Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
This paper presents data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level...
- Autores:
-
Mendoza Palechor, Fabio
de la Hoz Manotas, Alexis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5236
- Acceso en línea:
- https://hdl.handle.net/11323/5236
https://repositorio.cuc.edu.co/
- Palabra clave:
- Obesity
Data mining
Weka
SMOTE
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_5e23715dba9a3356d9979f47e21c56f7 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5236 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
title |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
spellingShingle |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico Obesity Data mining Weka SMOTE |
title_short |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
title_full |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
title_fullStr |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
title_full_unstemmed |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
title_sort |
Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico |
dc.creator.fl_str_mv |
Mendoza Palechor, Fabio de la Hoz Manotas, Alexis |
dc.contributor.author.spa.fl_str_mv |
Mendoza Palechor, Fabio de la Hoz Manotas, Alexis |
dc.subject.spa.fl_str_mv |
Obesity Data mining Weka SMOTE |
topic |
Obesity Data mining Weka SMOTE |
description |
This paper presents data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III. 77% of the data was generated synthetically using the Weka tool and the SMOTE filter, 23% of the data was collected directly from users through a web platform. This data can be used to generate intelligent computational tools to identify the obesity level of an individual and to build recommender systems that monitor obesity levels. For discussion and more information of the dataset creation, please refer to the full-length article “Obesity Level Estimation Software based on Decision Trees” (De-La-Hoz-Correa et al., 2019). |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-09-04T22:44:23Z |
dc.date.available.none.fl_str_mv |
2019-09-04T22:44:23Z |
dc.date.issued.none.fl_str_mv |
2019-08 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2352-3409 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5236 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2352-3409 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5236 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.1016/j.dib.2019.104344 |
dc.relation.references.spa.fl_str_mv |
[1] M.V. Olmedo, La obesidad: un problema de salud pública. Revista de divulgaci o científica y tecnol ogica de la Universidad Veracruzana, 2011. Recuperado de: https://www.uv.mx/cienciahombre/revistae/vol24num3/articulos/obesidad/. [2] C. Davila-Payan, M. DeGuzman, K. Johnson, N. Serban, J. Swann, Estimating prevalence of overweight or obese children and adolescents in small geographic areas using publicly available data, Prev. Chronic Dis. 12 (2015). [3] S. Manna, A.M. Jewkes, Understanding early childhood obesity risks: an empirical study using fuzzy signatures, in: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, IEEE, 2014, July, pp. 1333e1339. [4] M.H.B.M. Adnan, W. Husain, A hybrid approach using Naïve Bayes and Genetic Algorithm for childhood obesity prediction, in: Computer & Information Science (ICCIS), 2012 International Conference on vol. 1, IEEE, 2012, June, pp. 281e285. [5] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs, Machine learning techniques for prediction of early childhood obesity, Appl. Clin. Inf. 6 (3) (2015) 506e520. [6] Eduardo De-La-Hoz-Correa, Fabio E. Mendoza-Palechor, Alexis De-La-Hoz-Manotas, Roberto C. Morales-Ortega, Beatriz Adriana S anchez Hern andez, Obesity level estimation software based on decision Trees, J. Comput. Sci. 15 (Issue 1) (2019) 67e77, https://doi.org/10.3844/jcssp.2019.67.77. [7] DO, NORMA Oficial Mexicana NOM-008-SSA3-2010, Para el tratamiento integral del sobrepeso y la obesidad, Diario Oficial,2010. [8] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321e357. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Data in Brief |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/58734f48-4ee0-4a91-9aab-a0cc38743891/download https://repositorio.cuc.edu.co/bitstreams/9c896c17-7ab0-4ed9-9a1d-2739da5d73e9/download https://repositorio.cuc.edu.co/bitstreams/c59a94ac-6e2a-4cec-8a05-6e443dc30e74/download https://repositorio.cuc.edu.co/bitstreams/264e4918-cd78-42e2-bc8b-e42cfc01da38/download https://repositorio.cuc.edu.co/bitstreams/29c1c4fd-c835-434c-9a7b-6c3e08a17a18/download |
bitstream.checksum.fl_str_mv |
6cdcc305fbea217aec32b7d129ea3902 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 346b070fe8ba10ed3e5ed7352e19ee4a 701daf5a1a30ee8df2a8e19f3947009e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760804347772928 |
spelling |
Mendoza Palechor, Fabiode la Hoz Manotas, Alexis2019-09-04T22:44:23Z2019-09-04T22:44:23Z2019-082352-3409https://hdl.handle.net/11323/5236Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III. 77% of the data was generated synthetically using the Weka tool and the SMOTE filter, 23% of the data was collected directly from users through a web platform. This data can be used to generate intelligent computational tools to identify the obesity level of an individual and to build recommender systems that monitor obesity levels. For discussion and more information of the dataset creation, please refer to the full-length article “Obesity Level Estimation Software based on Decision Trees” (De-La-Hoz-Correa et al., 2019).Universidad de la CostaMendoza Palechor, Fabiode la Hoz Manotas, AlexisengData in Briefhttps://doi.org/10.1016/j.dib.2019.104344[1] M.V. Olmedo, La obesidad: un problema de salud pública. Revista de divulgaci o científica y tecnol ogica de la Universidad Veracruzana, 2011. Recuperado de: https://www.uv.mx/cienciahombre/revistae/vol24num3/articulos/obesidad/. [2] C. Davila-Payan, M. DeGuzman, K. Johnson, N. Serban, J. Swann, Estimating prevalence of overweight or obese children and adolescents in small geographic areas using publicly available data, Prev. Chronic Dis. 12 (2015). [3] S. Manna, A.M. Jewkes, Understanding early childhood obesity risks: an empirical study using fuzzy signatures, in: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, IEEE, 2014, July, pp. 1333e1339. [4] M.H.B.M. Adnan, W. Husain, A hybrid approach using Naïve Bayes and Genetic Algorithm for childhood obesity prediction, in: Computer & Information Science (ICCIS), 2012 International Conference on vol. 1, IEEE, 2012, June, pp. 281e285. [5] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs, Machine learning techniques for prediction of early childhood obesity, Appl. Clin. Inf. 6 (3) (2015) 506e520. [6] Eduardo De-La-Hoz-Correa, Fabio E. Mendoza-Palechor, Alexis De-La-Hoz-Manotas, Roberto C. Morales-Ortega, Beatriz Adriana S anchez Hern andez, Obesity level estimation software based on decision Trees, J. Comput. Sci. 15 (Issue 1) (2019) 67e77, https://doi.org/10.3844/jcssp.2019.67.77. [7] DO, NORMA Oficial Mexicana NOM-008-SSA3-2010, Para el tratamiento integral del sobrepeso y la obesidad, Diario Oficial,2010. [8] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321e357.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ObesityData miningWekaSMOTEDataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and MexicoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALDataset for estimation of obesity levels based.pdfDataset for estimation of obesity levels based.pdfapplication/pdf233382https://repositorio.cuc.edu.co/bitstreams/58734f48-4ee0-4a91-9aab-a0cc38743891/download6cdcc305fbea217aec32b7d129ea3902MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9c896c17-7ab0-4ed9-9a1d-2739da5d73e9/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c59a94ac-6e2a-4cec-8a05-6e443dc30e74/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDataset for estimation of obesity levels based.pdf.jpgDataset for estimation of obesity levels based.pdf.jpgimage/jpeg37443https://repositorio.cuc.edu.co/bitstreams/264e4918-cd78-42e2-bc8b-e42cfc01da38/download346b070fe8ba10ed3e5ed7352e19ee4aMD55THUMBNAILTEXTDataset for estimation of obesity levels based.pdf.txtDataset for estimation of obesity levels based.pdf.txttext/plain12246https://repositorio.cuc.edu.co/bitstreams/29c1c4fd-c835-434c-9a7b-6c3e08a17a18/download701daf5a1a30ee8df2a8e19f3947009eMD5611323/5236oai:repositorio.cuc.edu.co:11323/52362024-09-17 12:46:44.952http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |