Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects
The deposition of remaining nanoparticles in the Caribbean Sea generates the formation of potentially dangerous elements, which influence at the imbalance of ecosystems. The detection of nanoparticles is not simple and the use of conventional methods is difficult application, which is why we highlig...
- Autores:
-
Silva Oliveira, Luis Felipe
Lozano, Liliana P.
Silva Oliveira, Marcos Leandro
da Boit, Kátia
Gonçalves, Janaína
Neckel, Alcindo
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8350
- Acceso en línea:
- https://hdl.handle.net/11323/8350
https://doi.org/10.1016/j.marpolbul.2021.112425
https://repositorio.cuc.edu.co/
- Palabra clave:
- Nanoparticles
Caribbean sea
Toxic elements
Environmental
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_5eac5dd9994731134c780aa3689069ca |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8350 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
title |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
spellingShingle |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects Nanoparticles Caribbean sea Toxic elements Environmental |
title_short |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
title_full |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
title_fullStr |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
title_full_unstemmed |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
title_sort |
Identification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects |
dc.creator.fl_str_mv |
Silva Oliveira, Luis Felipe Lozano, Liliana P. Silva Oliveira, Marcos Leandro da Boit, Kátia Gonçalves, Janaína Neckel, Alcindo |
dc.contributor.author.spa.fl_str_mv |
Silva Oliveira, Luis Felipe Lozano, Liliana P. Silva Oliveira, Marcos Leandro da Boit, Kátia Gonçalves, Janaína Neckel, Alcindo |
dc.subject.eng.fl_str_mv |
Nanoparticles Caribbean sea Toxic elements Environmental |
topic |
Nanoparticles Caribbean sea Toxic elements Environmental |
description |
The deposition of remaining nanoparticles in the Caribbean Sea generates the formation of potentially dangerous elements, which influence at the imbalance of ecosystems. The detection of nanoparticles is not simple and the use of conventional methods is difficult application, which is why we highlight the immediacy and importance of this research for the areas of marine biology, urbanism, engineering and geosciences, applied in the Caribbean Sea. The general objective of this study is to evaluate the use of advanced methods for the determination of toxic nanoparticles, which can directly affect the development of marine organisms in the aquatic ecosystem in waters of the Caribbean Sea, favoring the construction of future international public policies with the elaboration of projects capable of mitigating these levels of contamination. The morphology and structure of nanoparticles were analyzed by emission scanning electron microscope with a high-resolution electron microscope. The nanoparticles smaller than 97 nm were identified in different proportions. The morphological analyses indicated nanoparticles' presence in the form of nanotubes, nanospheres, and nanofibers, which were shown in an agglomerated form. The presence of potentially hazardous elements, such as As, Cd, Pb, Mg, Ni and V were verified. In addition, the presence of asbestos in the form of minerals was confirmed, and that of titanium dioxide was found in large quantities. The results provide new data and emphasize the possible consequences to the in the Caribbean Sea, with the identification of dangerous elements (As, Cb, Pb, Hg, Ni and V), harmful to the marine ecosystem. Therefore, there is a need for strict control to reduce contamination of the Caribbean Sea and avoid risks to the ecosystem and public health, through suggestions of international public policies, through constant monitoring and the application of environmental recovery projects in this marine estuary. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-03T18:39:35Z |
dc.date.available.none.fl_str_mv |
2021-06-03T18:39:35Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0025-326X 1879-3363 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8350 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.marpolbul.2021.112425 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0025-326X 1879-3363 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8350 https://doi.org/10.1016/j.marpolbul.2021.112425 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Adams et al., 2006 L.K. Adams, D.Y. Lyon, P.J.J. Alvarez Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions Water Res., 40 (2006), pp. 3527-3532 Alnadhari et al., 2021 S. Alnadhari, N.M. Al-Enazi, F. Alshehrei, F. Ameen A review on biogenic synthesis of metal nanoparticles using marine algae and its applications Environ. Res., 194 (2021), p. 110672 Arai et al., 2019 M. Arai, G.I. Uramoto, M. Asano, K. Uematsu, K. Uesugi, A. Takeuchi, Y. Morono, R. WagaiAn improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography Soil Tillage Res., 191 (2019), pp. 275-281 ATSDR, 2001 ATSDR Toxicological Profile for Asbestos (TP-61) US Dept. of Health & Human Services (2001) Barreto et al., 2021 D.M. Barreto, A.E. Tonietto, A.T. Lombardi Environmental concentrations of copper nanoparticles affect vital functions in Ankistrodesmus densus Aquat. Toxicol., 231 (2021), p. 105720 Bebie et al., 1998 J. Bebie, M.A. Schoonen, M. Fuhrmann, D.R. Strongin Surface charge development on transition metal sulfides: an electrokinetic study Geochim. Cosmochim. Ac., 62 (1998), pp. 633-642 Boesen and Postma, 1988 C. Boesen, D. Postma Pyrite formation in anoxic environments of the Baltic Am. J. Sci., 288 (1988), pp. 575-603 Cao and He, 2013 Z.J. Cao, X.B. He Three-dimensional numerical simulation of flow field in a seperator for sampling the suspended sediment J. Sichuan. Univ. Eng. Sci., 45 (2013), pp. 55-60 Caspah et al., 2016 K. Caspah, M. Mathuthu, M. Madhuku Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa Int. J. Environ. Res. Public Health, 13 (2016), p. 663 Chen and Elimelech, 2007 K.L. Chen, M. Elimelech Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions J. Colloid Interface Sci., 309 (2007), pp. 126-134 Civeira et al., 2016 M.S. Civeira, C.G. Ramos, M.L.S. Oliveira, R.M. Kautzmann, S.R. Taffarel, E.C. Teixeira, L.F.O. Silva Nano-mineralogy of suspended sediment during the beginning of coal rejects spill Chemosphere., 145 (2016), pp. 142-147 Dane. National Administrative Department of Statistics, 2021 Dane. National Administrative Department of Statistics, 2021. Cartagena statistical data. https://sitios.dane.gov.co/cnpv/app/views/informacion/fichas/13.pdf. (Accessed 20 April 2021). Dems et al., 2021 D. Dems, R. Freeman, K.D. Riker, T. Coradin, S.I. Stupp, C. Aimé Multivalent clustering of adhesion ligands in nanofiber-nanoparticle composites Acta Biomater., 119 (2021), pp. 303-311 EPA, U, 1986 EPA, U, 1986. Definition and procedure for the determination of the method detection limit. Code of Federal Regulations, Title, 40. Espinel-Velasco et al., 2021 N. Espinel-Velasco, S.P. Tobias-Hünefeldt, S. Karelitz, L.J. Hoffmann, S.E. Morales, M.D. Lamare Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement Mar. Environ. Res., 167 (2021), p. 105291 Flanagan, 2016 D.M. Flanagan Minerals Yearbook Asbestos (Advance Release) US Geological Survey (USGS), Reston, VA (2016), pp. 1-5 Freitas et al., 2018 R. Freitas, F. Coppola, L. Marchi, V. Codella, C. Pretti, F. Chiellini, A.A. Morelli, G. Polese, A.M.V.M. Soares, E. Figueira The influence of arsenic on the toxicity of carbon nanoparticles in bivalves J. Hazard. Mater., 358 (2018), pp. 484-493 Gallo et al., 2018 A. Gallo, L. Manfra, R. Boni, A. Rotini, L. Migliore, E. Tosti Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress Environ. Int., 118 (2018), pp. 325-333 Gonçalves and Bebianno, 2021 J.M. Gonçalves, M.J. Bebianno Nanoplastics impact on marine biota: a review Environ. Pollut., 273 (2021), p. 116426 Graca et al., 2018 B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz, J. Karczewski Origin and fate of nanoparticles in marine water e preliminary results Chemosphere., 206 (2018), pp. 359-368 He et al., 2014 C. He, H. Salonen, X. Ling, L. Crilley, N. Jayasundara, H.C. Cheung, M. Hargreaves, F. Huygens, L.D. Knibbs, G.A. Ayoko, L. Morawska The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in re- sidential houses Environ. Int., 69 (2014), pp. 9-17 Hu et al., 2018 J. Hu, J. Wang, S. Liu, Z. Zhang, H. Zhang, X. Cai, J. Pan, J. Liu Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana J Environ. Sci., 66 (2018), pp. 208-215 Hund-Rinke et al., 2010 K. Hund-Rinke, K. Schlich, A. Wenzel TiO2 nanoparticles-relationship between dispersion preparation method and ecotoxicity in the algal growth test Umweltwiss Schadst. Forsch., 22 (2010), pp. 517-528 Jin et al., 2017 L. Jin, X.S. Luo, P.Q. Fu, X.D. Li Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts Natl. Sci. Rev., 4 (2017), pp. 593-610 Kaegi, 2008 R. Kaegi Synthetic TiO2 nanoparticle emission from exterior facade into the aquatic environment Environ. Pollut., 156 (2008), pp. 233-239 León-Mejía et al., 2018 G. León- ejía, M.N. Machado, R.T. Okuro, L.F. Silva, C. Telles, J. Dias, L. Niekraszewicz, J. da Silva, J.A.P. Henriques, W.A. Zin Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues Sci. Total Environ., 625 (2018), pp. 589-599 Liu et al., 2018 G. Liu, H. Zheng, Z. Jiang, Z. Wang Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous pase Sci. Total Environ., 634 (2018), pp. 595-605 Lovern and Klaper, 2006 S.B. Lovern, R. Klaper Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles Environ. Toxicol. Chem., 25 (2006), pp. 1132-1137 Macintyre et al., 2014 E.A. Macintyre, U. Gehring, A. Molter, E. Fuertes, C. Klumper, U. Kramer, U. Quass, B. Hoffmann, M. Gascon, B. Brunekreef, G.H. Koppelman, R. Beelen, G. Hoek, M. Birk, J.C. de Jongste, H.A. Smit, J. Cyrys, O. Gruzieva, M. Korek, A. Bergstrom, R.M. Agius, F. de Vocht, A. Simpson, D. Porta, F. Forastiere, C. Badaloni, G. Cesaroni, A. Esplugues, A. Fernandez- Somoano, A. Lerxundi, J. Sunyer, M. Cirach, M.J. Nieuwenhuijsen, G. Pershagen, J. Heinrich Air pollution and re- spiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project Environ. Health Perspect., 122 (2014), pp. 107-113 Massoudieh et al., 2012 A. Massoudieh, A. Gellis, W.S. Banks, M.E. Wieczorek Suspended sediment source apportionment in Chesapeake Bay watershed using Bayesian chemical mass balance receptor modelling Hydrol. Process., 27 (2012), pp. 3363-3374 Nguyen et al., 2020 T.H. Nguyen, H.N.T. Hoang, N.Q. Bien Contamination of heavy metals in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam Environ. Geochem. Health. (2020), 10.1007/s10653-020-00611-5 NIOSH, 2013 NIOSH Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes US Department of Health and Hu- man Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH (2013) (DHHS (NIOSH) Publication No 2014-102) Nordin et al., 2018 A.P. Nordin, J. da Silva, C. de Souza, L.A.B. Niekraszewicz, J.F. Dias, K. da Boit, M.L.S. Oliveira, I. Grivicich, A.L. Garcia, L.F. Silva, F.R. da Silva In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage J. Hazard. Mater., 346 (2018), pp. 263-272 Oliveira et al., 2019 M.L. Oliveira, M. Izquierdo, X. Querol, R.N. Lieberman, B.K. Saikia, L.F. Silva Nanoparticles from construction wastes: a problem to health and the environment J. Clean. Prod., 219 (2019), pp. 236-243 Oliveira et al., 2021 M.L.S. Oliveira, A. Neckel, L.F.O. Silva, G.L. Dotto, L.S. Maculan Environmental aspects of the depreciation of the culturally significant wall of Cartagena de Indias – Colombia Chemosphere, 265 (2021), p. 129119 Peralta-Videa et al., 2011 J.R. Peralta-Videa, L. Zhao, M. Lopez-Moreno, G.L. Rosa, J. Hong, J.L. Gardea-Torresdey Nanomaterials and the environment: a review for the bi-ennium J. Hazard. Mater., 186 (2011), pp. 1-15 Petersen et al., 2016 E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, L.C. Elliott, J.A. Fagan, A. Gogos, S. Hanna, R. Kagi, E. Mansfield, A.R. Montoro Bustos, D.L. Plata, V. Reipa, P. Westerhoff, M.R. Winchester Quantification of carbon nanotubes in environmental matrices: current capabilities, case studies, and future prospects Environ. Sci. Technol., 50 (2016), pp. 4587-4605 Piccardo et al., 2020 M. Piccardo, M. Renzi, A. Terlizzi Nanoplastics in the oceans: theory, experimental evidence and real world Mar. Pollut. Bull., 157 (2020), p. 111317 Restrepo et al., 2012 J.C. Restrepo, L. Otero, A.C. Casas, A. Henao, J. Gutiérrez Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island archipelago (Caribbean of Colombia) Ocean Coast. Manag., 69 (2012), pp. 133-142 Ribeiro et al., 2010 J. Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041 Rio-Cortina et al., 2020 J.D. Rio-Cortina, M. Ibarra-Fernández, C. Rodríguez-Arias, N. López-Espitia Competitiveness in insular regions: case of Isla Grande in the Archapelago of Islas Del Rosario, Cartagena, Colombia WSEAS Trans. Bus. Econ., 17 (2020), pp. 410-425 Rojas et al., 2019 J.C. Rojas, N.E. Sanchez, I. Schneider, M.L.S. Oliveira, E.C. Teixeira, L.F.O. Silva Exposure to nanometric pollutants in primary schools: environmental implications Urban Clim., 27 (2019), pp. 412-419 Rothen-Rutishauser et al., 2006 B.M. Rothen-Rutishauser, S. Schurch, B. Haenni, N. Kapp, P. Gehr Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques Environ. Sci. Technol., 40 (2006), pp. 4353-4359 Sierra-Marquez et al., 2017 L. Sierra-Marquez, J. Sierra-Marquez, J. de Larosa, J. Olivero-Verbel Imposex in Stramonita haemastoma from coastal sites of Cartagena, Colombia Braz. J. Biol., 78 (2017), pp. 548-555 Silva et al., 2011a L.F.O. Silva, M. Izquierdo, X. Querol, R.B. Finkelman, M.L.S. Oliveira, M. Wollenschlager, M. Towler, R. Pérez-López, F. Macias Leaching of potential hazardous elements of coal cleaning rejects Environ. Monit. Assess., 175 (2011), pp. 109-126 Silva et al., 2011b L.F.O. Silva, F. Macias, M.L.S. Oliveira, K.M. da Boit, F. Waanders Coal cleaning residues and Fe-minerals implications Environ. Monit. Assess., 172 (2011), pp. 367-378 Silva et al., 2011c L.F.O. Silva, X. Querol, K.M. da Boit, S. Fdez-Ortiz Vallejuelo, J.M. Madariaga Brazilian coal mining residues and sulphide oxidation by Fenton’s reaction: an accelerated weathering procedure to evaluate possible environmental impact J. Hazard. Mater., 186 (2011), pp. 516-525 Silva et al., 2020a L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), p. 126838 Silva et al., 2020b L.F.O. Silva, C. Milanes, D. Pinto, O. Ramirez, B.D. Lima Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere Chemosphere., 239 (2020), p. 124776 Sofi et al., 2021 H.S. Sofi, T. Akram, N. Shabir, R. Vasita, A.H. Jadhav, F.A. Sheikh Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAP) and silver (AG) nanoparticles (NPs), as a scaffold for tissue engineering applications Mater. Sci. Eng. C, 118 (2021), p. 111547 Thiagarajan et al., 2019 V. Thiagarajan, M. Pavani, S. Archanaa, R. Seenivasan, N. Chandrasekaran, G.K. Suraishkumar, A. Mukherjee Diminishing bioavailability and toxicity of P25 TiO2 NPs during continuous exposure to marine algae Chlorella SP Chemosphere, 233 (2019), pp. 363-372 Urrego et al., 2019 L.E. Urrego, M.A. Prado, G. Bernal, A. Galeano Mangrove responses to droughts since the little ice age in the Colombian Caribbean Estuar. Coast. Mar. Sci., 230 (2019), p. 106432 Wang and Wang, 2014 J. Wang, W.X. Wang Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma) Environ. Sci. Technol., 48 (2014), pp. 8152-8161 Wigginton et al., 2007 N.S. Wigginton, K.L. Haus, M.F. Hochella Jr. Aquatic environmental nanoparticles J. Environ. Monit., 9 (2007), pp. 1306-1316 World Health Organization (WHO), 2014 World Health Organization (WHO), 2014 Antimicrobial Resistance: Global Report on Surveillance. [cited 2017 Sep 16]. https://www.who.int/mediacentre/factsheets/fs391/en/. Accessed 6 May 2020. Wren et al., 2000 D.G. Wren, B.D. Barkdoll, R.A. Kuhnle, R.W. Derrow Field techniques for suspended-sediment measurement J. Hydraul. Eng., 126 (2000), pp. 97-104 Xia et al., 2018 B. Xia, Q. Sui, X. Sun, Q. Han, B. Chena, L. Zhu, K. Qu Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgari J. Hazard. Mater., 346 (2018), pp. 1-9 Xiao et al., 2016 Y. Xiao, W.J. Peijnenburg, G. Chen, M.G. Vijver Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions Sci. Total Environ., 563–564 (2016), pp. 81-88 Zhang et al., 2020 X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang, Q. Zhang, M. Zhu Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation Nano Energy, 75 (2020), p. 104894 Zhao et al., 2014 J. Zhao, Z. Wang, J.C. White, B. Xing Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation Environ. Sci. Technol., 48 (2014), pp. 9995-10009 Zou et al., 2021 H. Zou, C. Liu, F. Evrendilek, Y. He, J. Liu Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres Renew. Energy, 171 (2021), pp. 1327-1343 |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Marine Pollution Bulletin |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0025326X21004598#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b381bafc-5047-48eb-bcee-4c75d6b0e10a/download https://repositorio.cuc.edu.co/bitstreams/67f20ef3-1b3f-46ce-84fb-cc3476505607/download https://repositorio.cuc.edu.co/bitstreams/7490de54-0c2a-4a34-9e9d-ae67a39fe236/download https://repositorio.cuc.edu.co/bitstreams/b3e81f31-750d-4080-bd3f-edab0b1745d2/download https://repositorio.cuc.edu.co/bitstreams/e91dd2fa-b8f6-4d35-ace0-f5a0fbc4b70b/download |
bitstream.checksum.fl_str_mv |
75fcabec2634588bb625a6e280206a20 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 55772a952b9407abb973b57f2b26f5c1 45b2e9beb3d402b58dbcdd7cf366d771 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166757892751360 |
spelling |
Silva Oliveira, Luis FelipeLozano, Liliana P.Silva Oliveira, Marcos Leandroda Boit, KátiaGonçalves, JanaínaNeckel, Alcindo2021-06-03T18:39:35Z2021-06-03T18:39:35Z202120230025-326X1879-3363https://hdl.handle.net/11323/8350https://doi.org/10.1016/j.marpolbul.2021.112425Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The deposition of remaining nanoparticles in the Caribbean Sea generates the formation of potentially dangerous elements, which influence at the imbalance of ecosystems. The detection of nanoparticles is not simple and the use of conventional methods is difficult application, which is why we highlight the immediacy and importance of this research for the areas of marine biology, urbanism, engineering and geosciences, applied in the Caribbean Sea. The general objective of this study is to evaluate the use of advanced methods for the determination of toxic nanoparticles, which can directly affect the development of marine organisms in the aquatic ecosystem in waters of the Caribbean Sea, favoring the construction of future international public policies with the elaboration of projects capable of mitigating these levels of contamination. The morphology and structure of nanoparticles were analyzed by emission scanning electron microscope with a high-resolution electron microscope. The nanoparticles smaller than 97 nm were identified in different proportions. The morphological analyses indicated nanoparticles' presence in the form of nanotubes, nanospheres, and nanofibers, which were shown in an agglomerated form. The presence of potentially hazardous elements, such as As, Cd, Pb, Mg, Ni and V were verified. In addition, the presence of asbestos in the form of minerals was confirmed, and that of titanium dioxide was found in large quantities. The results provide new data and emphasize the possible consequences to the in the Caribbean Sea, with the identification of dangerous elements (As, Cb, Pb, Hg, Ni and V), harmful to the marine ecosystem. Therefore, there is a need for strict control to reduce contamination of the Caribbean Sea and avoid risks to the ecosystem and public health, through suggestions of international public policies, through constant monitoring and the application of environmental recovery projects in this marine estuary.Silva Oliveira, Luis FelipeLozano, Liliana P.Silva Oliveira, Marcos Leandroda Boit, KátiaGonçalves, Janaína-will be generated-orcid-0000-0003-0926-4072-600Neckel, Alcindo-will be generated-orcid-0000-0001-5435-3096-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Marine Pollution Bulletinhttps://www.sciencedirect.com/science/article/pii/S0025326X21004598#!NanoparticlesCaribbean seaToxic elementsEnvironmentalIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projectsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionAdams et al., 2006 L.K. Adams, D.Y. Lyon, P.J.J. Alvarez Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions Water Res., 40 (2006), pp. 3527-3532Alnadhari et al., 2021 S. Alnadhari, N.M. Al-Enazi, F. Alshehrei, F. Ameen A review on biogenic synthesis of metal nanoparticles using marine algae and its applications Environ. Res., 194 (2021), p. 110672Arai et al., 2019 M. Arai, G.I. Uramoto, M. Asano, K. Uematsu, K. Uesugi, A. Takeuchi, Y. Morono, R. WagaiAn improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography Soil Tillage Res., 191 (2019), pp. 275-281ATSDR, 2001 ATSDR Toxicological Profile for Asbestos (TP-61) US Dept. of Health & Human Services (2001)Barreto et al., 2021 D.M. Barreto, A.E. Tonietto, A.T. Lombardi Environmental concentrations of copper nanoparticles affect vital functions in Ankistrodesmus densus Aquat. Toxicol., 231 (2021), p. 105720Bebie et al., 1998 J. Bebie, M.A. Schoonen, M. Fuhrmann, D.R. Strongin Surface charge development on transition metal sulfides: an electrokinetic study Geochim. Cosmochim. Ac., 62 (1998), pp. 633-642Boesen and Postma, 1988 C. Boesen, D. Postma Pyrite formation in anoxic environments of the Baltic Am. J. Sci., 288 (1988), pp. 575-603Cao and He, 2013 Z.J. Cao, X.B. He Three-dimensional numerical simulation of flow field in a seperator for sampling the suspended sediment J. Sichuan. Univ. Eng. Sci., 45 (2013), pp. 55-60Caspah et al., 2016 K. Caspah, M. Mathuthu, M. Madhuku Health risk assessment of heavy metals in soils from witwatersrand gold mining basin, South Africa Int. J. Environ. Res. Public Health, 13 (2016), p. 663Chen and Elimelech, 2007 K.L. Chen, M. Elimelech Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions J. Colloid Interface Sci., 309 (2007), pp. 126-134Civeira et al., 2016 M.S. Civeira, C.G. Ramos, M.L.S. Oliveira, R.M. Kautzmann, S.R. Taffarel, E.C. Teixeira, L.F.O. Silva Nano-mineralogy of suspended sediment during the beginning of coal rejects spill Chemosphere., 145 (2016), pp. 142-147Dane. National Administrative Department of Statistics, 2021 Dane. National Administrative Department of Statistics, 2021. Cartagena statistical data. https://sitios.dane.gov.co/cnpv/app/views/informacion/fichas/13.pdf. (Accessed 20 April 2021).Dems et al., 2021 D. Dems, R. Freeman, K.D. Riker, T. Coradin, S.I. Stupp, C. Aimé Multivalent clustering of adhesion ligands in nanofiber-nanoparticle composites Acta Biomater., 119 (2021), pp. 303-311EPA, U, 1986 EPA, U, 1986. Definition and procedure for the determination of the method detection limit. Code of Federal Regulations, Title, 40.Espinel-Velasco et al., 2021 N. Espinel-Velasco, S.P. Tobias-Hünefeldt, S. Karelitz, L.J. Hoffmann, S.E. Morales, M.D. Lamare Reduced seawater pH alters marine biofilms with impacts for marine polychaete larval settlement Mar. Environ. Res., 167 (2021), p. 105291Flanagan, 2016 D.M. Flanagan Minerals Yearbook Asbestos (Advance Release) US Geological Survey (USGS), Reston, VA (2016), pp. 1-5Freitas et al., 2018 R. Freitas, F. Coppola, L. Marchi, V. Codella, C. Pretti, F. Chiellini, A.A. Morelli, G. Polese, A.M.V.M. Soares, E. Figueira The influence of arsenic on the toxicity of carbon nanoparticles in bivalves J. Hazard. Mater., 358 (2018), pp. 484-493Gallo et al., 2018 A. Gallo, L. Manfra, R. Boni, A. Rotini, L. Migliore, E. Tosti Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress Environ. Int., 118 (2018), pp. 325-333Gonçalves and Bebianno, 2021 J.M. Gonçalves, M.J. Bebianno Nanoplastics impact on marine biota: a review Environ. Pollut., 273 (2021), p. 116426Graca et al., 2018 B. Graca, A. Zgrundo, D. Zakrzewska, M. Rzodkiewicz, J. Karczewski Origin and fate of nanoparticles in marine water e preliminary results Chemosphere., 206 (2018), pp. 359-368He et al., 2014 C. He, H. Salonen, X. Ling, L. Crilley, N. Jayasundara, H.C. Cheung, M. Hargreaves, F. Huygens, L.D. Knibbs, G.A. Ayoko, L. Morawska The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in re- sidential houses Environ. Int., 69 (2014), pp. 9-17Hu et al., 2018 J. Hu, J. Wang, S. Liu, Z. Zhang, H. Zhang, X. Cai, J. Pan, J. Liu Effect of TiO2 nanoparticle aggregation on marine microalgae Isochrysis galbana J Environ. Sci., 66 (2018), pp. 208-215Hund-Rinke et al., 2010 K. Hund-Rinke, K. Schlich, A. Wenzel TiO2 nanoparticles-relationship between dispersion preparation method and ecotoxicity in the algal growth test Umweltwiss Schadst. Forsch., 22 (2010), pp. 517-528Jin et al., 2017 L. Jin, X.S. Luo, P.Q. Fu, X.D. Li Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts Natl. Sci. Rev., 4 (2017), pp. 593-610Kaegi, 2008 R. Kaegi Synthetic TiO2 nanoparticle emission from exterior facade into the aquatic environment Environ. Pollut., 156 (2008), pp. 233-239León-Mejía et al., 2018 G. León- ejía, M.N. Machado, R.T. Okuro, L.F. Silva, C. Telles, J. Dias, L. Niekraszewicz, J. da Silva, J.A.P. Henriques, W.A. Zin Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues Sci. Total Environ., 625 (2018), pp. 589-599Liu et al., 2018 G. Liu, H. Zheng, Z. Jiang, Z. Wang Effects of biochar input on the properties of soil nanoparticles and dispersion/sedimentation of natural mineral nanoparticles in aqueous pase Sci. Total Environ., 634 (2018), pp. 595-605Lovern and Klaper, 2006 S.B. Lovern, R. Klaper Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles Environ. Toxicol. Chem., 25 (2006), pp. 1132-1137Macintyre et al., 2014 E.A. Macintyre, U. Gehring, A. Molter, E. Fuertes, C. Klumper, U. Kramer, U. Quass, B. Hoffmann, M. Gascon, B. Brunekreef, G.H. Koppelman, R. Beelen, G. Hoek, M. Birk, J.C. de Jongste, H.A. Smit, J. Cyrys, O. Gruzieva, M. Korek, A. Bergstrom, R.M. Agius, F. de Vocht, A. Simpson, D. Porta, F. Forastiere, C. Badaloni, G. Cesaroni, A. Esplugues, A. Fernandez- Somoano, A. Lerxundi, J. Sunyer, M. Cirach, M.J. Nieuwenhuijsen, G. Pershagen, J. Heinrich Air pollution and re- spiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project Environ. Health Perspect., 122 (2014), pp. 107-113Massoudieh et al., 2012 A. Massoudieh, A. Gellis, W.S. Banks, M.E. Wieczorek Suspended sediment source apportionment in Chesapeake Bay watershed using Bayesian chemical mass balance receptor modelling Hydrol. Process., 27 (2012), pp. 3363-3374Nguyen et al., 2020 T.H. Nguyen, H.N.T. Hoang, N.Q. Bien Contamination of heavy metals in paddy soil in the vicinity of Nui Phao multi-metal mine, North Vietnam Environ. Geochem. Health. (2020), 10.1007/s10653-020-00611-5NIOSH, 2013 NIOSH Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes US Department of Health and Hu- man Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, OH (2013) (DHHS (NIOSH) Publication No 2014-102)Nordin et al., 2018 A.P. Nordin, J. da Silva, C. de Souza, L.A.B. Niekraszewicz, J.F. Dias, K. da Boit, M.L.S. Oliveira, I. Grivicich, A.L. Garcia, L.F. Silva, F.R. da Silva In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage J. Hazard. Mater., 346 (2018), pp. 263-272Oliveira et al., 2019 M.L. Oliveira, M. Izquierdo, X. Querol, R.N. Lieberman, B.K. Saikia, L.F. Silva Nanoparticles from construction wastes: a problem to health and the environment J. Clean. Prod., 219 (2019), pp. 236-243Oliveira et al., 2021 M.L.S. Oliveira, A. Neckel, L.F.O. Silva, G.L. Dotto, L.S. Maculan Environmental aspects of the depreciation of the culturally significant wall of Cartagena de Indias – Colombia Chemosphere, 265 (2021), p. 129119Peralta-Videa et al., 2011 J.R. Peralta-Videa, L. Zhao, M. Lopez-Moreno, G.L. Rosa, J. Hong, J.L. Gardea-Torresdey Nanomaterials and the environment: a review for the bi-ennium J. Hazard. Mater., 186 (2011), pp. 1-15Petersen et al., 2016 E.J. Petersen, D.X. Flores-Cervantes, T.D. Bucheli, L.C. Elliott, J.A. Fagan, A. Gogos, S. Hanna, R. Kagi, E. Mansfield, A.R. Montoro Bustos, D.L. Plata, V. Reipa, P. Westerhoff, M.R. Winchester Quantification of carbon nanotubes in environmental matrices: current capabilities, case studies, and future prospects Environ. Sci. Technol., 50 (2016), pp. 4587-4605Piccardo et al., 2020 M. Piccardo, M. Renzi, A. Terlizzi Nanoplastics in the oceans: theory, experimental evidence and real world Mar. Pollut. Bull., 157 (2020), p. 111317Restrepo et al., 2012 J.C. Restrepo, L. Otero, A.C. Casas, A. Henao, J. Gutiérrez Shoreline changes between 1954 and 2007 in the marine protected area of the Rosario Island archipelago (Caribbean of Colombia) Ocean Coast. Manag., 69 (2012), pp. 133-142Ribeiro et al., 2010 J. Ribeiro, D. Flores, C. Ward, L.F.O. Silva Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal Sci. Total Environ., 408 (2010), pp. 6032-6041Rio-Cortina et al., 2020 J.D. Rio-Cortina, M. Ibarra-Fernández, C. Rodríguez-Arias, N. López-Espitia Competitiveness in insular regions: case of Isla Grande in the Archapelago of Islas Del Rosario, Cartagena, Colombia WSEAS Trans. Bus. Econ., 17 (2020), pp. 410-425Rojas et al., 2019 J.C. Rojas, N.E. Sanchez, I. Schneider, M.L.S. Oliveira, E.C. Teixeira, L.F.O. Silva Exposure to nanometric pollutants in primary schools: environmental implications Urban Clim., 27 (2019), pp. 412-419Rothen-Rutishauser et al., 2006 B.M. Rothen-Rutishauser, S. Schurch, B. Haenni, N. Kapp, P. Gehr Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques Environ. Sci. Technol., 40 (2006), pp. 4353-4359Sierra-Marquez et al., 2017 L. Sierra-Marquez, J. Sierra-Marquez, J. de Larosa, J. Olivero-Verbel Imposex in Stramonita haemastoma from coastal sites of Cartagena, Colombia Braz. J. Biol., 78 (2017), pp. 548-555Silva et al., 2011a L.F.O. Silva, M. Izquierdo, X. Querol, R.B. Finkelman, M.L.S. Oliveira, M. Wollenschlager, M. Towler, R. Pérez-López, F. Macias Leaching of potential hazardous elements of coal cleaning rejects Environ. Monit. Assess., 175 (2011), pp. 109-126Silva et al., 2011b L.F.O. Silva, F. Macias, M.L.S. Oliveira, K.M. da Boit, F. Waanders Coal cleaning residues and Fe-minerals implications Environ. Monit. Assess., 172 (2011), pp. 367-378Silva et al., 2011c L.F.O. Silva, X. Querol, K.M. da Boit, S. Fdez-Ortiz Vallejuelo, J.M. Madariaga Brazilian coal mining residues and sulphide oxidation by Fenton’s reaction: an accelerated weathering procedure to evaluate possible environmental impact J. Hazard. Mater., 186 (2011), pp. 516-525Silva et al., 2020a L.F.O. Silva, D. Pinto, A. Neckel, G.L. Dotto, M.L.S. Oliveira The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil Chemosphere, 251 (2020), p. 126838Silva et al., 2020b L.F.O. Silva, C. Milanes, D. Pinto, O. Ramirez, B.D. Lima Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere Chemosphere., 239 (2020), p. 124776Sofi et al., 2021 H.S. Sofi, T. Akram, N. Shabir, R. Vasita, A.H. Jadhav, F.A. Sheikh Regenerated cellulose nanofibers from cellulose acetate: incorporating hydroxyapatite (HAP) and silver (AG) nanoparticles (NPs), as a scaffold for tissue engineering applications Mater. Sci. Eng. C, 118 (2021), p. 111547Thiagarajan et al., 2019 V. Thiagarajan, M. Pavani, S. Archanaa, R. Seenivasan, N. Chandrasekaran, G.K. Suraishkumar, A. Mukherjee Diminishing bioavailability and toxicity of P25 TiO2 NPs during continuous exposure to marine algae Chlorella SP Chemosphere, 233 (2019), pp. 363-372Urrego et al., 2019 L.E. Urrego, M.A. Prado, G. Bernal, A. Galeano Mangrove responses to droughts since the little ice age in the Colombian Caribbean Estuar. Coast. Mar. Sci., 230 (2019), p. 106432Wang and Wang, 2014 J. Wang, W.X. Wang Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma) Environ. Sci. Technol., 48 (2014), pp. 8152-8161Wigginton et al., 2007 N.S. Wigginton, K.L. Haus, M.F. Hochella Jr. Aquatic environmental nanoparticles J. Environ. Monit., 9 (2007), pp. 1306-1316World Health Organization (WHO), 2014 World Health Organization (WHO), 2014 Antimicrobial Resistance: Global Report on Surveillance. [cited 2017 Sep 16]. https://www.who.int/mediacentre/factsheets/fs391/en/. Accessed 6 May 2020.Wren et al., 2000 D.G. Wren, B.D. Barkdoll, R.A. Kuhnle, R.W. Derrow Field techniques for suspended-sediment measurement J. Hydraul. Eng., 126 (2000), pp. 97-104Xia et al., 2018 B. Xia, Q. Sui, X. Sun, Q. Han, B. Chena, L. Zhu, K. Qu Ocean acidification increases the toxic effects of TiO2 nanoparticles on the marine microalga Chlorella vulgari J. Hazard. Mater., 346 (2018), pp. 1-9Xiao et al., 2016 Y. Xiao, W.J. Peijnenburg, G. Chen, M.G. Vijver Toxicity of copper nanoparticles to Daphnia magna under different exposure conditions Sci. Total Environ., 563–564 (2016), pp. 81-88Zhang et al., 2020 X. Zhang, S. Lv, X. Lu, H. Yu, T. Huang, Q. Zhang, M. Zhu Synergistic enhancement of coaxial nanofiber-based triboelectric nanogenerator through dielectric and dispersity modulation Nano Energy, 75 (2020), p. 104894Zhao et al., 2014 J. Zhao, Z. Wang, J.C. White, B. Xing Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation Environ. Sci. Technol., 48 (2014), pp. 9995-10009Zou et al., 2021 H. Zou, C. Liu, F. Evrendilek, Y. He, J. Liu Evaluation of reaction mechanisms and emissions of oily sludge and coal co-combustions in O2/CO2 and O2/N2 atmospheres Renew. Energy, 171 (2021), pp. 1327-1343PublicationORIGINALIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects.pdfIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects.pdfapplication/pdf169658https://repositorio.cuc.edu.co/bitstreams/b381bafc-5047-48eb-bcee-4c75d6b0e10a/download75fcabec2634588bb625a6e280206a20MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/67f20ef3-1b3f-46ce-84fb-cc3476505607/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7490de54-0c2a-4a34-9e9d-ae67a39fe236/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects.pdf.jpgIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects.pdf.jpgimage/jpeg63056https://repositorio.cuc.edu.co/bitstreams/b3e81f31-750d-4080-bd3f-edab0b1745d2/download55772a952b9407abb973b57f2b26f5c1MD54TEXTIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects.pdf.txtIdentification of hazardous nanoparticles present in the Caribbean Sea for the allocation of future preservation projects.pdf.txttext/plain16727https://repositorio.cuc.edu.co/bitstreams/e91dd2fa-b8f6-4d35-ace0-f5a0fbc4b70b/download45b2e9beb3d402b58dbcdd7cf366d771MD5511323/8350oai:repositorio.cuc.edu.co:11323/83502024-09-17 12:49:58.043http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |