Network Anomaly Detection with Bayesian Self-Organizing Maps

The growth of the Internet and consequently, the number of interconnected computers through a shared medium, has exposed a lot of relevant information to intruders and attackers. Firewalls aim to detect violations to a predefined rule set and usually block potentially dangerous incoming traffic. How...

Full description

Autores:
De-La-Hoz-Franco, Emiro
Ortiz García, Andrés
Ortega Lopera, Julio
De la Hoz Correa, Eduardo Miguel
Prieto Espinosa, Carlos Antonio
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7247
Acceso en línea:
https://hdl.handle.net/11323/7247
https://doi.org/10.1007/978-3-642-38679-4_53
https://repositorio.cuc.edu.co/
Palabra clave:
Gaussian Mixture Model
Intrusion Detection System
Receiver Operating Curf Curve
Best Match Unit
Receiver Operating Curf
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_5e3691380937cca96851e8176c8845fe
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7247
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Network Anomaly Detection with Bayesian Self-Organizing Maps
title Network Anomaly Detection with Bayesian Self-Organizing Maps
spellingShingle Network Anomaly Detection with Bayesian Self-Organizing Maps
Gaussian Mixture Model
Intrusion Detection System
Receiver Operating Curf Curve
Best Match Unit
Receiver Operating Curf
title_short Network Anomaly Detection with Bayesian Self-Organizing Maps
title_full Network Anomaly Detection with Bayesian Self-Organizing Maps
title_fullStr Network Anomaly Detection with Bayesian Self-Organizing Maps
title_full_unstemmed Network Anomaly Detection with Bayesian Self-Organizing Maps
title_sort Network Anomaly Detection with Bayesian Self-Organizing Maps
dc.creator.fl_str_mv De-La-Hoz-Franco, Emiro
Ortiz García, Andrés
Ortega Lopera, Julio
De la Hoz Correa, Eduardo Miguel
Prieto Espinosa, Carlos Antonio
dc.contributor.author.spa.fl_str_mv De-La-Hoz-Franco, Emiro
Ortiz García, Andrés
Ortega Lopera, Julio
De la Hoz Correa, Eduardo Miguel
Prieto Espinosa, Carlos Antonio
dc.subject.spa.fl_str_mv Gaussian Mixture Model
Intrusion Detection System
Receiver Operating Curf Curve
Best Match Unit
Receiver Operating Curf
topic Gaussian Mixture Model
Intrusion Detection System
Receiver Operating Curf Curve
Best Match Unit
Receiver Operating Curf
description The growth of the Internet and consequently, the number of interconnected computers through a shared medium, has exposed a lot of relevant information to intruders and attackers. Firewalls aim to detect violations to a predefined rule set and usually block potentially dangerous incoming traffic. However, with the evolution of the attack techniques, it is more difficult to distinguish anomalies from the normal traffic. Different intrusion detection approaches have been proposed, including the use of artificial intelligence techniques such as neural networks. In this paper, we present a network anomaly detection technique based on Probabilistic Self-Organizing Maps (PSOM) to differentiate between normal and anomalous traffic. The detection capabilities of the proposed system can be modified without retraining the map, but only modifying the activation probabilities of the units. This deals with fast implementations of Intrusion Detection Systems (IDS) necessary to cope with current link bandwidths.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2020-11-10T21:57:45Z
dc.date.available.none.fl_str_mv 2020-11-10T21:57:45Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv de la Hoz Franco E., Ortiz García A., Ortega Lopera J., de la Hoz Correa E., Prieto Espinosa A. (2013) Network Anomaly Detection with Bayesian Self-Organizing Maps. In: Rojas I., Joya G., Gabestany J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_53
dc.identifier.isbn.spa.fl_str_mv 978-3-642-38679-4
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7247
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-3-642-38679-4_53
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv de la Hoz Franco E., Ortiz García A., Ortega Lopera J., de la Hoz Correa E., Prieto Espinosa A. (2013) Network Anomaly Detection with Bayesian Self-Organizing Maps. In: Rojas I., Joya G., Gabestany J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_53
978-3-642-38679-4
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7247
https://doi.org/10.1007/978-3-642-38679-4_53
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Alhoniemi, E., Himberg, J., Vesanto, J.: Probabilistic measures for responses of self-organizing map units. In: Proc. of the International ICSC Congress on Computational Intelligence Methods and Applications (CIMA), vol. 1, pp. 286–290 (1999)
Ghosh, J., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against programs. In: Proc. of the Annual Computer Security Applications Conference, vol. 1, pp. 259–267 (1998)
Haykin, S.: Neural Networks, 2nd edn. Prentice-Hall (1999)
Hoffman, A., Schimitz, C., Sick, B.: Intrussion detection in computer networks with neural and fuzzy classifiers. In: International Conference on Artificial Neural Networks (ICANN), vol. 1, pp. 316–324 (2003)
Kohonen, T.: Self-Organizing Maps. Springer (2001)
Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendball, K.R., McClung, D., Weber, D., Webster, S.E., Wyschgrod, D., Cuningham, R.K., Zissman, M.A.: Evaluating intrusion detection systems: the 1998 darpa off-line intrusion detection evaluation. Descex 2, 1012–1027 (2000)
McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 darpa instrusion detection systems evaluation as performed by lyncoln laboratory. ACM Transactions on Information and Systems Security 3(4), 262–294 (2000)
Network Security Lab - Knowledge Discovery and Data MininG (NSL-KDD) (2007), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Padilla, P., López, M., Górriz, J.M., Ramírez, J., Salas-González, D., Álvarez, I.: The Alzheimer’s Disease Neuroimaging Initiative. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Transactions on Medical Imaging 2, 207–216 (2012)
Panda, M., Abraham, A., Patra, M.R.: Discriminative multinomial naïve bayes for network intrusion detection. In: Proc. of the 6th International Conference on Information Assurance and Security, IAS (2010)
Riveiro, M., Johansson, F., Falkman, G., Ziemke, T.: Supporting maritime situation awareness using self organizing maps and gaussian mixture models. In: Proceedings of the 2008 Conference on Tenth Scandinavian Conference on Artificial Intelligence (SCAI), vol. 1, pp. 84–91 (2008)
Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (2009)
Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Som toolbox. Helsinki University of Technology (2000)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Computational Intelligence
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-642-38679-4_53
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/deb1d93c-82b4-4207-8ab6-92d96a32c864/download
https://repositorio.cuc.edu.co/bitstreams/9e34955a-ab75-424d-92d7-9cd4fd11479c/download
https://repositorio.cuc.edu.co/bitstreams/77b94c04-287e-4183-96fc-ce274301aede/download
https://repositorio.cuc.edu.co/bitstreams/aa8c5eb0-ecf4-4494-a051-0eeb0ef13eee/download
https://repositorio.cuc.edu.co/bitstreams/31d2a370-f59d-4fde-98b2-b1bb32d92071/download
bitstream.checksum.fl_str_mv 32780579afb9ee909121ae8325d9d5d5
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
91c4b8405e6a3a3b754a19b7c28d40e2
d5178617ec4812d41a2e4425186cb38c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760839341899776
spelling De-La-Hoz-Franco, EmiroOrtiz García, AndrésOrtega Lopera, JulioDe la Hoz Correa, Eduardo MiguelPrieto Espinosa, Carlos Antonio2020-11-10T21:57:45Z2020-11-10T21:57:45Z2013de la Hoz Franco E., Ortiz García A., Ortega Lopera J., de la Hoz Correa E., Prieto Espinosa A. (2013) Network Anomaly Detection with Bayesian Self-Organizing Maps. In: Rojas I., Joya G., Gabestany J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_53978-3-642-38679-4https://hdl.handle.net/11323/7247https://doi.org/10.1007/978-3-642-38679-4_53Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The growth of the Internet and consequently, the number of interconnected computers through a shared medium, has exposed a lot of relevant information to intruders and attackers. Firewalls aim to detect violations to a predefined rule set and usually block potentially dangerous incoming traffic. However, with the evolution of the attack techniques, it is more difficult to distinguish anomalies from the normal traffic. Different intrusion detection approaches have been proposed, including the use of artificial intelligence techniques such as neural networks. In this paper, we present a network anomaly detection technique based on Probabilistic Self-Organizing Maps (PSOM) to differentiate between normal and anomalous traffic. The detection capabilities of the proposed system can be modified without retraining the map, but only modifying the activation probabilities of the units. This deals with fast implementations of Intrusion Detection Systems (IDS) necessary to cope with current link bandwidths.De-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600Ortiz García, AndrésOrtega Lopera, JulioDe la Hoz Correa, Eduardo Miguel-will be generated-orcid-0000-0001-7468-6058-600Prieto Espinosa, Carlos Antonio-will be generated-orcid-0000-0001-9133-4636-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Computational Intelligencehttps://link.springer.com/chapter/10.1007/978-3-642-38679-4_53Gaussian Mixture ModelIntrusion Detection SystemReceiver Operating Curf CurveBest Match UnitReceiver Operating CurfNetwork Anomaly Detection with Bayesian Self-Organizing MapsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAlhoniemi, E., Himberg, J., Vesanto, J.: Probabilistic measures for responses of self-organizing map units. In: Proc. of the International ICSC Congress on Computational Intelligence Methods and Applications (CIMA), vol. 1, pp. 286–290 (1999)Ghosh, J., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against programs. In: Proc. of the Annual Computer Security Applications Conference, vol. 1, pp. 259–267 (1998)Haykin, S.: Neural Networks, 2nd edn. Prentice-Hall (1999)Hoffman, A., Schimitz, C., Sick, B.: Intrussion detection in computer networks with neural and fuzzy classifiers. In: International Conference on Artificial Neural Networks (ICANN), vol. 1, pp. 316–324 (2003)Kohonen, T.: Self-Organizing Maps. Springer (2001)Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendball, K.R., McClung, D., Weber, D., Webster, S.E., Wyschgrod, D., Cuningham, R.K., Zissman, M.A.: Evaluating intrusion detection systems: the 1998 darpa off-line intrusion detection evaluation. Descex 2, 1012–1027 (2000)McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 darpa instrusion detection systems evaluation as performed by lyncoln laboratory. ACM Transactions on Information and Systems Security 3(4), 262–294 (2000)Network Security Lab - Knowledge Discovery and Data MininG (NSL-KDD) (2007), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.htmlPadilla, P., López, M., Górriz, J.M., Ramírez, J., Salas-González, D., Álvarez, I.: The Alzheimer’s Disease Neuroimaging Initiative. NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Transactions on Medical Imaging 2, 207–216 (2012)Panda, M., Abraham, A., Patra, M.R.: Discriminative multinomial naïve bayes for network intrusion detection. In: Proc. of the 6th International Conference on Information Assurance and Security, IAS (2010)Riveiro, M., Johansson, F., Falkman, G., Ziemke, T.: Supporting maritime situation awareness using self organizing maps and gaussian mixture models. In: Proceedings of the 2008 Conference on Tenth Scandinavian Conference on Artificial Intelligence (SCAI), vol. 1, pp. 84–91 (2008)Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (2009)Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Som toolbox. Helsinki University of Technology (2000)PublicationORIGINALNetwork Anomaly Detection with Bayesian Self - 2013.pdfNetwork Anomaly Detection with Bayesian Self - 2013.pdfapplication/pdf557937https://repositorio.cuc.edu.co/bitstreams/deb1d93c-82b4-4207-8ab6-92d96a32c864/download32780579afb9ee909121ae8325d9d5d5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/9e34955a-ab75-424d-92d7-9cd4fd11479c/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/77b94c04-287e-4183-96fc-ce274301aede/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILNetwork Anomaly Detection with Bayesian Self - 2013.pdf.jpgNetwork Anomaly Detection with Bayesian Self - 2013.pdf.jpgimage/jpeg42807https://repositorio.cuc.edu.co/bitstreams/aa8c5eb0-ecf4-4494-a051-0eeb0ef13eee/download91c4b8405e6a3a3b754a19b7c28d40e2MD54TEXTNetwork Anomaly Detection with Bayesian Self - 2013.pdf.txtNetwork Anomaly Detection with Bayesian Self - 2013.pdf.txttext/plain1637https://repositorio.cuc.edu.co/bitstreams/31d2a370-f59d-4fde-98b2-b1bb32d92071/downloadd5178617ec4812d41a2e4425186cb38cMD5511323/7247oai:repositorio.cuc.edu.co:11323/72472024-09-17 14:08:43.028http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==