Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico

This paper presents data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level...

Full description

Autores:
Mendoza Palechor, Fabio
de la Hoz Manotas, Alexis
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5236
Acceso en línea:
https://hdl.handle.net/11323/5236
https://repositorio.cuc.edu.co/
Palabra clave:
Obesity
Data mining
Weka
SMOTE
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_5e23715dba9a3356d9979f47e21c56f7
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5236
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
title Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
spellingShingle Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
Obesity
Data mining
Weka
SMOTE
title_short Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
title_full Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
title_fullStr Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
title_full_unstemmed Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
title_sort Dataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and Mexico
dc.creator.fl_str_mv Mendoza Palechor, Fabio
de la Hoz Manotas, Alexis
dc.contributor.author.spa.fl_str_mv Mendoza Palechor, Fabio
de la Hoz Manotas, Alexis
dc.subject.spa.fl_str_mv Obesity
Data mining
Weka
SMOTE
topic Obesity
Data mining
Weka
SMOTE
description This paper presents data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III. 77% of the data was generated synthetically using the Weka tool and the SMOTE filter, 23% of the data was collected directly from users through a web platform. This data can be used to generate intelligent computational tools to identify the obesity level of an individual and to build recommender systems that monitor obesity levels. For discussion and more information of the dataset creation, please refer to the full-length article “Obesity Level Estimation Software based on Decision Trees” (De-La-Hoz-Correa et al., 2019).
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-04T22:44:23Z
dc.date.available.none.fl_str_mv 2019-09-04T22:44:23Z
dc.date.issued.none.fl_str_mv 2019-08
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2352-3409
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5236
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2352-3409
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5236
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.1016/j.dib.2019.104344
dc.relation.references.spa.fl_str_mv [1] M.V. Olmedo, La obesidad: un problema de salud pública. Revista de divulgaci o científica y tecnol ogica de la Universidad Veracruzana, 2011. Recuperado de: https://www.uv.mx/cienciahombre/revistae/vol24num3/articulos/obesidad/. [2] C. Davila-Payan, M. DeGuzman, K. Johnson, N. Serban, J. Swann, Estimating prevalence of overweight or obese children and adolescents in small geographic areas using publicly available data, Prev. Chronic Dis. 12 (2015). [3] S. Manna, A.M. Jewkes, Understanding early childhood obesity risks: an empirical study using fuzzy signatures, in: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, IEEE, 2014, July, pp. 1333e1339. [4] M.H.B.M. Adnan, W. Husain, A hybrid approach using Naïve Bayes and Genetic Algorithm for childhood obesity prediction, in: Computer & Information Science (ICCIS), 2012 International Conference on vol. 1, IEEE, 2012, June, pp. 281e285. [5] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs, Machine learning techniques for prediction of early childhood obesity, Appl. Clin. Inf. 6 (3) (2015) 506e520. [6] Eduardo De-La-Hoz-Correa, Fabio E. Mendoza-Palechor, Alexis De-La-Hoz-Manotas, Roberto C. Morales-Ortega, Beatriz Adriana S anchez Hern andez, Obesity level estimation software based on decision Trees, J. Comput. Sci. 15 (Issue 1) (2019) 67e77, https://doi.org/10.3844/jcssp.2019.67.77. [7] DO, NORMA Oficial Mexicana NOM-008-SSA3-2010, Para el tratamiento integral del sobrepeso y la obesidad, Diario Oficial,2010. [8] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321e357.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Data in Brief
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/58734f48-4ee0-4a91-9aab-a0cc38743891/download
https://repositorio.cuc.edu.co/bitstreams/9c896c17-7ab0-4ed9-9a1d-2739da5d73e9/download
https://repositorio.cuc.edu.co/bitstreams/c59a94ac-6e2a-4cec-8a05-6e443dc30e74/download
https://repositorio.cuc.edu.co/bitstreams/264e4918-cd78-42e2-bc8b-e42cfc01da38/download
https://repositorio.cuc.edu.co/bitstreams/29c1c4fd-c835-434c-9a7b-6c3e08a17a18/download
bitstream.checksum.fl_str_mv 6cdcc305fbea217aec32b7d129ea3902
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
346b070fe8ba10ed3e5ed7352e19ee4a
701daf5a1a30ee8df2a8e19f3947009e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760804347772928
spelling Mendoza Palechor, Fabiode la Hoz Manotas, Alexis2019-09-04T22:44:23Z2019-09-04T22:44:23Z2019-082352-3409https://hdl.handle.net/11323/5236Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents data for the estimation of obesity levels in individuals from the countries of Mexico, Peru and Colombia, based on their eating habits and physical condition. The data contains 17 attributes and 2111 records, the records are labeled with the class variable NObesity (Obesity Level), that allows classification of the data using the values of Insufficient Weight, Normal Weight, Overweight Level I, Overweight Level II, Obesity Type I, Obesity Type II and Obesity Type III. 77% of the data was generated synthetically using the Weka tool and the SMOTE filter, 23% of the data was collected directly from users through a web platform. This data can be used to generate intelligent computational tools to identify the obesity level of an individual and to build recommender systems that monitor obesity levels. For discussion and more information of the dataset creation, please refer to the full-length article “Obesity Level Estimation Software based on Decision Trees” (De-La-Hoz-Correa et al., 2019).Universidad de la CostaMendoza Palechor, Fabiode la Hoz Manotas, AlexisengData in Briefhttps://doi.org/10.1016/j.dib.2019.104344[1] M.V. Olmedo, La obesidad: un problema de salud pública. Revista de divulgaci o científica y tecnol ogica de la Universidad Veracruzana, 2011. Recuperado de: https://www.uv.mx/cienciahombre/revistae/vol24num3/articulos/obesidad/. [2] C. Davila-Payan, M. DeGuzman, K. Johnson, N. Serban, J. Swann, Estimating prevalence of overweight or obese children and adolescents in small geographic areas using publicly available data, Prev. Chronic Dis. 12 (2015). [3] S. Manna, A.M. Jewkes, Understanding early childhood obesity risks: an empirical study using fuzzy signatures, in: Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, IEEE, 2014, July, pp. 1333e1339. [4] M.H.B.M. Adnan, W. Husain, A hybrid approach using Naïve Bayes and Genetic Algorithm for childhood obesity prediction, in: Computer & Information Science (ICCIS), 2012 International Conference on vol. 1, IEEE, 2012, June, pp. 281e285. [5] T.M. Dugan, S. Mukhopadhyay, A. Carroll, S. Downs, Machine learning techniques for prediction of early childhood obesity, Appl. Clin. Inf. 6 (3) (2015) 506e520. [6] Eduardo De-La-Hoz-Correa, Fabio E. Mendoza-Palechor, Alexis De-La-Hoz-Manotas, Roberto C. Morales-Ortega, Beatriz Adriana S anchez Hern andez, Obesity level estimation software based on decision Trees, J. Comput. Sci. 15 (Issue 1) (2019) 67e77, https://doi.org/10.3844/jcssp.2019.67.77. [7] DO, NORMA Oficial Mexicana NOM-008-SSA3-2010, Para el tratamiento integral del sobrepeso y la obesidad, Diario Oficial,2010. [8] N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res. 16 (2002) 321e357.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ObesityData miningWekaSMOTEDataset for estimation of obesity levels based on eating habits and physical condition in individuals from Colombia, Peru and MexicoArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALDataset for estimation of obesity levels based.pdfDataset for estimation of obesity levels based.pdfapplication/pdf233382https://repositorio.cuc.edu.co/bitstreams/58734f48-4ee0-4a91-9aab-a0cc38743891/download6cdcc305fbea217aec32b7d129ea3902MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9c896c17-7ab0-4ed9-9a1d-2739da5d73e9/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c59a94ac-6e2a-4cec-8a05-6e443dc30e74/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILDataset for estimation of obesity levels based.pdf.jpgDataset for estimation of obesity levels based.pdf.jpgimage/jpeg37443https://repositorio.cuc.edu.co/bitstreams/264e4918-cd78-42e2-bc8b-e42cfc01da38/download346b070fe8ba10ed3e5ed7352e19ee4aMD55THUMBNAILTEXTDataset for estimation of obesity levels based.pdf.txtDataset for estimation of obesity levels based.pdf.txttext/plain12246https://repositorio.cuc.edu.co/bitstreams/29c1c4fd-c835-434c-9a7b-6c3e08a17a18/download701daf5a1a30ee8df2a8e19f3947009eMD5611323/5236oai:repositorio.cuc.edu.co:11323/52362024-09-17 12:46:44.952http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=