Lightning rod system: mathematical analysis using the rolling sphere method
In electrical protection, there is a method of electrical protection of buildings against atmospheric discharges called the electro-geometric method or the rolling sphere method. So far, it is possible to achieve the implementation of this method graphically, that is, representing through plans and...
- Autores:
-
Mora Martínez, Jairo
Noriega Angarit, Eliana María
Nuñez Alvarez, José Ricardo
Hernández Crespo, Michelle
Fruto Pertuz, Paulo José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9270
- Acceso en línea:
- https://hdl.handle.net/11323/9270
https://repositorio.cuc.edu.co/
- Palabra clave:
- Atmospheric
Protection parameters
Lightning
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_5e2d400b8254c0d35f5e29cc45fd4453 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9270 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Lightning rod system: mathematical analysis using the rolling sphere method |
title |
Lightning rod system: mathematical analysis using the rolling sphere method |
spellingShingle |
Lightning rod system: mathematical analysis using the rolling sphere method Atmospheric Protection parameters Lightning |
title_short |
Lightning rod system: mathematical analysis using the rolling sphere method |
title_full |
Lightning rod system: mathematical analysis using the rolling sphere method |
title_fullStr |
Lightning rod system: mathematical analysis using the rolling sphere method |
title_full_unstemmed |
Lightning rod system: mathematical analysis using the rolling sphere method |
title_sort |
Lightning rod system: mathematical analysis using the rolling sphere method |
dc.creator.fl_str_mv |
Mora Martínez, Jairo Noriega Angarit, Eliana María Nuñez Alvarez, José Ricardo Hernández Crespo, Michelle Fruto Pertuz, Paulo José |
dc.contributor.author.spa.fl_str_mv |
Mora Martínez, Jairo Noriega Angarit, Eliana María Nuñez Alvarez, José Ricardo Hernández Crespo, Michelle Fruto Pertuz, Paulo José |
dc.subject.proposal.eng.fl_str_mv |
Atmospheric Protection parameters Lightning |
topic |
Atmospheric Protection parameters Lightning |
description |
In electrical protection, there is a method of electrical protection of buildings against atmospheric discharges called the electro-geometric method or the rolling sphere method. So far, it is possible to achieve the implementation of this method graphically, that is, representing through plans and technical drawings, the protection conditions of the analyzed structure and obtaining from these graphic representations the protection parameters with the consequent errors caused by the scales and dimensions of the work plane. In the present work, a mathematical model is obtained that allows, using specific calculations, to analyze the dynamic behavior of a protection system against atmospheric discharges without worrying about the limitations given by the scales and planes. The set of equations obtained in the model allows us to determine the different parameters that define the protection system against atmospheric discharges (lightning) without depending on the graphical representation of the system's topology. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-21T15:09:32Z |
dc.date.available.none.fl_str_mv |
2022-06-21T15:09:32Z |
dc.date.issued.none.fl_str_mv |
2022-01-25 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.spa.fl_str_mv |
2088-8694 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9270 |
dc.identifier.doi.spa.fl_str_mv |
10.11591/ijpeds.v13.i1.pp2829-2838 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2088-8694 10.11591/ijpeds.v13.i1.pp2829-2838 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9270 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Power Electronics and Drive Systems |
dc.relation.references.spa.fl_str_mv |
[1] A. Mullo, V. Javier, M. Jiménez, M. Pilatasig, and H. Iturralde, "Analysis of the incidence of grounding with high resistivity against atmospheric discharges in the sub — Transmission line of 69 KV San Rafael — Mulalo," 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2017, pp. 1–5, doi: 10.1109/CHILECON.2017.8229553. [2] Y. Liu, M. Dai, A. Guha, X. Gao, and Z. Fu, "Damage Characteristics and Microstructure Response of Steel Alloy Q235B Subjected to Simulated Lightning Currents," in IEEE Access, vol. 7, pp. 9258–9264, 2019, doi: 10.1109/ACCESS.2018.2890612. [3] V. Srinivasan, M. Fernando, S. Kumara, T. Selvaraj, and V. Cooray, "Modeling and Assessment of Lightning Hazards to Humans in Heritage Monuments in India and Sri Lanka," in IEEE Access, vol. 8, pp. 228032–228048, 2020, doi: 10.1109/ACCESS.2020.3046100. [4] N. McDonagh and D. Klopotan, "The development of a 3-D rolling sphere algorithm for lightning protection," 2012 47th International Universities Power Engineering Conference (UPEC), 2012, pp. 1–5, doi: 10.1109/UPEC.2012.6398643. [5] L. A. Salgado and F. Brito, "Protection system against atmospheric discharges in offshore oil platforms," 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), 2015, pp. 1–6, doi: 10.1109/CONCAPAN.2015.7428445. [6] C. A. Christodoulou, V. Vita, and T. I. Maris, "On the optimal placement of surge arresters for the efficient protection of medium voltage distribution networks against atmospheric overvoltages," 2019 54th International Universities Power Engineering Conference (UPEC), 2019, pp. 1–4, doi: 10.1109/UPEC.2019.8893622. [7] G. Parise, L. Martirano, and M. Lucheroni, "Level, Class, and Prospected Safety Performance of a Lightning Protection System for a Complex of Structures (LPCS)," in IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 2106–2110, Sept.–Oct. 2010, doi: 10.1109/TIA.2010.2059370. [8] R. Zoro, K. E. Widodo, and H. Laksmiwati, "External Lightning Protection System at Pulp and Paper Industry in Areas with High Lightning Density," 2018 Conference on Power Engineering and Renewable Energy (ICPERE), 2018, pp. 1–5, doi: 10.1109/ICPERE.2018.8739688. [9] J. C. Mora, et al., “On the use of reference areas for prospective dose assessments on populations of wildlife for planned atmospheric discharges around nuclear installations,” Environmental Research, vol. 182, p. 109057, 2020, doi: 10.1016/j.envres.2019.109057. [10] H. Hu, R. Luo, M. Fang, S. Zeng, and F. Hu, “A new optimization design for grounding grid,” International Journal of Electrical Power & Energy Systems, vol. 108, pp. 61–71, June 2019, doi: 10.1016/j.ijepes.2018.12.041. [11] M. Rock, K. Müller, E. Shulzhenko, and R. Schünge, "Mesh width of ground grids in shelters with small base areas for low step voltages at lightning currents," 2018 34th International Conference on Lightning Protection (ICLP), 2018, pp. 1–6, doi: 10.1109/ICLP.2018.8503353. [12] Protection against Lightning. Part 2: Risk Management, Irish Standard, CEI EN 62305-2:2012, 2012. [Online]. Available: https://shop.standards.ie/preview/98701232548.pdf?sku=863871_SAIG_NSAI_NSAI_2054831 [13] Lightning Protection, Part 1: General Principles (1ed.), NTC 4552-1, Icontec 2008. [Online]. Available https://fdocuments.in/document/ntc-4552-1.html [14] Protection against atmospheric electric shocks, Part 2: Risk management, NTC 4552-2, Icontec 2008. [Online]. Available: https://docplayer.es/21056730-Norma-tecnica-colombiana-4552-2.html [15] Protection against atmospheric electrical discharges, Part 2: Risk management, NTC 4552-3, Icontec 2008. [Online]. Available: https://dokumen.site/download/ntc4552-3-a5b39ef700cfc3 [16] Protection against Lightning, Part 3: Physical damage to structures and threats to life, NTC 4552-3, Icontec 2008. [Online]. Available: https://fdocuments.in/document/norma-tecnica-ntc-colombiana-4552-3-sistema-de-puesta-a-tierra-usandoadecuadamente.html [17] B. Brusso, "The Electrogeometrical Model of the Rolling Sphere Method [History]," in IEEE Industry Applications Magazine, vol. 22, no. 2, pp. 7–70, March-April 2016, doi: 10.1109/MIAS.2015.2503940. [18] W. Brooks et al., "Investigation of Lightning Attachment Risks to Small Structures Associated with the Electrogeometric Model (EGM)," in IEEE Transactions on Plasma Science, vol. 48, no. 6, pp. 2163–2174, June 2020, doi: 10.1109/TPS.2020.2989664. [19] I. Petrović, S. Nikolovski, H. R. Baghaee, and H. Glavaš, "Determining Impact of Lightning Strike Location on Failures in Transmission Network Elements Using Fuzzy Decision-Making," in IEEE Systems Journal, vol. 14, no. 2, pp. 2665–2675, June 2020, doi: 10.1109/JSYST.2019.2923690. [20] H. Hu, M. Fang, Y. Zhang, L. Jing, and F. Hu, “Dynamic lightning protection method of electric power systems based on the large data characteristics,” International Journal of Electrical Power & Energy Systems, vol. 128, p. 106728, June 2021, doi: 10.1016/j.ijepes.2020.106728. [21] G. Maslowski and S. Wyderka, "Modeling of Currents and Voltages in the Lightning Protection System of a Residential Building and an Attached Overhead Power Line," in IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 5, pp. 2164–2173, Oct. 2020, doi: 10.1109/TEMC.2020.2982127. [22] K. P. Naccarato, A. R. de Paiva, M. M. F. Saba, C. Schumann, J. C. O. Silva, and M. A. S. Ferro, "Preliminary comparison of direct electric current measurements in lightning rods and peak current estimates from lightning location systems," 2017 International Symposium on Lightning Protection (XIV SIPDA), 2017, pp. 319–323, doi: 10.1109/SIPDA.2017.8116944. [23] W. L. Liu, “The Methods of Calculating Heights of Lightning Rods and the Design of the Calculating Software,” Lecture Notes in Electrical Engineering, vol 585, pp. 965–975, 2019, doi: 10.1007/978-981-13-9783-7_79. [24] V. Srinivasan et al., "Three-Dimensional Implementation of Modified Rolling Sphere Method for Lightning Protection of Giant Medieval Chola Monument in South India," 2019 14th Conference on Industrial and Information Systems (ICIIS), 2019, pp. 535– 540, doi: 10.1109/ICIIS47346.2019.9063330. [25] E. Spunei, I. Piroi, and F. Piroi, "Finding the Minimal Fitting Distance of a Lightning Rod Down-Conductor," 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1–4, doi: 10.1109/SIELMEN.2019.8905894. [26] F. Aslani, M. Yahyaabadi, and B. Vahidi, “A new-intelligent method for evaluating the lightning protection system performance of complex and asymmetric structures,” Elec. Power Syst. Res., vol. 190, p. 106843, Jan. 2021, doi: 10.1016/j.epsr.2020.106843. [27] B. R. de Araújo, "Mathematical modeling for analysis and design of LPS: Angle method," 2017 International Symposium on Lightning Protection (XIV SIPDA), 2017, pp. 42–48, doi: 10.1109/SIPDA.2017.8116897. [28] Z. S. Hussain, A. J. Ali, A. A. Allu, and R. K. Antar, ‘‘Improvement of protection relay with a single phase auto-reclosing mechanism based on artificial neural network,’’ International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 1, pp. 505–514, March 2020, doi: 10.11591/ijpeds.v11.i1.pp505-514. [29] S. Díaz, J. Nuñez, K. Berdugo, and K. Gomez, “Study of technologies implemented in the operation of SF6 switches,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 872, no. 1, p. 012041, 2020, doi: 10.1088/1757-899X/872/1/012041. [30] F. Grau, J. Cervantes, L. Vázquez, and J. R. Nuñez, ‘‘Effect of LED Technology on Technical Losses in Public Lighting Circuits. A Case Study,” Journal. of Engineering Science and Technology Review, vol. 14, no. 2, pp. 198–206, 2021, doi: 10.25103/jestr.142.24 [31] J. Andramuño, E. Mendoza, J. Núñez, and E. Liger, “Intelligent distributed module for local control of lighting and electrical outlets in a home,” J. Phys.: Conf. Ser., vol. 1730, no. 1, p. 012001, 2021, doi: 10.1088/1742-6596/1730/1/012001. [32] J. Nuñez, I. F. B. Pina, A. R. Martínez, S. D. Pérez, and D. L. de Oliveira, "Tools for the Implementation of a SCADA System in a Desalination Process," in IEEE Latin America Trans., vol. 17, no. 11, pp. 1858–1864, 2019, doi: 10.1109/TLA.2019.8986424. [33] E. V. M. Merchán, I. F. B. Pina, and J. R. N. Alvarez, “Network of multi-hop wireless sensors for low cost and extended area home automation systems,” Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol. 17, pp. 412–423, 2020, doi: 10.4995/riai.2020.12301. |
dc.relation.citationendpage.spa.fl_str_mv |
2838 |
dc.relation.citationstartpage.spa.fl_str_mv |
2829 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Institute of Advanced Engineering and Science (IAES) |
dc.publisher.place.spa.fl_str_mv |
Indonesia |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.academia.edu/80409643/Lightning_rod_system_mathematical_analysis_using_the_rolling_sphere_method |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/746e2f10-1236-4dc7-8143-c96d5d3fd03b/download https://repositorio.cuc.edu.co/bitstreams/41d30b7f-5d59-45fe-bc41-ed3857f75444/download https://repositorio.cuc.edu.co/bitstreams/7a783a7e-7e37-42e1-8856-bc1f97800245/download https://repositorio.cuc.edu.co/bitstreams/48fc05de-ec00-4f2c-9fa2-54ca4c661423/download |
bitstream.checksum.fl_str_mv |
879349c46300aa572932b23c52173392 e30e9215131d99561d40d6b0abbe9bad b803e8ea88c6cc44628b36385f0d7f7f 466d365373115e300a9e9c84e14e3f16 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760783604842496 |
spelling |
Mora Martínez, JairoNoriega Angarit, Eliana MaríaNuñez Alvarez, José RicardoHernández Crespo, MichelleFruto Pertuz, Paulo José2022-06-21T15:09:32Z2022-06-21T15:09:32Z2022-01-252088-8694https://hdl.handle.net/11323/927010.11591/ijpeds.v13.i1.pp2829-2838Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In electrical protection, there is a method of electrical protection of buildings against atmospheric discharges called the electro-geometric method or the rolling sphere method. So far, it is possible to achieve the implementation of this method graphically, that is, representing through plans and technical drawings, the protection conditions of the analyzed structure and obtaining from these graphic representations the protection parameters with the consequent errors caused by the scales and dimensions of the work plane. In the present work, a mathematical model is obtained that allows, using specific calculations, to analyze the dynamic behavior of a protection system against atmospheric discharges without worrying about the limitations given by the scales and planes. The set of equations obtained in the model allows us to determine the different parameters that define the protection system against atmospheric discharges (lightning) without depending on the graphical representation of the system's topology.10 páginasapplication/pdfengInstitute of Advanced Engineering and Science (IAES)IndonesiaAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lightning rod system: mathematical analysis using the rolling sphere methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.academia.edu/80409643/Lightning_rod_system_mathematical_analysis_using_the_rolling_sphere_methodInternational Journal of Power Electronics and Drive Systems[1] A. Mullo, V. Javier, M. Jiménez, M. Pilatasig, and H. Iturralde, "Analysis of the incidence of grounding with high resistivity against atmospheric discharges in the sub — Transmission line of 69 KV San Rafael — Mulalo," 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2017, pp. 1–5, doi: 10.1109/CHILECON.2017.8229553.[2] Y. Liu, M. Dai, A. Guha, X. Gao, and Z. Fu, "Damage Characteristics and Microstructure Response of Steel Alloy Q235B Subjected to Simulated Lightning Currents," in IEEE Access, vol. 7, pp. 9258–9264, 2019, doi: 10.1109/ACCESS.2018.2890612.[3] V. Srinivasan, M. Fernando, S. Kumara, T. Selvaraj, and V. Cooray, "Modeling and Assessment of Lightning Hazards to Humans in Heritage Monuments in India and Sri Lanka," in IEEE Access, vol. 8, pp. 228032–228048, 2020, doi: 10.1109/ACCESS.2020.3046100.[4] N. McDonagh and D. Klopotan, "The development of a 3-D rolling sphere algorithm for lightning protection," 2012 47th International Universities Power Engineering Conference (UPEC), 2012, pp. 1–5, doi: 10.1109/UPEC.2012.6398643.[5] L. A. Salgado and F. Brito, "Protection system against atmospheric discharges in offshore oil platforms," 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), 2015, pp. 1–6, doi: 10.1109/CONCAPAN.2015.7428445.[6] C. A. Christodoulou, V. Vita, and T. I. Maris, "On the optimal placement of surge arresters for the efficient protection of medium voltage distribution networks against atmospheric overvoltages," 2019 54th International Universities Power Engineering Conference (UPEC), 2019, pp. 1–4, doi: 10.1109/UPEC.2019.8893622.[7] G. Parise, L. Martirano, and M. Lucheroni, "Level, Class, and Prospected Safety Performance of a Lightning Protection System for a Complex of Structures (LPCS)," in IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 2106–2110, Sept.–Oct. 2010, doi: 10.1109/TIA.2010.2059370.[8] R. Zoro, K. E. Widodo, and H. Laksmiwati, "External Lightning Protection System at Pulp and Paper Industry in Areas with High Lightning Density," 2018 Conference on Power Engineering and Renewable Energy (ICPERE), 2018, pp. 1–5, doi: 10.1109/ICPERE.2018.8739688.[9] J. C. Mora, et al., “On the use of reference areas for prospective dose assessments on populations of wildlife for planned atmospheric discharges around nuclear installations,” Environmental Research, vol. 182, p. 109057, 2020, doi: 10.1016/j.envres.2019.109057.[10] H. Hu, R. Luo, M. Fang, S. Zeng, and F. Hu, “A new optimization design for grounding grid,” International Journal of Electrical Power & Energy Systems, vol. 108, pp. 61–71, June 2019, doi: 10.1016/j.ijepes.2018.12.041.[11] M. Rock, K. Müller, E. Shulzhenko, and R. Schünge, "Mesh width of ground grids in shelters with small base areas for low step voltages at lightning currents," 2018 34th International Conference on Lightning Protection (ICLP), 2018, pp. 1–6, doi: 10.1109/ICLP.2018.8503353.[12] Protection against Lightning. Part 2: Risk Management, Irish Standard, CEI EN 62305-2:2012, 2012. [Online]. Available: https://shop.standards.ie/preview/98701232548.pdf?sku=863871_SAIG_NSAI_NSAI_2054831[13] Lightning Protection, Part 1: General Principles (1ed.), NTC 4552-1, Icontec 2008. [Online]. Available https://fdocuments.in/document/ntc-4552-1.html[14] Protection against atmospheric electric shocks, Part 2: Risk management, NTC 4552-2, Icontec 2008. [Online]. Available: https://docplayer.es/21056730-Norma-tecnica-colombiana-4552-2.html[15] Protection against atmospheric electrical discharges, Part 2: Risk management, NTC 4552-3, Icontec 2008. [Online]. Available: https://dokumen.site/download/ntc4552-3-a5b39ef700cfc3[16] Protection against Lightning, Part 3: Physical damage to structures and threats to life, NTC 4552-3, Icontec 2008. [Online]. Available: https://fdocuments.in/document/norma-tecnica-ntc-colombiana-4552-3-sistema-de-puesta-a-tierra-usandoadecuadamente.html[17] B. Brusso, "The Electrogeometrical Model of the Rolling Sphere Method [History]," in IEEE Industry Applications Magazine, vol. 22, no. 2, pp. 7–70, March-April 2016, doi: 10.1109/MIAS.2015.2503940.[18] W. Brooks et al., "Investigation of Lightning Attachment Risks to Small Structures Associated with the Electrogeometric Model (EGM)," in IEEE Transactions on Plasma Science, vol. 48, no. 6, pp. 2163–2174, June 2020, doi: 10.1109/TPS.2020.2989664.[19] I. Petrović, S. Nikolovski, H. R. Baghaee, and H. Glavaš, "Determining Impact of Lightning Strike Location on Failures in Transmission Network Elements Using Fuzzy Decision-Making," in IEEE Systems Journal, vol. 14, no. 2, pp. 2665–2675, June 2020, doi: 10.1109/JSYST.2019.2923690.[20] H. Hu, M. Fang, Y. Zhang, L. Jing, and F. Hu, “Dynamic lightning protection method of electric power systems based on the large data characteristics,” International Journal of Electrical Power & Energy Systems, vol. 128, p. 106728, June 2021, doi: 10.1016/j.ijepes.2020.106728.[21] G. Maslowski and S. Wyderka, "Modeling of Currents and Voltages in the Lightning Protection System of a Residential Building and an Attached Overhead Power Line," in IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 5, pp. 2164–2173, Oct. 2020, doi: 10.1109/TEMC.2020.2982127.[22] K. P. Naccarato, A. R. de Paiva, M. M. F. Saba, C. Schumann, J. C. O. Silva, and M. A. S. Ferro, "Preliminary comparison of direct electric current measurements in lightning rods and peak current estimates from lightning location systems," 2017 International Symposium on Lightning Protection (XIV SIPDA), 2017, pp. 319–323, doi: 10.1109/SIPDA.2017.8116944.[23] W. L. Liu, “The Methods of Calculating Heights of Lightning Rods and the Design of the Calculating Software,” Lecture Notes in Electrical Engineering, vol 585, pp. 965–975, 2019, doi: 10.1007/978-981-13-9783-7_79.[24] V. Srinivasan et al., "Three-Dimensional Implementation of Modified Rolling Sphere Method for Lightning Protection of Giant Medieval Chola Monument in South India," 2019 14th Conference on Industrial and Information Systems (ICIIS), 2019, pp. 535– 540, doi: 10.1109/ICIIS47346.2019.9063330.[25] E. Spunei, I. Piroi, and F. Piroi, "Finding the Minimal Fitting Distance of a Lightning Rod Down-Conductor," 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), 2019, pp. 1–4, doi: 10.1109/SIELMEN.2019.8905894.[26] F. Aslani, M. Yahyaabadi, and B. Vahidi, “A new-intelligent method for evaluating the lightning protection system performance of complex and asymmetric structures,” Elec. Power Syst. Res., vol. 190, p. 106843, Jan. 2021, doi: 10.1016/j.epsr.2020.106843.[27] B. R. de Araújo, "Mathematical modeling for analysis and design of LPS: Angle method," 2017 International Symposium on Lightning Protection (XIV SIPDA), 2017, pp. 42–48, doi: 10.1109/SIPDA.2017.8116897.[28] Z. S. Hussain, A. J. Ali, A. A. Allu, and R. K. Antar, ‘‘Improvement of protection relay with a single phase auto-reclosing mechanism based on artificial neural network,’’ International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 11, no. 1, pp. 505–514, March 2020, doi: 10.11591/ijpeds.v11.i1.pp505-514.[29] S. Díaz, J. Nuñez, K. Berdugo, and K. Gomez, “Study of technologies implemented in the operation of SF6 switches,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 872, no. 1, p. 012041, 2020, doi: 10.1088/1757-899X/872/1/012041.[30] F. Grau, J. Cervantes, L. Vázquez, and J. R. Nuñez, ‘‘Effect of LED Technology on Technical Losses in Public Lighting Circuits. A Case Study,” Journal. of Engineering Science and Technology Review, vol. 14, no. 2, pp. 198–206, 2021, doi: 10.25103/jestr.142.24[31] J. Andramuño, E. Mendoza, J. Núñez, and E. Liger, “Intelligent distributed module for local control of lighting and electrical outlets in a home,” J. Phys.: Conf. Ser., vol. 1730, no. 1, p. 012001, 2021, doi: 10.1088/1742-6596/1730/1/012001.[32] J. Nuñez, I. F. B. Pina, A. R. Martínez, S. D. Pérez, and D. L. de Oliveira, "Tools for the Implementation of a SCADA System in a Desalination Process," in IEEE Latin America Trans., vol. 17, no. 11, pp. 1858–1864, 2019, doi: 10.1109/TLA.2019.8986424.[33] E. V. M. Merchán, I. F. B. Pina, and J. R. N. Alvarez, “Network of multi-hop wireless sensors for low cost and extended area home automation systems,” Revista Iberoamericana de Automática e Informática Industrial (RIAI), vol. 17, pp. 412–423, 2020, doi: 10.4995/riai.2020.12301.28382829113AtmosphericProtection parametersLightningPublicationORIGINALLightning rod system.pdfLightning rod system.pdfapplication/pdf761793https://repositorio.cuc.edu.co/bitstreams/746e2f10-1236-4dc7-8143-c96d5d3fd03b/download879349c46300aa572932b23c52173392MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/41d30b7f-5d59-45fe-bc41-ed3857f75444/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTLightning rod system.pdf.txtLightning rod system.pdf.txttext/plain38787https://repositorio.cuc.edu.co/bitstreams/7a783a7e-7e37-42e1-8856-bc1f97800245/downloadb803e8ea88c6cc44628b36385f0d7f7fMD53THUMBNAILLightning rod system.pdf.jpgLightning rod system.pdf.jpgimage/jpeg14158https://repositorio.cuc.edu.co/bitstreams/48fc05de-ec00-4f2c-9fa2-54ca4c661423/download466d365373115e300a9e9c84e14e3f16MD5411323/9270oai:repositorio.cuc.edu.co:11323/92702024-09-17 11:08:12.88https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |