Mathematical modeling of the sorption isotherms of three varieties of industrial cassava

A completely randomized design was used to model the sorption isotherms of three types of industrial cassava. The samples consisted of slices (3.6 cm ×0.6 cm ×0.5 cm) of three varieties of cassava: Corpoica Tai, Corpoica Gynes and Corpoica Veronica. Temperature was set at 20 °C, 30 °C and 45 °C. All...

Full description

Autores:
Torregroza Espinosa, Ana Carolina
Rodriguez Manrique, Jhonatan Andrés
López Martínez, Rolando José
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6216
Acceso en línea:
https://hdl.handle.net/11323/6216
https://repositorio.cuc.edu.co/
Palabra clave:
Equilibrium moisture content
Model adjustment
Adsorption
Desorption
Humedad de equilibrio
Ajuste del modelo
Adsorción
Desorción
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_5bcdbbfd5b77a5fb5c3249dc2e9ebaff
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6216
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
dc.title.translated.spa.fl_str_mv Modelamiento Matemático de las isotermas de sorción de tres variedades de yuca industrial
title Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
spellingShingle Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
Equilibrium moisture content
Model adjustment
Adsorption
Desorption
Humedad de equilibrio
Ajuste del modelo
Adsorción
Desorción
title_short Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
title_full Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
title_fullStr Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
title_full_unstemmed Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
title_sort Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
dc.creator.fl_str_mv Torregroza Espinosa, Ana Carolina
Rodriguez Manrique, Jhonatan Andrés
López Martínez, Rolando José
dc.contributor.author.spa.fl_str_mv Torregroza Espinosa, Ana Carolina
Rodriguez Manrique, Jhonatan Andrés
López Martínez, Rolando José
dc.subject.spa.fl_str_mv Equilibrium moisture content
Model adjustment
Adsorption
Desorption
Humedad de equilibrio
Ajuste del modelo
Adsorción
Desorción
topic Equilibrium moisture content
Model adjustment
Adsorption
Desorption
Humedad de equilibrio
Ajuste del modelo
Adsorción
Desorción
description A completely randomized design was used to model the sorption isotherms of three types of industrial cassava. The samples consisted of slices (3.6 cm ×0.6 cm ×0.5 cm) of three varieties of cassava: Corpoica Tai, Corpoica Gynes and Corpoica Veronica. Temperature was set at 20 °C, 30 °C and 45 °C. All experiments were performed in triplicate. Data were obtained through an experimental dynamic method to calculate desorption and adsorption isotherms. Results were analyzed for each temperature, and isotherms were calculated for each variety. Isotherms were statistically equal for all temperatures at a 95 % confidence level. The isotherms were adjusted based on mathematical models (GAB, BET, Smith, Oswin, Henderson, and Peleg). The GAB model was considered the most appropriate for data correlation
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-11-25
dc.date.accessioned.none.fl_str_mv 2020-04-17T00:18:10Z
dc.date.available.none.fl_str_mv 2020-04-17T00:18:10Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2414-6390
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6216
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2414-6390
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6216
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Olsen, K.M. and Schaal, B.A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142, 2001.
[2] Ceballos, H. and De la Cruz, A. Taxonomía y morfología de la yuca. En: Ceballos, H. y Ospina, B. La yuca en el tercer milenio. Sistemas modernos de producción, procesamiento, utilización y comercialización, p. 28. CIAT. Cali, Colombia. 586 pp, 2002.
[3] Agronet. Sistemas de estadísticas Agropecuarias– SEA, Estadísticas Agroforestales MADR_DANE_GREMIOS_1987-2013 - Consolidado Nacional (2015).
[4] Martínez, A. “seminario la yuca como componente de la cadena avícola”, Julio 2003.
[5] García, M., Alvis A. and García C.. Evaluación de los pretratamientos de deshidratación osmótica y microondas en la obtención de hojuelas de mango (Tommy Atkins). Inf. Tecnol. 26(5), 63-70, 2015.
[6] Martínez, E., Torregroza A., Torregroza A. and Mogollón D. Efecto de la deshidratación osmótica-microondas sobre propiedades fisicoquímicas del mango (Mangifera indica L.) variedad Corazón. Agronomía Colombiana 34: 1236-1239, 2016.
[7] Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J. y Meza, I., Modelado de las isotermas de desorción del ñame (Dioscorea rotundata), DYNA, 76 (157), pp. 145-152, 2009.
[8] Rossi, J. R., Roa, G. Secagem e armazanamento de produtos agropecuários com uso de energia solar e ar natural. Sao Pablo: ACIESP, 293p, 1980.
[9] Akpinar, E., Bicer, Y. and Yildiz, C., Thin layer drying of red pepper. Journal of Food Engineering, 59 (1), pp. 99-104, 2003.
[10] Quirijns, E., Boxtel, A., Loon, W., and Straten, G. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805-1814, 2005.
[11] García, S., Schmalko, M., and Tanzariello, A. Isotermas de adsorción y cinética de secado de ciertas hortalizas y aromáticas cultivadas en misiones. RIA, 36 (1): 115-129, 2007.
[12] Prieto, J., Prieto, F., Román A., Otazo, E., and Méndez. M.; Correlación de modelos matemáticos de adsorción de humedad en cereales para desayuno. Avances en Ciencias e Ingeniería, VOL. 3(1), pp. 137-150. 2012.
[13] [Maroulis, Z.B., Tsami, E. and Marinos, D. Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering 7, pp63-78, 1988.
[14] Hyun K., Yoonseok S. and Yam K. L. Water sorption characteristic of dried red peppers (Capsicum annum L.) International Journal of Food Science and technology 29, pp339-345, 1991.
[15] Maroulis, Z.B., Kiranoudis, C.T., and Marinos Kouris, D. Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering, vol26, 113-130, 1995.
[16] Iglesias, H.A. and Chirife, J. An alternative to de Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Research inernational. Vol.28, N°3, pp317-321, 1995.
[17] Diosady, L.L. Rizvi, S.S.H. Cai, W. and Jadgeo, D.J. Moisture sorption isotherms of canola meals, and applications to packaging. Journal of Food Science vol61, N°1 pp204-208, 1996.
[18] Timmermann, E.O., Chirife, J. and Iglesias, H.A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters, Journal of Food Engineering 48, 19-31, 2001.
[19] Giovanelli,G., Zanoni, B., Lavelli, V., and Nani, R. Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering. Vol. 52, 135-141, 2002.
[20] Viswanathan, R., Jayas, D.S., and Hulasare, R.B. Sorption isotherms of tomato slices and onion shreds. Biosystems Engineering 86 (4), 465- 472, 2003.
[21] Krokida, M.K., Karathanos. V.T., Maroulis, Z.B. and Marinos-Kouris. D. Drying kinetics of some vegetables. J. Food Eng., 59, 391-403, 2003.
[22] Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J. and Labuza, T.P. Water Activity in Foods: Fundaments and Applications, Blackwell publishing Ltd, 2007.
[23] Badui, S., Valdés Martínez, S. E., and Cejudo, H. Química de los alimentos (4a ed.). México [etc.]: Pearson Educación. 2006.
[24] Alvarado, L. Obtención de la harina de yuca para el desarrollo de productos dulces destinados para la alimentación de celiacos. Tesis de Grado. Escuela politécnica superior del litoral. Facultad de ingeniería mecánica y producción. Guayaquil-Ecuador, 2009.
[25] Ayala, A. Estimación de las isotermas de absorción y del calor isostérico en harina de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial 20(1):88-96, 2011.
[26] Navia, D., Ayala, A., and Villada, H., Isotermas de adsorción de bioplásticos de harina de yuca moldeados por compresión, Biotecnología en el Sector Agropecuario y Agroindustrial: 9(1), 77-87, 2011.
[27] Goula M., Adamopoulos G. and Kazakis A. Influence of Spray Drying Conditions on Tomato Powder Properties, Drying Technology, 22:5, 1129-1151, 2007.
[28] Iguedjtal , T., Louka , N., and Allaf , K. Sorption isotherms of Granny Smith apples hot-air dried and texturized by “controlled sudden decompression to the vacuum.” International Journal of Food Engineering, 3(5), 2007.
[29] Zhengyong, M., Sousa, J., and Oliveira A., Effect of temperature and initial moisture content on sorption isotherms of banana dried by tunnel
[30] Peng, G., and Westerfield, M. Lhx5 promotes forebrain development and activates transcription of secreted Wnt antagonists. Development (Cambridge, England). 133(16):3191-3200, 2006.
[31] Perdomo, J., Cova, A., Sandoval, A., García, L., Laredo, E., and Müller, A. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, v.76, n.2, p.305-313, 2009.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv 17th LACCEI International Multi-Conference for Engineering, Education, and Technology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/cf85ab03-4698-4988-8684-cb5992a213db/download
https://repositorio.cuc.edu.co/bitstreams/a5b68cac-861c-4bef-9311-ab129b6943f7/download
https://repositorio.cuc.edu.co/bitstreams/91845db1-2889-4bbe-9d84-ce2db9dabffe/download
https://repositorio.cuc.edu.co/bitstreams/1af7187e-cec9-40d9-9a59-83a91424f1c2/download
https://repositorio.cuc.edu.co/bitstreams/eb8eafcc-f1a3-48e5-bf7f-9399763e1c16/download
bitstream.checksum.fl_str_mv 2aaa4d91ec46e99645a701c1040a09c6
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
067ceadab34c896ceeb024091b9575cd
d2a0e148494bef418468fd0de35dcb44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166907579072512
spelling Torregroza Espinosa, Ana CarolinaRodriguez Manrique, Jhonatan AndrésLópez Martínez, Rolando José2020-04-17T00:18:10Z2020-04-17T00:18:10Z2013-11-252414-6390https://hdl.handle.net/11323/6216Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A completely randomized design was used to model the sorption isotherms of three types of industrial cassava. The samples consisted of slices (3.6 cm ×0.6 cm ×0.5 cm) of three varieties of cassava: Corpoica Tai, Corpoica Gynes and Corpoica Veronica. Temperature was set at 20 °C, 30 °C and 45 °C. All experiments were performed in triplicate. Data were obtained through an experimental dynamic method to calculate desorption and adsorption isotherms. Results were analyzed for each temperature, and isotherms were calculated for each variety. Isotherms were statistically equal for all temperatures at a 95 % confidence level. The isotherms were adjusted based on mathematical models (GAB, BET, Smith, Oswin, Henderson, and Peleg). The GAB model was considered the most appropriate for data correlationCon el fin de modelar las isoterma de sorción de láminas (3.6 cm ×0.6 cm ×0.5 cm) de tres variedades de yuca industrial, se empleó un diseño completamente al azar en arreglo factorial con dos factores: temperatura (20 °C, 30 °C y 45 ºC) y variedad (Corpoica Tai, Corpoica Gynes y Corpoica Veronica), con tres repeticiones. Para la obtención de los datos se empleó la técnica experimental del método dinámico para determinar las isotermas de desorción y adsorción. Los datos obtenidos fueron analizados para cada temperatura, determinándose las isotermas para las variedades estudiadas, las cuales fueron estadísticamente iguales entre sí para las tres temperaturas utilizadas aun nivel de confianza del 95%. Las isotermas fueron ajustadas a los modelos matemáticos de Gab, Bet, Smith, Oswin, Henderson y el modelo de Peleg y se determinó que el modelo de GAB es el más adecuado para correlacionar los datos obtenidos.Torregroza Espinosa, Ana Carolina-will be generated-orcid-0000-0001-8077-8880-600Rodriguez Manrique, Jhonatan Andrés-will be generated-orcid-0000-0002-7378-9968-600López Martínez, Rolando José-will be generated-orcid-0000-0002-2230-9821-600eng17th LACCEI International Multi-Conference for Engineering, Education, and TechnologyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Equilibrium moisture contentModel adjustmentAdsorptionDesorptionHumedad de equilibrioAjuste del modeloAdsorciónDesorciónMathematical modeling of the sorption isotherms of three varieties of industrial cassavaModelamiento Matemático de las isotermas de sorción de tres variedades de yuca industrialArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Olsen, K.M. and Schaal, B.A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142, 2001.[2] Ceballos, H. and De la Cruz, A. Taxonomía y morfología de la yuca. En: Ceballos, H. y Ospina, B. La yuca en el tercer milenio. Sistemas modernos de producción, procesamiento, utilización y comercialización, p. 28. CIAT. Cali, Colombia. 586 pp, 2002.[3] Agronet. Sistemas de estadísticas Agropecuarias– SEA, Estadísticas Agroforestales MADR_DANE_GREMIOS_1987-2013 - Consolidado Nacional (2015).[4] Martínez, A. “seminario la yuca como componente de la cadena avícola”, Julio 2003.[5] García, M., Alvis A. and García C.. Evaluación de los pretratamientos de deshidratación osmótica y microondas en la obtención de hojuelas de mango (Tommy Atkins). Inf. Tecnol. 26(5), 63-70, 2015.[6] Martínez, E., Torregroza A., Torregroza A. and Mogollón D. Efecto de la deshidratación osmótica-microondas sobre propiedades fisicoquímicas del mango (Mangifera indica L.) variedad Corazón. Agronomía Colombiana 34: 1236-1239, 2016.[7] Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J. y Meza, I., Modelado de las isotermas de desorción del ñame (Dioscorea rotundata), DYNA, 76 (157), pp. 145-152, 2009.[8] Rossi, J. R., Roa, G. Secagem e armazanamento de produtos agropecuários com uso de energia solar e ar natural. Sao Pablo: ACIESP, 293p, 1980.[9] Akpinar, E., Bicer, Y. and Yildiz, C., Thin layer drying of red pepper. Journal of Food Engineering, 59 (1), pp. 99-104, 2003.[10] Quirijns, E., Boxtel, A., Loon, W., and Straten, G. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805-1814, 2005.[11] García, S., Schmalko, M., and Tanzariello, A. Isotermas de adsorción y cinética de secado de ciertas hortalizas y aromáticas cultivadas en misiones. RIA, 36 (1): 115-129, 2007.[12] Prieto, J., Prieto, F., Román A., Otazo, E., and Méndez. M.; Correlación de modelos matemáticos de adsorción de humedad en cereales para desayuno. Avances en Ciencias e Ingeniería, VOL. 3(1), pp. 137-150. 2012.[13] [Maroulis, Z.B., Tsami, E. and Marinos, D. Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering 7, pp63-78, 1988.[14] Hyun K., Yoonseok S. and Yam K. L. Water sorption characteristic of dried red peppers (Capsicum annum L.) International Journal of Food Science and technology 29, pp339-345, 1991.[15] Maroulis, Z.B., Kiranoudis, C.T., and Marinos Kouris, D. Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering, vol26, 113-130, 1995.[16] Iglesias, H.A. and Chirife, J. An alternative to de Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Research inernational. Vol.28, N°3, pp317-321, 1995.[17] Diosady, L.L. Rizvi, S.S.H. Cai, W. and Jadgeo, D.J. Moisture sorption isotherms of canola meals, and applications to packaging. Journal of Food Science vol61, N°1 pp204-208, 1996.[18] Timmermann, E.O., Chirife, J. and Iglesias, H.A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters, Journal of Food Engineering 48, 19-31, 2001.[19] Giovanelli,G., Zanoni, B., Lavelli, V., and Nani, R. Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering. Vol. 52, 135-141, 2002.[20] Viswanathan, R., Jayas, D.S., and Hulasare, R.B. Sorption isotherms of tomato slices and onion shreds. Biosystems Engineering 86 (4), 465- 472, 2003.[21] Krokida, M.K., Karathanos. V.T., Maroulis, Z.B. and Marinos-Kouris. D. Drying kinetics of some vegetables. J. Food Eng., 59, 391-403, 2003.[22] Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J. and Labuza, T.P. Water Activity in Foods: Fundaments and Applications, Blackwell publishing Ltd, 2007.[23] Badui, S., Valdés Martínez, S. E., and Cejudo, H. Química de los alimentos (4a ed.). México [etc.]: Pearson Educación. 2006.[24] Alvarado, L. Obtención de la harina de yuca para el desarrollo de productos dulces destinados para la alimentación de celiacos. Tesis de Grado. Escuela politécnica superior del litoral. Facultad de ingeniería mecánica y producción. Guayaquil-Ecuador, 2009.[25] Ayala, A. Estimación de las isotermas de absorción y del calor isostérico en harina de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial 20(1):88-96, 2011.[26] Navia, D., Ayala, A., and Villada, H., Isotermas de adsorción de bioplásticos de harina de yuca moldeados por compresión, Biotecnología en el Sector Agropecuario y Agroindustrial: 9(1), 77-87, 2011.[27] Goula M., Adamopoulos G. and Kazakis A. Influence of Spray Drying Conditions on Tomato Powder Properties, Drying Technology, 22:5, 1129-1151, 2007.[28] Iguedjtal , T., Louka , N., and Allaf , K. Sorption isotherms of Granny Smith apples hot-air dried and texturized by “controlled sudden decompression to the vacuum.” International Journal of Food Engineering, 3(5), 2007.[29] Zhengyong, M., Sousa, J., and Oliveira A., Effect of temperature and initial moisture content on sorption isotherms of banana dried by tunnel[30] Peng, G., and Westerfield, M. Lhx5 promotes forebrain development and activates transcription of secreted Wnt antagonists. Development (Cambridge, England). 133(16):3191-3200, 2006.[31] Perdomo, J., Cova, A., Sandoval, A., García, L., Laredo, E., and Müller, A. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, v.76, n.2, p.305-313, 2009.PublicationORIGINALMathematical modeling of the sorption isotherms of three varieties.pdfMathematical modeling of the sorption isotherms of three varieties.pdfapplication/pdf397623https://repositorio.cuc.edu.co/bitstreams/cf85ab03-4698-4988-8684-cb5992a213db/download2aaa4d91ec46e99645a701c1040a09c6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a5b68cac-861c-4bef-9311-ab129b6943f7/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/91845db1-2889-4bbe-9d84-ce2db9dabffe/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILMathematical modeling of the sorption isotherms of three varieties.pdf.jpgMathematical modeling of the sorption isotherms of three varieties.pdf.jpgimage/jpeg69538https://repositorio.cuc.edu.co/bitstreams/1af7187e-cec9-40d9-9a59-83a91424f1c2/download067ceadab34c896ceeb024091b9575cdMD54TEXTMathematical modeling of the sorption isotherms of three varieties.pdf.txtMathematical modeling of the sorption isotherms of three varieties.pdf.txttext/plain27680https://repositorio.cuc.edu.co/bitstreams/eb8eafcc-f1a3-48e5-bf7f-9399763e1c16/downloadd2a0e148494bef418468fd0de35dcb44MD5511323/6216oai:repositorio.cuc.edu.co:11323/62162024-09-17 14:24:38.367http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=