e65971934540bcb8a760c782ed5b41b2
e30e9215131d99561d40d6b0abbe9bad
24a79ba31faee15cab2ebc09fb944a82
5ea960e3b30f9e5f0cac60838020dd34
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400098687713280
spelling Amaya Roncancio, S.532407d1e175b2f65f4c29de6575d59dLinares, D.2d0477eaf0da67e3fd50b6de61331937Sapag, K.e8e3d93bfed8deda1cfeea7efc62b60bRestrepo Parra, E.51055fab252b1904715f10444c2fc80c2022-06-22T14:44:51Z2023-01-052022-06-22T14:44:51Z2022-01-05S. Amaya-Roncancio, D. Linares, K. Sapag, E. Restrepo-Parra, Diffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfaces, Journal of Molecular Structure, Volume 1255, 2022, 132397, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.132397.0022-2860https://hdl.handle.net/11323/9284https://doi.org/10.1016/j.molstruc.2022.132397.10.1016/j.molstruc.2022.132397.Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Density-functional theory calculations based on the GGA-PBE (generalized gradient approximation Perdew–Burke–Ernzerhof) exchange correlation functional were used to investigate the effect of hydrogen on the diffusion of adsorbed carbon, oxygen and hydrogen on the surface of Fe(100). The diffusion energy barrier was calculated for both clean surfaces and those with hydrogen, and it was found that hydrogen produced binding energies for carbon and oxygen. These bonds stabilized the binding of hydrogen with the Fe(100) surface. For all of the surface species studied here, the energy barrier was increased when hydrogen was coadsorbed, from 1.29 eV to 1.46 eV for C, from 0.33 eV to 0.53 eV for O and from 0.11 eV to 0.15 eV for H. An approximation of the diffusion coefficient was obtained from energy barrier calculations and a pre-exponential factor of diffusion was calculated. Carbon exhibited low diffusion at the surface under experimental temperatures, while oxygen diffusion was activated above 450 K and hydrogen was diffused in all the temperature ranges investigatedElsevier8 páginasapplication/pdfengAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Published by Elsevier B.V.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfDiffusion of hydrogen, carbon and oxygen in the presence of hydrogen coadsorbed onto iron surfacesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S0022286022000709NetherlandsJournal of Molecular Structure[1] H. Xing, P. Hu, S. Li, Y. Zuo, J. Han, X. Hua, K. Wang, F. Yang, P. Feng, T. Chang, Adsorption and diffusion of oxygen on metal surfaces studied by first-principle study: a review, J. Mater. Sci. Technol. 62 (2021) 180–194.[2] E. del V Gómez, S. Amaya-Roncancio, L.B. Avalle, D.H. Linares, M.C. Gimenez, DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces, Appl. Surf. Sci. 420 (2017) 1–8.[3] R. Gomer, Diffusion of adsorbates on metal surfaces, Rep. Prog. Phys. 53 (1990) 917–1002.[4] L. Qiao, X. Zhang, S. Wang, S. Yu, X. Hu, L. Wang, Y. Zeng, W. Zheng, First-prin- ciples investigations on the adsorption and diffusion of carbon atoms on the surface and in the subsurface of Co (111) related to the growth of graphene, RSC Adv. 4 (2014) 34237–34243.[5] D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austen- ite from first principles, Phys. Rev. B 67 (214103) (2003) 1–11, doi:10.1103/ PhysRevB.67.214103.[6] Z. Zuo, W. Huang, P. Han, Z. Li, A density functional theory study of CH 4 dehydrogenation on Co (111), Appl. Surf. Sci. 256 (20) (2010) 5929–5934, doi:10.1016/j.apsusc.2010.03.078.[7] P. Ferrin, S. Kandoi, A.U. Nilekar, M. Mavrikakis, Hydrogen adsorption, absorp- tion and diffusion on and in transition metal surfaces: a DFT study, Surf. Sci. 606 (7–8) (2012) 679–689, doi:10.1016/j.susc.2011.12.017.[8] D.C. Sorescu, First-principles calculations of the adsorption and hydrogenation reactions of CH x (x = 0, 4) species on a Fe (100) surface, Phys. Rev. B 73 (2006) 155420.[9] M.T.M. Koper, R.A. Santen, Interaction of H, O and OH with metal surfaces, J. Electroanal. Chem. 472 (1999) 126–136.[10] D.E. Jiang, E.A. Carter, Carbon atom adsorption on and diffusion into Fe(110) and Fe(100) from first principles, Phys. Rev. B 71 (045402) (2005) 1–6.[11] C.F. Huo, J. Ren, Y.W. Li, J. Wang, H. Jiao, CO dissociation on clean and hydrogen precovered Fe(111) surfaces, J. Catal. 249 (2007) 174–184.[12] S. Amaya-Roncancio, D.H. Linares, K. Sapag, M.I. Rojas, Influence of coadsorbed H in CO dissociation and CH n formation on Fe(1 0 0): a DFT study, Appl. Surf. Sci. 346 (2015) 438–442.[13] S. Amaya-Roncancio, D.H. Linares, H.A. Duarte, K. Sapag, DFT study of hydro- gen-assisted dissociation of CO by HCO, COH, and HCOH formation on Fe(100), J. Phys. Chem. C 120 (2016) 10830–10837.[14] L. Xu, D. Kirvassilis, Y. Bai, M. Mavrikakis, Atomic and molecular adsorption on Fe(110), Surf. Sci. 667 (2018) 54–65.[15] L. Kristinsdóttir, E. Skúlason, A systematic DFT study of hydrogen diffusion on transition metal surfaces, Surf. Sci. 606 (2012) 1400–1404.[16] P. Giannozzi, et al., QUANTUM ESPRESSO: a modular and open-source soft- ware project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502.[17] https://www.quantum-espresso.org/pseudopotentials, 2014 (accessed 13 March 2019).[18] JP. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.[19] M. Methfessel, A.T. Paxton, High-precision sampling for Brillouin-zone integra- tion in metals, Phys. Rev. B 40 (1989) 3616–3621.[20] D.C. Sorescu, First principles calculations of the adsorption and diffusion of hydrogen on Fe (100) surface and in the bulk, Catal.Today 105 (2005) 44–65.[21] G. Henkelman, BP. Uberuaga, H. Jónsson, Climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (2000) 9901–9904.[22] A. Kokalj, Graphics and graphical user interfaces as tools in simulations of mat- ter at the atomic scale, Comput. Mater. Sci. 28 (2003) 155–168.[23] T. Li, X. Wen, Y.W. Li, H. Jiao, Surface carbon hydrogenation on precovered Fe(110) with spectator-coverage-dependent chain initiation and propagation, J. Phys. Chem. C 123 (42) (2019) 25657–25667.[24] T. Li, X. Wen, Y.W. Li, H. Jiao, Successive dissociation of CO, CH4, C2H6, and CH3CHO on Fe(110): retrosynthetic understanding of FTS mechanism, J. Phys. Chem. C 122 (2018) 28846–28855.[25] S.J. Lombardo, A.T. Bell, A review of theoretical models of adsorption, diffusion, and reaction of gases on metal surfaces, Surf. Sci. Rep. 13 (1991) 1–72.[26] F. Cinquini, F. Delbecq, P. Sautet, A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy, Phys. Chem. Chem. Phys. 11 (2009) 11546–11556.[27] M.T. Curnan, C.M. Andolina, M. Li, Q. Zhu, H. Chi, WA. Saidi, J.C. Yang, Connect- ing oxide nucleation and growth to oxygen diffusion energetics on stepped Cu(011) Surfaces: an experimental and theoretical study, J. Phys. Chem. C 123 (1) (2019) 452–463.[28] M.C. Giménez, M.G. Del Pópolo, E.P.M. Leiva, S.G. Garcia, Theoretical consider- ations of electrochemical phase formation for an Ideal Frank-van der Merwe system, J. Electrochem. Soc. 149 (2002) E109–E116.[29] M.C. Giménez, MG. Del Pópolo, EP.M. Leiva, Kinetic Monte Carlo study of electrochemical growth in a heteroepitaxial system, Langmuir 18 (2002) 9087–9094.[30] M.E. Dry, T. Shingles, L.J. Boshoff, Rate of the Fischer-Tropsch reaction over iron catalysis, J. Catal. 25 (1972) 99–104.[31] M.P. Rohde, G. Schaub, S. Khajavi, J.C. Jansen, F. Kapteijn, Fischer–Tropsch syn- thesis with in situ H2 O removal-directions of membrane development, Micro- porous Mesoporous Mater. 115 (2008) 123–136. 8811255GGA-PBEBinding energyHollow siteBridge siteDiffusion coefficientORIGINALDiffusion of hydrogen.pdfDiffusion of hydrogen.pdfapplication/pdf2132229https://repositorio.cuc.edu.co/bitstream/11323/9284/1/Diffusion%20of%20hydrogen.pdfe65971934540bcb8a760c782ed5b41b2MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9284/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTDiffusion of hydrogen.pdf.txtDiffusion of hydrogen.pdf.txttext/plain41488https://repositorio.cuc.edu.co/bitstream/11323/9284/3/Diffusion%20of%20hydrogen.pdf.txt24a79ba31faee15cab2ebc09fb944a82MD53open accessTHUMBNAILDiffusion of hydrogen.pdf.jpgDiffusion of hydrogen.pdf.jpgimage/jpeg16269https://repositorio.cuc.edu.co/bitstream/11323/9284/4/Diffusion%20of%20hydrogen.pdf.jpg5ea960e3b30f9e5f0cac60838020dd34MD54open access11323/9284oai:repositorio.cuc.edu.co:11323/92842023-12-14 14:21:07.26An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==