Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach

A broad range of potential chemical compositions makes difficult design of novel bulk metallic glasses (BMGs) without performing expensive experimentations. To overcome this problem, it is very important to establish predictive models based on artificial intelligence. In this work, a machine learnin...

Full description

Autores:
Tzu-Chia, Chen
Rajiman, Rajiman
Elveny, Marischa
Grimaldo Guerrero, John William
Lawal, Adedoyin Isola
Acwin Dwijendra, Ngakan Ketut
aravindhan, surendar
Danshina, Svetlana
ZHU, Yu
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8642
Acceso en línea:
https://hdl.handle.net/11323/8642
https://doi.org/10.1007/s13369-021-05966-0
https://repositorio.cuc.edu.co/
Palabra clave:
Bulk metallic glass
Glass-forming ability
Machine learning
Materials design
Rights
embargoedAccess
License
CC0 1.0 Universal
id RCUC2_5d23c58d029e48452a005ae16ec1ec3d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8642
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
title Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
spellingShingle Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
Bulk metallic glass
Glass-forming ability
Machine learning
Materials design
title_short Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
title_full Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
title_fullStr Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
title_full_unstemmed Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
title_sort Engineering of novel fe-based bulk metallic glasses using a machine learning-based approach
dc.creator.fl_str_mv Tzu-Chia, Chen
Rajiman, Rajiman
Elveny, Marischa
Grimaldo Guerrero, John William
Lawal, Adedoyin Isola
Acwin Dwijendra, Ngakan Ketut
aravindhan, surendar
Danshina, Svetlana
ZHU, Yu
dc.contributor.author.spa.fl_str_mv Tzu-Chia, Chen
Rajiman, Rajiman
Elveny, Marischa
Grimaldo Guerrero, John William
Lawal, Adedoyin Isola
Acwin Dwijendra, Ngakan Ketut
aravindhan, surendar
Danshina, Svetlana
ZHU, Yu
dc.subject.spa.fl_str_mv Bulk metallic glass
Glass-forming ability
Machine learning
Materials design
topic Bulk metallic glass
Glass-forming ability
Machine learning
Materials design
description A broad range of potential chemical compositions makes difficult design of novel bulk metallic glasses (BMGs) without performing expensive experimentations. To overcome this problem, it is very important to establish predictive models based on artificial intelligence. In this work, a machine learning (ML) approach was proposed for predicting glass formation in numerous alloying compositions and designing novel glassy alloys. The results showed that our ML model accurately predicted the glass formation and critical thickness of MGs. As a case study, the ternary Fe–B–Co system was selected and effects of minor additions of Cr, Nb and Y with different atomic percentages were evaluated. It was found that the minor addition of Nb and Y leads to the significant improvement of glass-forming ability (GFA) in the Fe–B–Co system; however, a shift in the optimized alloying composition was occurred. The experimental results on selective alloying compositions also confirmed the capability of our ML model for designing novel Fe-based BMGs. © 2021, King Fahd University of Petroleum & Minerals.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-06T21:20:14Z
dc.date.available.none.fl_str_mv 2021-09-06T21:20:14Z
dc.date.issued.none.fl_str_mv 2021-07-07
dc.date.embargoEnd.none.fl_str_mv 2022-07-07
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2193567X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8642
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s13369-021-05966-0
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2193567X
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8642
https://doi.org/10.1007/s13369-021-05966-0
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Hu, F.; Yuan, C.; Luo, Q.; Yang, W.; Shen, B.: Effects of heavy rare-earth addition on glass-forming ability, thermal, magnetic, and mechanical properties of Fe-RE-B-Nb (RE = Dy, Ho, Er or Tm) bulk metallic glass. J. Non-cryst. Solids 525, 119681 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119681
Zheng, H.; Zhu, L.; Jiang, S.S.; Wang, Y.G.; Liu, S.N.; Lan, S.; Chen, F.G.: Role of Ni and Co in tailoring magnetic and mechanical properties of Fe84Si2B13P1 metallic glass. J. Alloys Compd. 816, 152549 (2020). https://doi.org/10.1016/j.jallcom.2019.152549
Chen, S.-Q.; Li, M.; Ma, X.-Y.; Zhou, M.-J.; Wang, D.; Yan, M.-Y.; Li, Z.; Yao, K.-F.: Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere 264, 128392 (2021). https://doi.org/10.1016/j.chemosphere.2020.128392
Chen, S.-Q.; Hui, K.-Z.; Dong, L.-Z.; Li, Z.; Zhang, Q.; Gu, L.; Zhao, W.; Lan, S.; Ke, Y.; Shao, Y.; Hahn, H.; Yao, K.-F.: Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Sci. China Mater. 63, 453–466 (2020). https://doi.org/10.1007/s40843-019-1205-5
Chen, H.; Dong, B.; Zhou, S.; Li, X.; Qin, J.: Structural, magnetic, and electronic properties of Fe82Si4B10P4 metallic glass. Sci. Rep. 8, 5680 (2018). https://doi.org/10.1038/s41598-018-23952-9
Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P.: Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog. Mater. Sci. 103, 235–318 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.003
Zhang, P.C.; Chang, J.; Wang, H.P.: Transition from crystal to metallic glass and micromechanical property change of Fe-B-Si alloy during rapid solidification. Metall. Mater. Trans. B 51, 327–337 (2020). https://doi.org/10.1007/s11663-019-01748-0
Li, H.X.; Li, C.Q.; Cao, D.; Yang, W.M.; Li, Q.; Lu, Z.P.: Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass. Scr. Mater. 135, 24–28 (2017). https://doi.org/10.1016/j.scriptamat.2017.03.018
Lesz, S.: Effect of cooling rates on the structure, density and micro-indentation behavior of the Fe, Co-based bulk metallic glass. Mater. Charact. 124, 97–106 (2017). https://doi.org/10.1016/j.matchar.2016.12.016
Liang, D.; Wei, X.; Chang, C.; Li, J.; Wang, X.; Shen, J.: Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass. J. Alloys Compd. 731, 1146–1150 (2018). https://doi.org/10.1016/j.jallcom.2017.10.104
Ouyang, D.; Xing, W.; Li, N.; Li, Y.; Liu, L.: Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting. Addit. Manuf. 23, 246–252 (2018). https://doi.org/10.1016/j.addma.2018.08.020
Liu, X.; Li, X.; He, Q.; Liang, D.; Zhou, Z.; Ma, J.; Yang, Y.; Shen, J.: Machine learning-based glass formation prediction in multicomponent alloys. Acta Mater. 201, 182–190 (2020). https://doi.org/10.1016/j.actamat.2020.09.081
Xiong, J.; Zhang, T.-Y.; Shi, S.-Q.: Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 9, 576–585 (2019). https://doi.org/10.1557/mrc.2019.44
Lu, X.; Deng, L.; Du, J.; Vienna, J.D.: Predicting boron coordination in multicomponent borate and borosilicate glasses using analytical models and machine learning. J. Non-cryst. Solids 553, 120490 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120490
Cai, A.; Xiong, X.; Liu, Y.; An, W.; Tan, J.; Luo, Y.: Artificial neural network modeling for undercooled liquid region of glass forming alloys. Comput. Mater. Sci. 48, 109–114 (2010). https://doi.org/10.1016/j.commatsci.2009.12.012
Tripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S.: Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput. Mater. Sci. 107, 79–87 (2015). https://doi.org/10.1016/j.commatsci.2015.05.010
Tripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S.: A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics 90, 9–15 (2017). https://doi.org/10.1016/j.intermet.2017.06.008
Alcobaça, E.; Mastelini, S.M.; Botari, T.; Pimentel, B.A.; Cassar, D.R.; de Carvalho, A.C.P.L.F.; Zanotto, E.D.: Explainable machine learning algorithms for predicting glass transition temperatures. Acta Mater. 188, 92–100 (2020). https://doi.org/10.1016/j.actamat.2020.01.047
Ward, L.; O’Keeffe, S.C.; Stevick, J.; Jelbert, G.R.; Aykol, M.; Wolverton, C.: A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159, 102–111 (2018). https://doi.org/10.1016/j.actamat.2018.08.002
Samavatian, M.; Gholamipour, R.; Samavatian, V.: Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput. Mater. Sci. 186, 110025 (2021). https://doi.org/10.1016/j.commatsci.2020.110025
Ren, F.; Ward, L.; Williams, T.; Laws, K.J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A.: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018). https://doi.org/10.1126/sciadv.aaq1566
Dasgupta, A.; Broderick, S.R.; Mack, C.; Kota, B.U.; Subramanian, R.; Setlur, S.; Govindaraju, V.; Rajan, K.: Probabilistic assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams. Sci. Rep. 9, 357 (2019). https://doi.org/10.1038/s41598-018-36224-3
Kawazoe, Y.; Yu, J.-Z.; Tsai, A.-P.; Masumoto, T.: Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, 1st edn. Springer-Verlag, Berlin, Heidelberg (1997)
Kawazoe, Y.; Yu, J.-Z.; Tsai, A.-P.; Masumoto, T.: Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, 1st edn. Springer-Verlag, Berlin, Heidelberg (1997)
Lu, Z.P.; Tan, H.; Li, Y.; Ng, S.C.: Correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses (2000)
Li, Y.: A relationship between glass-forming ability and reduced glass transition temperature near eutectic composition. Mater. Trans. 42, 556–561 (2001)
Xiong, J.; Shi, S.-Q.; Zhang, T.-Y.: A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 187, 108378 (2020). https://doi.org/10.1016/j.matdes.2019.108378
Samavatian, V.; Fotuhi-Firuzabad, M.; Samavatian, M.; Dehghanian, P.; Blaabjerg, F.: Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 10, 14821 (2020). https://doi.org/10.1038/s41598-020-71926-7
Joress, H.; DeCost, B.L.; Sarker, S.; Braun, T.M.; Jilani, S.; Smith, R.; Ward, L.; Laws, K.J.; Mehta, A.; Hattrick-Simpers, J.R.: A high-throughput structural and electrochemical study of metallic glass formation in Ni–Ti–Al. ACS Comb. Sci. 22, 330–338 (2020). https://doi.org/10.1021/acscombsci.9b00215
Śniadecki, Z.: Glass-forming ability of Fe-Ni alloys substituted by group V and VI transition metals (V, Nb, Cr, Mo) studied by thermodynamic modeling. Metall. Mater. Trans. A 51, 4777–4785 (2020). https://doi.org/10.1007/s11661-020-05897-9
Jiang, Q.; Chi, B.Q.; Li, J.C.: A valence electron concentration criterion for glass-formation ability of metallic liquids. Appl. Phys. Lett. 82, 2984–2986 (2003). https://doi.org/10.1063/1.1571984
Zhou, C.; Guo, C.; Li, C.; Du, Z.: Thermodynamic assessment of the phase equilibria and prediction of glass-forming ability of the Al–Cu–Zr system. J. Non-cryst. Solids 461, 47–60 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.09.031
Ganorkar, S.; Lee, Y.-H.; Lee, S.; Cho, Y.C.; Ishikawa, T.; Lee, G.W.: Unequal effect of thermodynamics and kinetics on glass forming ability of Cu–Zr alloys. AIP Adv. 10, 45114 (2020). https://doi.org/10.1063/5.0002784
Hu, Y.-C.; Tanaka, H.: Physical origin of glass formation from multicomponent systems. Sci. Adv. 6, eabd2928 (2020). https://doi.org/10.1126/sciadv.abd2928
Ojovan, M.I.: Glass formation. Encycl. Glas. Sci. Technol. Hist. Cult. (2021). https://doi.org/10.1002/9781118801017.ch3.1
Mukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.-K.: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689–3695 (2004). https://doi.org/10.1016/j.actamat.2004.04.023
Louzguine-Luzgin, D.V.; Inoue, A.: Bulk metallic glasses. Encycl. Glas. Sci. Technol. Hist. Cult. (2021). https://doi.org/10.1002/9781118801017.ch7.10
Fujita, T.; Konno, K.; Zhang, W.; Kumar, V.; Matsuura, M.; Inoue, A.; Sakurai, T.; Chen, M.W.: Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 75502 (2009). https://doi.org/10.1103/PhysRevLett.103.075502
Li, M.; Guan, H.; Yang, S.; Ma, X.; Li, Q.: Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallic glass with excellent mechanical properties. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140542
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Arabian Journal for Science and Engineering
dc.source.spa.fl_str_mv Arabian Journal for Science and Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/article/10.1007%2Fs13369-021-05966-0
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ab7e0c88-3760-455e-89fa-bc3d87d87645/download
https://repositorio.cuc.edu.co/bitstreams/5a892487-2675-4ece-ac14-fd16963725fe/download
https://repositorio.cuc.edu.co/bitstreams/7a5dbc35-d33f-4fdf-b664-107999ca0773/download
https://repositorio.cuc.edu.co/bitstreams/2cd80b63-6a7d-4086-9dda-a3bcad8cf2cc/download
https://repositorio.cuc.edu.co/bitstreams/96a5d2e5-5b34-45c2-a51b-85e0d31d7573/download
bitstream.checksum.fl_str_mv 1a1a2ea2067b0de35e57651b7bab6e59
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
b4ce5079d40f1053029619a24931da8a
0835ada5ac21acc6559349d46a6ed951
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166887181123584
spelling Tzu-Chia, ChenRajiman, RajimanElveny, MarischaGrimaldo Guerrero, John WilliamLawal, Adedoyin IsolaAcwin Dwijendra, Ngakan Ketutaravindhan, surendarDanshina, SvetlanaZHU, Yu2021-09-06T21:20:14Z2021-09-06T21:20:14Z2021-07-072022-07-072193567Xhttps://hdl.handle.net/11323/8642https://doi.org/10.1007/s13369-021-05966-0Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A broad range of potential chemical compositions makes difficult design of novel bulk metallic glasses (BMGs) without performing expensive experimentations. To overcome this problem, it is very important to establish predictive models based on artificial intelligence. In this work, a machine learning (ML) approach was proposed for predicting glass formation in numerous alloying compositions and designing novel glassy alloys. The results showed that our ML model accurately predicted the glass formation and critical thickness of MGs. As a case study, the ternary Fe–B–Co system was selected and effects of minor additions of Cr, Nb and Y with different atomic percentages were evaluated. It was found that the minor addition of Nb and Y leads to the significant improvement of glass-forming ability (GFA) in the Fe–B–Co system; however, a shift in the optimized alloying composition was occurred. The experimental results on selective alloying compositions also confirmed the capability of our ML model for designing novel Fe-based BMGs. © 2021, King Fahd University of Petroleum & Minerals.Tzu-Chia, ChenRajiman, RajimanElveny, Marischa-will be generated-orcid-0000-0003-2014-6173-600Grimaldo Guerrero, John William-will be generated-orcid-0000-0002-1632-5374-600Lawal, Adedoyin Isola-will be generated-orcid-0000-0001-8295-1560-600Acwin Dwijendra, Ngakan Ketutaravindhan, surendar-will be generated-orcid-0000-0002-2421-9192-600Danshina, Svetlana-will be generated-orcid-0000-0002-9467-078X-600ZHU, Yu-will be generated-orcid-0000-0003-2204-0946-600application/pdfspaArabian Journal for Science and EngineeringCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfArabian Journal for Science and Engineeringhttps://link.springer.com/article/10.1007%2Fs13369-021-05966-0Bulk metallic glassGlass-forming abilityMachine learningMaterials designEngineering of novel fe-based bulk metallic glasses using a machine learning-based approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionHu, F.; Yuan, C.; Luo, Q.; Yang, W.; Shen, B.: Effects of heavy rare-earth addition on glass-forming ability, thermal, magnetic, and mechanical properties of Fe-RE-B-Nb (RE = Dy, Ho, Er or Tm) bulk metallic glass. J. Non-cryst. Solids 525, 119681 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119681Zheng, H.; Zhu, L.; Jiang, S.S.; Wang, Y.G.; Liu, S.N.; Lan, S.; Chen, F.G.: Role of Ni and Co in tailoring magnetic and mechanical properties of Fe84Si2B13P1 metallic glass. J. Alloys Compd. 816, 152549 (2020). https://doi.org/10.1016/j.jallcom.2019.152549Chen, S.-Q.; Li, M.; Ma, X.-Y.; Zhou, M.-J.; Wang, D.; Yan, M.-Y.; Li, Z.; Yao, K.-F.: Influence of inorganic ions on degradation capability of Fe-based metallic glass towards dyeing wastewater remediation. Chemosphere 264, 128392 (2021). https://doi.org/10.1016/j.chemosphere.2020.128392Chen, S.-Q.; Hui, K.-Z.; Dong, L.-Z.; Li, Z.; Zhang, Q.; Gu, L.; Zhao, W.; Lan, S.; Ke, Y.; Shao, Y.; Hahn, H.; Yao, K.-F.: Excellent long-term reactivity of inhomogeneous nanoscale Fe-based metallic glass in wastewater purification. Sci. China Mater. 63, 453–466 (2020). https://doi.org/10.1007/s40843-019-1205-5Chen, H.; Dong, B.; Zhou, S.; Li, X.; Qin, J.: Structural, magnetic, and electronic properties of Fe82Si4B10P4 metallic glass. Sci. Rep. 8, 5680 (2018). https://doi.org/10.1038/s41598-018-23952-9Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P.: Fe-based bulk metallic glasses: glass formation, fabrication, properties and applications. Prog. Mater. Sci. 103, 235–318 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.003Zhang, P.C.; Chang, J.; Wang, H.P.: Transition from crystal to metallic glass and micromechanical property change of Fe-B-Si alloy during rapid solidification. Metall. Mater. Trans. B 51, 327–337 (2020). https://doi.org/10.1007/s11663-019-01748-0Li, H.X.; Li, C.Q.; Cao, D.; Yang, W.M.; Li, Q.; Lu, Z.P.: Influences of oxygen on plastic deformation of a Fe-based bulk metallic glass. Scr. Mater. 135, 24–28 (2017). https://doi.org/10.1016/j.scriptamat.2017.03.018Lesz, S.: Effect of cooling rates on the structure, density and micro-indentation behavior of the Fe, Co-based bulk metallic glass. Mater. Charact. 124, 97–106 (2017). https://doi.org/10.1016/j.matchar.2016.12.016Liang, D.; Wei, X.; Chang, C.; Li, J.; Wang, X.; Shen, J.: Effect of W addition on the glass forming ability and mechanical properties of Fe-based metallic glass. J. Alloys Compd. 731, 1146–1150 (2018). https://doi.org/10.1016/j.jallcom.2017.10.104Ouyang, D.; Xing, W.; Li, N.; Li, Y.; Liu, L.: Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting. Addit. Manuf. 23, 246–252 (2018). https://doi.org/10.1016/j.addma.2018.08.020Liu, X.; Li, X.; He, Q.; Liang, D.; Zhou, Z.; Ma, J.; Yang, Y.; Shen, J.: Machine learning-based glass formation prediction in multicomponent alloys. Acta Mater. 201, 182–190 (2020). https://doi.org/10.1016/j.actamat.2020.09.081Xiong, J.; Zhang, T.-Y.; Shi, S.-Q.: Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses. MRS Commun. 9, 576–585 (2019). https://doi.org/10.1557/mrc.2019.44Lu, X.; Deng, L.; Du, J.; Vienna, J.D.: Predicting boron coordination in multicomponent borate and borosilicate glasses using analytical models and machine learning. J. Non-cryst. Solids 553, 120490 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120490Cai, A.; Xiong, X.; Liu, Y.; An, W.; Tan, J.; Luo, Y.: Artificial neural network modeling for undercooled liquid region of glass forming alloys. Comput. Mater. Sci. 48, 109–114 (2010). https://doi.org/10.1016/j.commatsci.2009.12.012Tripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S.: Multivariate analysis and classification of bulk metallic glasses using principal component analysis. Comput. Mater. Sci. 107, 79–87 (2015). https://doi.org/10.1016/j.commatsci.2015.05.010Tripathi, M.K.; Chattopadhyay, P.P.; Ganguly, S.: A predictable glass forming ability expression by statistical learning and evolutionary intelligence. Intermetallics 90, 9–15 (2017). https://doi.org/10.1016/j.intermet.2017.06.008Alcobaça, E.; Mastelini, S.M.; Botari, T.; Pimentel, B.A.; Cassar, D.R.; de Carvalho, A.C.P.L.F.; Zanotto, E.D.: Explainable machine learning algorithms for predicting glass transition temperatures. Acta Mater. 188, 92–100 (2020). https://doi.org/10.1016/j.actamat.2020.01.047Ward, L.; O’Keeffe, S.C.; Stevick, J.; Jelbert, G.R.; Aykol, M.; Wolverton, C.: A machine learning approach for engineering bulk metallic glass alloys. Acta Mater. 159, 102–111 (2018). https://doi.org/10.1016/j.actamat.2018.08.002Samavatian, M.; Gholamipour, R.; Samavatian, V.: Discovery of novel quaternary bulk metallic glasses using a developed correlation-based neural network approach. Comput. Mater. Sci. 186, 110025 (2021). https://doi.org/10.1016/j.commatsci.2020.110025Ren, F.; Ward, L.; Williams, T.; Laws, K.J.; Wolverton, C.; Hattrick-Simpers, J.; Mehta, A.: Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018). https://doi.org/10.1126/sciadv.aaq1566Dasgupta, A.; Broderick, S.R.; Mack, C.; Kota, B.U.; Subramanian, R.; Setlur, S.; Govindaraju, V.; Rajan, K.: Probabilistic assessment of glass forming ability rules for metallic glasses aided by automated analysis of phase diagrams. Sci. Rep. 9, 357 (2019). https://doi.org/10.1038/s41598-018-36224-3Kawazoe, Y.; Yu, J.-Z.; Tsai, A.-P.; Masumoto, T.: Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, 1st edn. Springer-Verlag, Berlin, Heidelberg (1997)Kawazoe, Y.; Yu, J.-Z.; Tsai, A.-P.; Masumoto, T.: Nonequilibrium Phase Diagrams of Ternary Amorphous Alloys, 1st edn. Springer-Verlag, Berlin, Heidelberg (1997)Lu, Z.P.; Tan, H.; Li, Y.; Ng, S.C.: Correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses (2000)Li, Y.: A relationship between glass-forming ability and reduced glass transition temperature near eutectic composition. Mater. Trans. 42, 556–561 (2001)Xiong, J.; Shi, S.-Q.; Zhang, T.-Y.: A machine-learning approach to predicting and understanding the properties of amorphous metallic alloys. Mater. Des. 187, 108378 (2020). https://doi.org/10.1016/j.matdes.2019.108378Samavatian, V.; Fotuhi-Firuzabad, M.; Samavatian, M.; Dehghanian, P.; Blaabjerg, F.: Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 10, 14821 (2020). https://doi.org/10.1038/s41598-020-71926-7Joress, H.; DeCost, B.L.; Sarker, S.; Braun, T.M.; Jilani, S.; Smith, R.; Ward, L.; Laws, K.J.; Mehta, A.; Hattrick-Simpers, J.R.: A high-throughput structural and electrochemical study of metallic glass formation in Ni–Ti–Al. ACS Comb. Sci. 22, 330–338 (2020). https://doi.org/10.1021/acscombsci.9b00215Śniadecki, Z.: Glass-forming ability of Fe-Ni alloys substituted by group V and VI transition metals (V, Nb, Cr, Mo) studied by thermodynamic modeling. Metall. Mater. Trans. A 51, 4777–4785 (2020). https://doi.org/10.1007/s11661-020-05897-9Jiang, Q.; Chi, B.Q.; Li, J.C.: A valence electron concentration criterion for glass-formation ability of metallic liquids. Appl. Phys. Lett. 82, 2984–2986 (2003). https://doi.org/10.1063/1.1571984Zhou, C.; Guo, C.; Li, C.; Du, Z.: Thermodynamic assessment of the phase equilibria and prediction of glass-forming ability of the Al–Cu–Zr system. J. Non-cryst. Solids 461, 47–60 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.09.031Ganorkar, S.; Lee, Y.-H.; Lee, S.; Cho, Y.C.; Ishikawa, T.; Lee, G.W.: Unequal effect of thermodynamics and kinetics on glass forming ability of Cu–Zr alloys. AIP Adv. 10, 45114 (2020). https://doi.org/10.1063/5.0002784Hu, Y.-C.; Tanaka, H.: Physical origin of glass formation from multicomponent systems. Sci. Adv. 6, eabd2928 (2020). https://doi.org/10.1126/sciadv.abd2928Ojovan, M.I.: Glass formation. Encycl. Glas. Sci. Technol. Hist. Cult. (2021). https://doi.org/10.1002/9781118801017.ch3.1Mukherjee, S.; Schroers, J.; Zhou, Z.; Johnson, W.L.; Rhim, W.-K.: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689–3695 (2004). https://doi.org/10.1016/j.actamat.2004.04.023Louzguine-Luzgin, D.V.; Inoue, A.: Bulk metallic glasses. Encycl. Glas. Sci. Technol. Hist. Cult. (2021). https://doi.org/10.1002/9781118801017.ch7.10Fujita, T.; Konno, K.; Zhang, W.; Kumar, V.; Matsuura, M.; Inoue, A.; Sakurai, T.; Chen, M.W.: Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys. Rev. Lett. 103, 75502 (2009). https://doi.org/10.1103/PhysRevLett.103.075502Li, M.; Guan, H.; Yang, S.; Ma, X.; Li, Q.: Minor Cr alloyed Fe–Co–Ni–P–B high entropy bulk metallic glass with excellent mechanical properties. Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2020.140542PublicationORIGINALENGINEERING OF NOVEL FE-BASED BULK METALLIC GLASSES USING A MACHINE LEARNING-BASED APPROACH.pdfENGINEERING OF NOVEL FE-BASED BULK METALLIC GLASSES USING A MACHINE LEARNING-BASED APPROACH.pdfapplication/pdf51602https://repositorio.cuc.edu.co/bitstreams/ab7e0c88-3760-455e-89fa-bc3d87d87645/download1a1a2ea2067b0de35e57651b7bab6e59MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/5a892487-2675-4ece-ac14-fd16963725fe/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7a5dbc35-d33f-4fdf-b664-107999ca0773/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILENGINEERING OF NOVEL FE-BASED BULK METALLIC GLASSES USING A MACHINE LEARNING-BASED APPROACH.pdf.jpgENGINEERING OF NOVEL FE-BASED BULK METALLIC GLASSES USING A MACHINE LEARNING-BASED APPROACH.pdf.jpgimage/jpeg52043https://repositorio.cuc.edu.co/bitstreams/2cd80b63-6a7d-4086-9dda-a3bcad8cf2cc/downloadb4ce5079d40f1053029619a24931da8aMD54TEXTENGINEERING OF NOVEL FE-BASED BULK METALLIC GLASSES USING A MACHINE LEARNING-BASED APPROACH.pdf.txtENGINEERING OF NOVEL FE-BASED BULK METALLIC GLASSES USING A MACHINE LEARNING-BASED APPROACH.pdf.txttext/plain1461https://repositorio.cuc.edu.co/bitstreams/96a5d2e5-5b34-45c2-a51b-85e0d31d7573/download0835ada5ac21acc6559349d46a6ed951MD5511323/8642oai:repositorio.cuc.edu.co:11323/86422024-09-17 14:22:17.733http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==