Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan
In Pakistan, the assessment of road safety measures within road safety management systems is commonly seen as the most deficient part. Accident prediction models are essential for road authorities, road designers, and road safety specialists. These models facilitate the examination of safety concern...
- Autores:
-
Naz, Sumera
Shafiq, Aqsa
Aziz Butt, Shariq
Mazhar, Shahzra
Diaz Martínez, Jorge
De-La-Hoz-Franco, Emiro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13087
- Acceso en línea:
- https://hdl.handle.net/11323/13087
https://repositorio.cuc.edu.co/
- Palabra clave:
- 2-Tuple linguistic q-rung orthopair fuzzy set
Weighted power average operator
IDOCRIW
QUALIFLEX
Accident prediction models in road safety management
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_5bebd4a166cb7d88109411122654b062 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13087 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
title |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
spellingShingle |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan 2-Tuple linguistic q-rung orthopair fuzzy set Weighted power average operator IDOCRIW QUALIFLEX Accident prediction models in road safety management |
title_short |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
title_full |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
title_fullStr |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
title_full_unstemmed |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
title_sort |
Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in Pakistan |
dc.creator.fl_str_mv |
Naz, Sumera Shafiq, Aqsa Aziz Butt, Shariq Mazhar, Shahzra Diaz Martínez, Jorge De-La-Hoz-Franco, Emiro |
dc.contributor.author.none.fl_str_mv |
Naz, Sumera Shafiq, Aqsa Aziz Butt, Shariq Mazhar, Shahzra Diaz Martínez, Jorge De-La-Hoz-Franco, Emiro |
dc.subject.proposal.eng.fl_str_mv |
2-Tuple linguistic q-rung orthopair fuzzy set Weighted power average operator IDOCRIW QUALIFLEX Accident prediction models in road safety management |
topic |
2-Tuple linguistic q-rung orthopair fuzzy set Weighted power average operator IDOCRIW QUALIFLEX Accident prediction models in road safety management |
description |
In Pakistan, the assessment of road safety measures within road safety management systems is commonly seen as the most deficient part. Accident prediction models are essential for road authorities, road designers, and road safety specialists. These models facilitate the examination of safety concerns, the identification of safety improvements, and the projection of the potential impact of these modifications in terms of collision reduction. In the context described above, the goal of this paper is to utilize the 2-tuple linguistic q-rung orthopair fuzzy set (2TLq-ROFS), a new and useful decision tool with a strong ability to address uncertain or imprecise information in practical decision-making processes. In addition, for dealing with the multi-attribute group decision-making problems in road safety management, this paper proposes a new 2TLq-ROF integrated determination of objective criteria weights (IDOCRIW)-the qualitative flexible multiple criteria (QUALIFLEX) decision analysis method with a weighted power average (WPA) operator based on the 2TLq-ROF numbers. The IDOCRIW method is used to calculate the weight of attributes and the QUALIFLEX method is used to rank the options. To show the viability and superiority of the proposed approach, we also perform a case study on the evaluation of accident prediction models in road safety management. Finally, the results of the experiments and comparisons with existing methods are used to explain the benefits and superiority of the suggested approach. The findings of this study show that the proposed approach is more practical and compatible with other existing approaches. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-06-27T12:37:32Z |
dc.date.available.none.fl_str_mv |
2024-06-27T12:37:32Z |
dc.date.issued.none.fl_str_mv |
2024-03-30 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Sumera Naz, Aqsa Shafiq, Shariq Aziz Butt, Shahzra Mazhar, Diaz Jorge Martinez, Emiro De la Hoz Franco, Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: An application of accident prediction models in Pakistan, Heliyon, Volume 10, Issue 6, 2024, e27669, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e27669 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13087 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.heliyon.2024.e27669 |
dc.identifier.eissn.spa.fl_str_mv |
2405-8440 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Sumera Naz, Aqsa Shafiq, Shariq Aziz Butt, Shahzra Mazhar, Diaz Jorge Martinez, Emiro De la Hoz Franco, Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: An application of accident prediction models in Pakistan, Heliyon, Volume 10, Issue 6, 2024, e27669, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e27669 10.1016/j.heliyon.2024.e27669 2405-8440 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13087 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Heliyon |
dc.relation.references.spa.fl_str_mv |
[1] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B.B. Gupta, T. Daim, Evaluation of metaverse traffic safety implementations using fuzzy Einstein based logarithmic methodology of additive weights and TOPSIS method, Technol. Forecast. Soc. Change 194 (2023) 122–681. [2] I. Benallou, A. Azmani, M. Azmani, Evaluation of the accidents risk caused by truck drivers using a fuzzy Bayesian approach, Int. J. Adv. Comput. Sci. Appl. 14 (6) (2023), https://doi.org/10.14569/IJACSA.2023.0140620. [3] L. Xie, J. Zhang, R. Cheng, Comprehensive evaluation of freeway driving risks based on fuzzy logic, Sustainability 15 (1) (2023) 8–10. [4] M. Gaber, A. Diab, A. Othman, A.M. Wahaballa, Analysis and modeling of rural roads traffic safety data, Sohag Eng. J. 3 (1) (2023) 57–67. [5] M.M. Garnaik, J.P. Giri, A. Panda, Impact of highway design on traffic safety: how geometric elements affect accident risk, Ecocycles 9 (1) (2023) 83–92. [6] A. Mohammadi, B. Kiani, H. Mahmoudzadeh, R. Bergquist, Pedestrian road traffic accidents in metropolitan areas: GIS-based prediction modelling of cases in Mashhad, Iran, Sustainability 15 (13) (2023) 10576. [7] S. Jafarzadeh Ghoushchi, S. Shaffiee Haghshenas, A. Memarpour Ghiaci, G. Guido, A. Vitale, Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment, Neural Comput. Appl. 35 (6) (2023) 4549–4567. [8] G. Gecchele, R. Ceccato, R. Rossi, M. Gastaldi, A flexible approach to select road traffic counting locations: system design and application of a fuzzy Delphi analytic hierarchy process, Transp. Eng. 12 (2023) 100–167. [9] S.H. Ahammad, M. Sukesh, M. Narender, S.A. Ettyem, K. Al-Majdi, K. Saikumar, A novel approach to avoid road traffic accidents and develop safety rules for traffic using crash prediction model technique, in: Micro-Electronics and Telecommunication Engineering: Proceedings of 6th ICMET, Springer Nature Singapore, Singapore, 2023, pp. 367–377. [10] Ž. Stevic, M. Subotic, I. Tanackov, S. Sremac, B. Ristic, S. Simic, Evaluation of two-lane road sections in terms of traffic risk using an integrated MCDM model, Transport 37 (5) (2022) 318–329. [11] O. Koçar, E. Dizdar, A risk assessment model for traffic crashes problem using fuzzy logic: a case study of Zonguldak, Turkey, Transp. Lett. 14 (5) (2022) 492–502. [12] J. Mitrovic Simic, Ž. Stevic, E.K. Zavadskas, V. Bogdanovic, M. Subotic, A. Mardani, A novel CRITIC-fuzzy FUCOM-DEA-fuzzy MARCOS model for safety evaluation of road sections based on geometric parameters of road, Symmetry 12 (12) (2020) 2006. [13] A. Zaranezhad, H.A. Mahabadi, M.R. Dehghani, Development of prediction models for repair and maintenance-related accidents at oil refineries using artificial neural network, fuzzy system, genetic algorithm, and ant colony optimization algorithm, Process Saf. Environ. Prot. 131 (2019) 331–348. [14] A. Al-Omari, N. Shatnawi, T. Khedaywi, T. Miqdady, Prediction of traffic accidents hot spots using fuzzy logic and GIS, Appl. Geomat. 12 (2020) 149–161. [15] M. Cubranic-Dobrodolac, L. Švadlenka, S. Cicevic, A. Trifunovic, M. Dobrodolac, Using the interval type-2 fuzzy inference systems to compare the impact of speed and space perception on the occurrence of road traffic accidents, Mathematics 8 (9) (2020) 15–48. [16] S.A. Butt, A. Khalid, A. Ali, A software development for medical with a multiple decision taking functionalities, Adv. Eng. Softw. 174 (2022) 103–294. [17] S.A. Butt, M.W. Anjum, S.A. Hassan, A. Garai, E.M. Onyema, Smart health application for remote tracking of ambulatory patients, in: Smart Healthcare System Design: Security and Privacy Aspects, 2022, pp. 33–55. [18] S.A. Butt, T. Jamal, M.A. Azad, A. Ali, N.S. Safa, A multivariant secure framework for smart mobile health application, Trans. Emerg. Telecommun. Technol. 33 (8) (2022) e3684. [19] S. Gochhait, S.A. Butt, E. De-La-Hoz-Franco, Q. Shaheen, D.M.J. Luis, G. Piñeres-Espitia, D. Mercado-Polo, A machine learning solution for bed occupancy issue for smart healthcare sector, Autom. Control Comput. Sci. 55 (2021) 546–556. [20] S. Naz, M.M. Hassan, A. Fatima, D.J. Martinez, E.O. Mendoza, S.A. Butt, A decision-making mechanism for multi-attribute group decision-making using 2-tuple linguistic ����������������������������������������������������� -spherical fuzzy maximizing deviation method, Granul. Comput. 1 (29) (2023), https://doi.org/10.1007/s41066-023-00388-9. [21] S. Naz, A. Shafiq, S.A. Butt, R. Ijaz, A new approach to sentiment analysis algorithms: extended SWARA-MABAC method with 2-tuple linguistic ����������������������������������������������������-rung orthopair fuzzy information, Eng. Appl. Artif. Intell. 126 (2023) 106–943. [22] S. Naz, S.S. Fatima, S.A. Butt, N. Tabassum, A MAGDM model based on 2-tuple linguistic variables and power Hamacher aggregation operators for optimal selection of digital marketing strategies, Granul. Comput. 8 (6) (2023) 1955–1990. [23] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338–353. [24] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1) (1986) 87–96. [25] R.R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst. 22 (4) (2013) 958–965. [26] R.R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst. 25 (5) (2016) 1222–1230. [27] R. Krishankumar, A.R. Mishra, P. Rani, F. Ecer, K.S. Ravichandran, Assessment of zero-carbon measures for sustainable transportation in smart cities: a CRITICMARCOS framework based on ����������������������������������������������-rung fuzzy preferences, IEEE Int. Things J. (2023), https://doi.org/10.1109/JIOT.2023.3293513. [28] F. Ecer, I.Y. Ögel, R. Krishankumar, E.B. Tirkolaee, The ���������������������������������������������-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era, Artif. Intell. Rev. 56 (2023) 13373–13406. [29] R. Krishankumar, F. Ecer, A.R. Mishra, K.S. Ravichandran, A.H. Gandomi, S. Kar, A SWOT-based framework for personalized ranking of IoT service providers with generalized fuzzy data for sustainable transport in urban regions, IEEE Trans. Eng. Manag. (2022), https://doi.org/10.1109/TEM.2022.3204695. [30] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B.B. Gupta, Personal mobility in metaverse with autonomous vehicles using �������������������������������������������-rung orthopair fuzzy sets based OPA-RAFSI model, IEEE Trans. Intell. Transp. Syst. (2022) 1–10, https://doi.org/10.1109/TITS.2022.3186294. [31] Y. Demir Uslu, H. Dinçer, S. Yüksel, E. Gedikli, E. Yilmaz, An integrated decision-making approach based on ������������������������������������������-rung orthopair fuzzy sets in service industry, Int. J. Comput. Intell. Syst. 15 (1) (2022) 1–11. [32] M. Deveci, D. Pamucar, U. Cali, E. Kantar, K. Kölle, J.O. Tande, Hybrid �����������������������������������������-rung orthopair fuzzy sets based CoCoSo model for floating offshore wind farm site selection in Norway, CSEE J. Power Energy Syst. 8 (5) (2022) 1261–1280. [33] A. Fetanat, M. Tayebi, Industrial filtration technologies selection for contamination control in natural gas processing plants: a sustainability and maintainabilitybased decision support system under ����������������������������������������-rung orthopair fuzzy set, Process Saf. Environ. Prot. 170 (2023) 310–327. [34] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst. 8 (6) (2000) 746–752. [35] M. Yazdi, 2-Tuple fuzzy-based linguistic term set approach to analyse the system safety and seliability, in: Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis, Springer, Cham, 2022, pp. 5–12. [36] Y. Yu, S. Wu, J. Yu, H. Chen, Q. Zeng, Y. Xu, H. Ding, An integrated MCDM framework based on interval 2-tuple linguistic: a case of offshore wind farm site selection in China, Process Saf. Environ. Prot. 164 (2022) 613–628. [37] S. Naz, M. Akram, M.M.A. Al-Shamiri, M.R. Saeed, Evaluation of network security service provider using 2-tuple linguistic complex ������������������������������������-rung orthopair fuzzy COPRAS method, Complexity (2022), https://doi.org/10.1155/2022/4523287. [38] P. Liu, P. Wang, Some �����������������������������������-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst. 33 (2) (2018) 259–280. [39] R.R. Yager, The power average operator, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 31 (6) (2001) 724–731. [40] Z. Xu, R.R. Yager, Power-geometric operators and their use in group decision making, IEEE Trans. Fuzzy Syst. 18 (1) (2009) 94–105. [41] Z. Xu, Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators, Knowl.-Based Syst. 24 (6) (2011) 749–760. [42] S.P. Wan, J.Y. Dong, Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making, Appl. Soft Comput. 29 (2015) 153–168. [43] P. Liu, Y. Wang, Multiple attribute group decision making methods based on intuitionistic linguistic power generalized aggregation operators, Appl. Soft Comput. 17 (2014) 90–104. [44] Z. Zhang, Generalized Atanassov’s intuitionistic fuzzy power geometric operators and their application to multiple attribute group decision making, Inf. Fusion 14 (4) (2013) 460–486. [45] E.K. Zavadskas, V. Podvezko, Integrated determination of objective criteria weights in MCDM, Int. J. Inf. Technol. Decis. Mak. 15 (2) (2016) 267–283. [46] Y. Luo, X. Zhang, Y. Qin, Z. Yang, Y. Liang, Tourism attraction selection with sentiment analysis of online reviews based on probabilistic linguistic term sets and the IDOCRIW-COCOSO model, Int. J. Fuzzy Syst. 23 (1) (2021) 295–308. [47] M. Eghbali-Zarch, R. Tavakkoli-Moghaddam, K. Dehghan-Sanej, A. Kaboli, Prioritizing the effective strategies for construction and demolition waste management using fuzzy IDOCRIW and WASPAS methods, Eng. Constr. Archit. Manag. 29 (3) (2021) 1109–1138. [48] M.A. Alao, O.M. Popoola, T.R. Ayodele, Selection of waste-to-energy technology for distributed generation using IDOCRIW-weighted TOPSIS method: a case study of the city of Johannesburg, South Africa, Renew. Energy 178 (2021) 162–183. [49] J.H. Paelinck, Qualitative multiple criteria analysis, environmental protection and multiregional development, Pap. Reg. Sci. Assoc. 36 (1) (1976) 59–74. [50] B. Wan, X. Zhang, M. Xiong, Z. Wang, Interval-valued �����������������������-rung orthopair fuzzy QUALIFLEX decision analysis method with Dombi operators, Discrete Dyn. Nat. Soc. (2022), https://doi.org/10.1155/2022/4898098. [51] P. Liu, Q. Pan, H. Xu, B. Zhu, An extended QUALIFLEX method with comprehensive weight for green supplier selection in normal ����������������������-rung orthopair fuzzy environment, Int. J. Fuzzy Syst. 24 (5) (2022) 2174–2202. [52] R. Sahin, Neutrosophic QUALIFLEX based on neutrosophic hesitancy index for selecting a potential antivirus mask supplier over COVID-19 pandemic, Soft Comput. 26 (19) (2022) 10019–10033. [53] T. He, G. Wei, J. Wu, C. Wei, QUALIFLEX method for evaluating human factors in construction project management with Pythagorean 2-tuple linguistic information, J. Intell. Fuzzy Syst. 40 (3) (2021) 4039–4050. [54] T.Y. Chen, Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis, Inf. Sci. 261 (2014) 149–169. [55] C.T. Chen, W.S. Tai, Measuring the intellectual capital performance based on 2-tuple fuzzy linguistic information, in: The 10th Annual Meeting of APDSI, Asia Pacific Region of Decision Sciences Institute, vol. 20, 2005. [56] S. Naz, M. Akram, A. Sattar, M.M.A. Al-Shamiri, 2-Tuple linguistic �����������������-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection, AIMS Math. 7 (9) (2022) 17529–17569. [57] T. Ali, Y.R. Chiu, K. Aghaloo, A.J. Nahian, H. Ma, Prioritizing the existing power generation technologies in Bangladesh’s clean energy scheme using a hybrid multi-criteria decision making model, J. Clean. Prod. 267 (2020) 121–901. [58] P. Cheng, B. Zhou, Z. Chen, J. Tan, The TOPSIS method for decision making with 2-tuple linguistic intuitionistic fuzzy sets, in: 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2017, pp. 1603–1607. [59] D. Liu, Y. Liu, L. Wang, The reference ideal TOPSIS method for linguistic ��������������-rung orthopair fuzzy decision making based on linguistic scale function, J. Intell. Fuzzy Syst. 39 (3) (2020) 4111–4131. [60] S. Naz, M. Akram, M.M. ul Hassan, A. Fatima, A hybrid DEMATEL-TOPSIS approach using 2-tuple linguistic �������������-rung orthopair fuzzy information and its application in renewable energy resource selection, Int. J. Inf. Technol. Decis. Mak. 1 (44) (2023), https://doi.org/10.1142/S0219622023500323. [61] S. Naz, M. Akram, I. Naseer, A. Borumand Saeid, A. Fatima, 2-Tuple linguistic ������������-rung orthopair fuzzy power MSM approach for choosing sustainable waste disposal technology, Sci. Iran. (2023), https://doi.org/10.24200/SCI.2023.60804.7006. [62] Y. Zhang, H. Gao, G. Wei, Y. Guo, MABAC method based on cumulative prospect theory for multiple attribute group decision making with 2-tuple linguistic Pythagorean fuzzy information, ResearchSquare (preprint), https://doi.org/10.21203/rs.3.rs-647901/v1, 2022. [63] M. Akram, Z. Niaz, F. Feng, Extended CODAS method for multi-attribute group decision-making based on 2-tuple linguistic Fermatean fuzzy Hamacher aggregation operators, Granul. Comput. 8 (3) (2023) 441–466. [64] T. He, S. Zhang, G. Wei, R. Wang, J. Wu, C. Wei, CODAS method for 2-tuple linguistic Pythagorean fuzzy multiple attribute group decision making and its application to financial management performance assessment, Technol. Econ. Dev. Econ. 26 (4) (2020) 920–932. [65] M. Akram, U. Ali, G. Santos-García, Z. Niaz, 2-Tuple linguistic Fermatean fuzzy MAGDM based on the WASPAS method for selection of solid waste disposal location, Math. Biosci. Eng. 20 (2) (2023) 3811–3837. [66] Y. Zhang, Q. Cai, G. Wei, H. Wang, C. Wei, A modified EDAS method based on cumulative prospect theory for MAGDM with 2-tuple linguistic Pythagorean fuzzy information, Int. J. Fuzzy Syst. 1 (14) (2023), https://doi.org/10.1007/s40815-022-01453-2. [67] M. Akram, N. Ramzan, A. Luqman, G. Santos-García, An integrated MULTIMOORA method with 2-tuple linguistic Fermatean fuzzy sets: urban quality of life selection application, AIMS Math. 8 (2) (2022) 2798–2828. [68] M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, Granul. Comput. 8 (2) (2023) 311–332. [69] M. Deveci, I. Gokasar, D. Pamucar, D.M. Coffman, E. Papadonikolaki, Safe E-scooter operation alternative prioritization using a ����-rung orthopair fuzzy Einstein based WASPAS approach, J. Clean. Prod. 347 (2022) 131–239. [70] J. Yang, Measuring road safety advance by IW-EDAS-KNN: a case study for OAS countries, in: Highlights in Science, Engineering and Technology, vol. 27, 2022, pp. 743–755. [71] D. Pamucar, Ö.F. Görçün, H. Küçükönder, Evaluation of the route selection in international freight transportation by using the CODAS technique based on interval-valued Atanassov intuitionistic sets, Soft Comput. 27 (5) (2023) 2325–2345. [72] Y. Li, S. Guan, X. Yin, X. Wang, J. Liu, I.N. Wong, F. Chen, Measurement of road safety situation by CRITIC-TODIM-NMF: a lesson system of legislation and regulation for the United States, Measurement 220 (2023) 113–333. |
dc.relation.citationendpage.spa.fl_str_mv |
27 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
6 |
dc.relation.citationvolume.spa.fl_str_mv |
10 |
dc.rights.eng.fl_str_mv |
© 2024 The Authors. Published by Elsevier Ltd. |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2024 The Authors. Published by Elsevier Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
27 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Pakistan |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.spa.fl_str_mv |
Netherlands |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2405844024037009?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b080e7b1-5989-4ffb-987d-6ec0689b6bd5/download https://repositorio.cuc.edu.co/bitstreams/ca8bf3cc-268b-43f7-928b-adf4e8f2f968/download https://repositorio.cuc.edu.co/bitstreams/e36f8360-c341-4193-8586-aee4829f1ed8/download https://repositorio.cuc.edu.co/bitstreams/c44227d6-1d21-404e-a1d2-2da0a9ca167d/download |
bitstream.checksum.fl_str_mv |
d70a6fc885913b9b84954cf5d94d06ff 2f9959eaf5b71fae44bbf9ec84150c7a dba6c6771213292d3fd531f397423568 5133154bbf2a3d5f092dbb1bf60bf238 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166906767474688 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2024 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Naz, SumeraShafiq, AqsaAziz Butt, ShariqMazhar, ShahzraDiaz Martínez, JorgeDe-La-Hoz-Franco, Emiro2024-06-27T12:37:32Z2024-06-27T12:37:32Z2024-03-30Sumera Naz, Aqsa Shafiq, Shariq Aziz Butt, Shahzra Mazhar, Diaz Jorge Martinez, Emiro De la Hoz Franco, Decision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: An application of accident prediction models in Pakistan, Heliyon, Volume 10, Issue 6, 2024, e27669, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e27669https://hdl.handle.net/11323/1308710.1016/j.heliyon.2024.e276692405-8440Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In Pakistan, the assessment of road safety measures within road safety management systems is commonly seen as the most deficient part. Accident prediction models are essential for road authorities, road designers, and road safety specialists. These models facilitate the examination of safety concerns, the identification of safety improvements, and the projection of the potential impact of these modifications in terms of collision reduction. In the context described above, the goal of this paper is to utilize the 2-tuple linguistic q-rung orthopair fuzzy set (2TLq-ROFS), a new and useful decision tool with a strong ability to address uncertain or imprecise information in practical decision-making processes. In addition, for dealing with the multi-attribute group decision-making problems in road safety management, this paper proposes a new 2TLq-ROF integrated determination of objective criteria weights (IDOCRIW)-the qualitative flexible multiple criteria (QUALIFLEX) decision analysis method with a weighted power average (WPA) operator based on the 2TLq-ROF numbers. The IDOCRIW method is used to calculate the weight of attributes and the QUALIFLEX method is used to rank the options. To show the viability and superiority of the proposed approach, we also perform a case study on the evaluation of accident prediction models in road safety management. Finally, the results of the experiments and comparisons with existing methods are used to explain the benefits and superiority of the suggested approach. The findings of this study show that the proposed approach is more practical and compatible with other existing approaches.27 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S2405844024037009?via%3DihubDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment: an application of accident prediction models in PakistanArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PakistanHeliyon[1] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B.B. Gupta, T. Daim, Evaluation of metaverse traffic safety implementations using fuzzy Einstein based logarithmic methodology of additive weights and TOPSIS method, Technol. Forecast. Soc. Change 194 (2023) 122–681.[2] I. Benallou, A. Azmani, M. Azmani, Evaluation of the accidents risk caused by truck drivers using a fuzzy Bayesian approach, Int. J. Adv. Comput. Sci. Appl. 14 (6) (2023), https://doi.org/10.14569/IJACSA.2023.0140620.[3] L. Xie, J. Zhang, R. Cheng, Comprehensive evaluation of freeway driving risks based on fuzzy logic, Sustainability 15 (1) (2023) 8–10.[4] M. Gaber, A. Diab, A. Othman, A.M. Wahaballa, Analysis and modeling of rural roads traffic safety data, Sohag Eng. J. 3 (1) (2023) 57–67.[5] M.M. Garnaik, J.P. Giri, A. Panda, Impact of highway design on traffic safety: how geometric elements affect accident risk, Ecocycles 9 (1) (2023) 83–92.[6] A. Mohammadi, B. Kiani, H. Mahmoudzadeh, R. Bergquist, Pedestrian road traffic accidents in metropolitan areas: GIS-based prediction modelling of cases in Mashhad, Iran, Sustainability 15 (13) (2023) 10576.[7] S. Jafarzadeh Ghoushchi, S. Shaffiee Haghshenas, A. Memarpour Ghiaci, G. Guido, A. Vitale, Road safety assessment and risks prioritization using an integrated SWARA and MARCOS approach under spherical fuzzy environment, Neural Comput. Appl. 35 (6) (2023) 4549–4567.[8] G. Gecchele, R. Ceccato, R. Rossi, M. Gastaldi, A flexible approach to select road traffic counting locations: system design and application of a fuzzy Delphi analytic hierarchy process, Transp. Eng. 12 (2023) 100–167.[9] S.H. Ahammad, M. Sukesh, M. Narender, S.A. Ettyem, K. Al-Majdi, K. Saikumar, A novel approach to avoid road traffic accidents and develop safety rules for traffic using crash prediction model technique, in: Micro-Electronics and Telecommunication Engineering: Proceedings of 6th ICMET, Springer Nature Singapore, Singapore, 2023, pp. 367–377.[10] Ž. Stevic, M. Subotic, I. Tanackov, S. Sremac, B. Ristic, S. Simic, Evaluation of two-lane road sections in terms of traffic risk using an integrated MCDM model, Transport 37 (5) (2022) 318–329.[11] O. Koçar, E. Dizdar, A risk assessment model for traffic crashes problem using fuzzy logic: a case study of Zonguldak, Turkey, Transp. Lett. 14 (5) (2022) 492–502.[12] J. Mitrovic Simic, Ž. Stevic, E.K. Zavadskas, V. Bogdanovic, M. Subotic, A. Mardani, A novel CRITIC-fuzzy FUCOM-DEA-fuzzy MARCOS model for safety evaluation of road sections based on geometric parameters of road, Symmetry 12 (12) (2020) 2006.[13] A. Zaranezhad, H.A. Mahabadi, M.R. Dehghani, Development of prediction models for repair and maintenance-related accidents at oil refineries using artificial neural network, fuzzy system, genetic algorithm, and ant colony optimization algorithm, Process Saf. Environ. Prot. 131 (2019) 331–348.[14] A. Al-Omari, N. Shatnawi, T. Khedaywi, T. Miqdady, Prediction of traffic accidents hot spots using fuzzy logic and GIS, Appl. Geomat. 12 (2020) 149–161.[15] M. Cubranic-Dobrodolac, L. Švadlenka, S. Cicevic, A. Trifunovic, M. Dobrodolac, Using the interval type-2 fuzzy inference systems to compare the impact of speed and space perception on the occurrence of road traffic accidents, Mathematics 8 (9) (2020) 15–48.[16] S.A. Butt, A. Khalid, A. Ali, A software development for medical with a multiple decision taking functionalities, Adv. Eng. Softw. 174 (2022) 103–294.[17] S.A. Butt, M.W. Anjum, S.A. Hassan, A. Garai, E.M. Onyema, Smart health application for remote tracking of ambulatory patients, in: Smart Healthcare System Design: Security and Privacy Aspects, 2022, pp. 33–55.[18] S.A. Butt, T. Jamal, M.A. Azad, A. Ali, N.S. Safa, A multivariant secure framework for smart mobile health application, Trans. Emerg. Telecommun. Technol. 33 (8) (2022) e3684.[19] S. Gochhait, S.A. Butt, E. De-La-Hoz-Franco, Q. Shaheen, D.M.J. Luis, G. Piñeres-Espitia, D. Mercado-Polo, A machine learning solution for bed occupancy issue for smart healthcare sector, Autom. Control Comput. Sci. 55 (2021) 546–556.[20] S. Naz, M.M. Hassan, A. Fatima, D.J. Martinez, E.O. Mendoza, S.A. Butt, A decision-making mechanism for multi-attribute group decision-making using 2-tuple linguistic ����������������������������������������������������� -spherical fuzzy maximizing deviation method, Granul. Comput. 1 (29) (2023), https://doi.org/10.1007/s41066-023-00388-9.[21] S. Naz, A. Shafiq, S.A. Butt, R. Ijaz, A new approach to sentiment analysis algorithms: extended SWARA-MABAC method with 2-tuple linguistic ����������������������������������������������������-rung orthopair fuzzy information, Eng. Appl. Artif. Intell. 126 (2023) 106–943.[22] S. Naz, S.S. Fatima, S.A. Butt, N. Tabassum, A MAGDM model based on 2-tuple linguistic variables and power Hamacher aggregation operators for optimal selection of digital marketing strategies, Granul. Comput. 8 (6) (2023) 1955–1990.[23] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338–353.[24] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1) (1986) 87–96.[25] R.R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst. 22 (4) (2013) 958–965.[26] R.R. Yager, Generalized orthopair fuzzy sets, IEEE Trans. Fuzzy Syst. 25 (5) (2016) 1222–1230.[27] R. Krishankumar, A.R. Mishra, P. Rani, F. Ecer, K.S. Ravichandran, Assessment of zero-carbon measures for sustainable transportation in smart cities: a CRITICMARCOS framework based on ����������������������������������������������-rung fuzzy preferences, IEEE Int. Things J. (2023), https://doi.org/10.1109/JIOT.2023.3293513.[28] F. Ecer, I.Y. Ögel, R. Krishankumar, E.B. Tirkolaee, The ���������������������������������������������-rung fuzzy LOPCOW-VIKOR model to assess the role of unmanned aerial vehicles for precision agriculture realization in the Agri-Food 4.0 era, Artif. Intell. Rev. 56 (2023) 13373–13406.[29] R. Krishankumar, F. Ecer, A.R. Mishra, K.S. Ravichandran, A.H. Gandomi, S. Kar, A SWOT-based framework for personalized ranking of IoT service providers with generalized fuzzy data for sustainable transport in urban regions, IEEE Trans. Eng. Manag. (2022), https://doi.org/10.1109/TEM.2022.3204695.[30] M. Deveci, D. Pamucar, I. Gokasar, M. Köppen, B.B. Gupta, Personal mobility in metaverse with autonomous vehicles using �������������������������������������������-rung orthopair fuzzy sets based OPA-RAFSI model, IEEE Trans. Intell. Transp. Syst. (2022) 1–10, https://doi.org/10.1109/TITS.2022.3186294.[31] Y. Demir Uslu, H. Dinçer, S. Yüksel, E. Gedikli, E. Yilmaz, An integrated decision-making approach based on ������������������������������������������-rung orthopair fuzzy sets in service industry, Int. J. Comput. Intell. Syst. 15 (1) (2022) 1–11.[32] M. Deveci, D. Pamucar, U. Cali, E. Kantar, K. Kölle, J.O. Tande, Hybrid �����������������������������������������-rung orthopair fuzzy sets based CoCoSo model for floating offshore wind farm site selection in Norway, CSEE J. Power Energy Syst. 8 (5) (2022) 1261–1280.[33] A. Fetanat, M. Tayebi, Industrial filtration technologies selection for contamination control in natural gas processing plants: a sustainability and maintainabilitybased decision support system under ����������������������������������������-rung orthopair fuzzy set, Process Saf. Environ. Prot. 170 (2023) 310–327.[34] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst. 8 (6) (2000) 746–752.[35] M. Yazdi, 2-Tuple fuzzy-based linguistic term set approach to analyse the system safety and seliability, in: Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis, Springer, Cham, 2022, pp. 5–12.[36] Y. Yu, S. Wu, J. Yu, H. Chen, Q. Zeng, Y. Xu, H. Ding, An integrated MCDM framework based on interval 2-tuple linguistic: a case of offshore wind farm site selection in China, Process Saf. Environ. Prot. 164 (2022) 613–628.[37] S. Naz, M. Akram, M.M.A. Al-Shamiri, M.R. Saeed, Evaluation of network security service provider using 2-tuple linguistic complex ������������������������������������-rung orthopair fuzzy COPRAS method, Complexity (2022), https://doi.org/10.1155/2022/4523287.[38] P. Liu, P. Wang, Some �����������������������������������-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst. 33 (2) (2018) 259–280.[39] R.R. Yager, The power average operator, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 31 (6) (2001) 724–731.[40] Z. Xu, R.R. Yager, Power-geometric operators and their use in group decision making, IEEE Trans. Fuzzy Syst. 18 (1) (2009) 94–105.[41] Z. Xu, Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators, Knowl.-Based Syst. 24 (6) (2011) 749–760.[42] S.P. Wan, J.Y. Dong, Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making, Appl. Soft Comput. 29 (2015) 153–168.[43] P. Liu, Y. Wang, Multiple attribute group decision making methods based on intuitionistic linguistic power generalized aggregation operators, Appl. Soft Comput. 17 (2014) 90–104.[44] Z. Zhang, Generalized Atanassov’s intuitionistic fuzzy power geometric operators and their application to multiple attribute group decision making, Inf. Fusion 14 (4) (2013) 460–486.[45] E.K. Zavadskas, V. Podvezko, Integrated determination of objective criteria weights in MCDM, Int. J. Inf. Technol. Decis. Mak. 15 (2) (2016) 267–283.[46] Y. Luo, X. Zhang, Y. Qin, Z. Yang, Y. Liang, Tourism attraction selection with sentiment analysis of online reviews based on probabilistic linguistic term sets and the IDOCRIW-COCOSO model, Int. J. Fuzzy Syst. 23 (1) (2021) 295–308.[47] M. Eghbali-Zarch, R. Tavakkoli-Moghaddam, K. Dehghan-Sanej, A. Kaboli, Prioritizing the effective strategies for construction and demolition waste management using fuzzy IDOCRIW and WASPAS methods, Eng. Constr. Archit. Manag. 29 (3) (2021) 1109–1138.[48] M.A. Alao, O.M. Popoola, T.R. Ayodele, Selection of waste-to-energy technology for distributed generation using IDOCRIW-weighted TOPSIS method: a case study of the city of Johannesburg, South Africa, Renew. Energy 178 (2021) 162–183.[49] J.H. Paelinck, Qualitative multiple criteria analysis, environmental protection and multiregional development, Pap. Reg. Sci. Assoc. 36 (1) (1976) 59–74.[50] B. Wan, X. Zhang, M. Xiong, Z. Wang, Interval-valued �����������������������-rung orthopair fuzzy QUALIFLEX decision analysis method with Dombi operators, Discrete Dyn. Nat. Soc. (2022), https://doi.org/10.1155/2022/4898098.[51] P. Liu, Q. Pan, H. Xu, B. Zhu, An extended QUALIFLEX method with comprehensive weight for green supplier selection in normal ����������������������-rung orthopair fuzzy environment, Int. J. Fuzzy Syst. 24 (5) (2022) 2174–2202.[52] R. Sahin, Neutrosophic QUALIFLEX based on neutrosophic hesitancy index for selecting a potential antivirus mask supplier over COVID-19 pandemic, Soft Comput. 26 (19) (2022) 10019–10033.[53] T. He, G. Wei, J. Wu, C. Wei, QUALIFLEX method for evaluating human factors in construction project management with Pythagorean 2-tuple linguistic information, J. Intell. Fuzzy Syst. 40 (3) (2021) 4039–4050.[54] T.Y. Chen, Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis, Inf. Sci. 261 (2014) 149–169.[55] C.T. Chen, W.S. Tai, Measuring the intellectual capital performance based on 2-tuple fuzzy linguistic information, in: The 10th Annual Meeting of APDSI, Asia Pacific Region of Decision Sciences Institute, vol. 20, 2005.[56] S. Naz, M. Akram, A. Sattar, M.M.A. Al-Shamiri, 2-Tuple linguistic �����������������-rung orthopair fuzzy CODAS approach and its application in arc welding robot selection, AIMS Math. 7 (9) (2022) 17529–17569.[57] T. Ali, Y.R. Chiu, K. Aghaloo, A.J. Nahian, H. Ma, Prioritizing the existing power generation technologies in Bangladesh’s clean energy scheme using a hybrid multi-criteria decision making model, J. Clean. Prod. 267 (2020) 121–901.[58] P. Cheng, B. Zhou, Z. Chen, J. Tan, The TOPSIS method for decision making with 2-tuple linguistic intuitionistic fuzzy sets, in: 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2017, pp. 1603–1607.[59] D. Liu, Y. Liu, L. Wang, The reference ideal TOPSIS method for linguistic ��������������-rung orthopair fuzzy decision making based on linguistic scale function, J. Intell. Fuzzy Syst. 39 (3) (2020) 4111–4131.[60] S. Naz, M. Akram, M.M. ul Hassan, A. Fatima, A hybrid DEMATEL-TOPSIS approach using 2-tuple linguistic �������������-rung orthopair fuzzy information and its application in renewable energy resource selection, Int. J. Inf. Technol. Decis. Mak. 1 (44) (2023), https://doi.org/10.1142/S0219622023500323.[61] S. Naz, M. Akram, I. Naseer, A. Borumand Saeid, A. Fatima, 2-Tuple linguistic ������������-rung orthopair fuzzy power MSM approach for choosing sustainable waste disposal technology, Sci. Iran. (2023), https://doi.org/10.24200/SCI.2023.60804.7006.[62] Y. Zhang, H. Gao, G. Wei, Y. Guo, MABAC method based on cumulative prospect theory for multiple attribute group decision making with 2-tuple linguistic Pythagorean fuzzy information, ResearchSquare (preprint), https://doi.org/10.21203/rs.3.rs-647901/v1, 2022.[63] M. Akram, Z. Niaz, F. Feng, Extended CODAS method for multi-attribute group decision-making based on 2-tuple linguistic Fermatean fuzzy Hamacher aggregation operators, Granul. Comput. 8 (3) (2023) 441–466.[64] T. He, S. Zhang, G. Wei, R. Wang, J. Wu, C. Wei, CODAS method for 2-tuple linguistic Pythagorean fuzzy multiple attribute group decision making and its application to financial management performance assessment, Technol. Econ. Dev. Econ. 26 (4) (2020) 920–932.[65] M. Akram, U. Ali, G. Santos-García, Z. Niaz, 2-Tuple linguistic Fermatean fuzzy MAGDM based on the WASPAS method for selection of solid waste disposal location, Math. Biosci. Eng. 20 (2) (2023) 3811–3837.[66] Y. Zhang, Q. Cai, G. Wei, H. Wang, C. Wei, A modified EDAS method based on cumulative prospect theory for MAGDM with 2-tuple linguistic Pythagorean fuzzy information, Int. J. Fuzzy Syst. 1 (14) (2023), https://doi.org/10.1007/s40815-022-01453-2.[67] M. Akram, N. Ramzan, A. Luqman, G. Santos-García, An integrated MULTIMOORA method with 2-tuple linguistic Fermatean fuzzy sets: urban quality of life selection application, AIMS Math. 8 (2) (2022) 2798–2828.[68] M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, Granul. Comput. 8 (2) (2023) 311–332.[69] M. Deveci, I. Gokasar, D. Pamucar, D.M. Coffman, E. Papadonikolaki, Safe E-scooter operation alternative prioritization using a ����-rung orthopair fuzzy Einstein based WASPAS approach, J. Clean. Prod. 347 (2022) 131–239.[70] J. Yang, Measuring road safety advance by IW-EDAS-KNN: a case study for OAS countries, in: Highlights in Science, Engineering and Technology, vol. 27, 2022, pp. 743–755.[71] D. Pamucar, Ö.F. Görçün, H. Küçükönder, Evaluation of the route selection in international freight transportation by using the CODAS technique based on interval-valued Atanassov intuitionistic sets, Soft Comput. 27 (5) (2023) 2325–2345.[72] Y. Li, S. Guan, X. Yin, X. Wang, J. Liu, I.N. Wong, F. Chen, Measurement of road safety situation by CRITIC-TODIM-NMF: a lesson system of legislation and regulation for the United States, Measurement 220 (2023) 113–333.2716102-Tuple linguistic q-rung orthopair fuzzy setWeighted power average operatorIDOCRIWQUALIFLEXAccident prediction models in road safety managementPublicationORIGINALDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment.pdfDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment.pdfArtículoapplication/pdf1727580https://repositorio.cuc.edu.co/bitstreams/b080e7b1-5989-4ffb-987d-6ec0689b6bd5/downloadd70a6fc885913b9b84954cf5d94d06ffMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/ca8bf3cc-268b-43f7-928b-adf4e8f2f968/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment.pdf.txtDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment.pdf.txtExtracted texttext/plain111209https://repositorio.cuc.edu.co/bitstreams/e36f8360-c341-4193-8586-aee4829f1ed8/downloaddba6c6771213292d3fd531f397423568MD53THUMBNAILDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment.pdf.jpgDecision analysis with IDOCRIW-QUALIFLEX approach in the 2TLq-ROF environment.pdf.jpgGenerated Thumbnailimage/jpeg12973https://repositorio.cuc.edu.co/bitstreams/c44227d6-1d21-404e-a1d2-2da0a9ca167d/download5133154bbf2a3d5f092dbb1bf60bf238MD5411323/13087oai:repositorio.cuc.edu.co:11323/130872024-09-17 14:24:32.609https://creativecommons.org/licenses/by-nc-nd/4.0/© 2024 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |