Mathematical modeling of the sorption isotherms of three varieties of industrial cassava
A completely randomized design was used to model the sorption isotherms of three types of industrial cassava. The samples consisted of slices (3.6 cm ×0.6 cm ×0.5 cm) of three varieties of cassava: Corpoica Tai, Corpoica Gynes and Corpoica Veronica. Temperature was set at 20 °C, 30 °C and 45 °C. All...
- Autores:
-
Torregroza Espinosa, Ana Carolina
Rodriguez Manrique, Jhonatan Andrés
López Martínez, Rolando José
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6216
- Acceso en línea:
- https://hdl.handle.net/11323/6216
https://repositorio.cuc.edu.co/
- Palabra clave:
- Equilibrium moisture content
Model adjustment
Adsorption
Desorption
Humedad de equilibrio
Ajuste del modelo
Adsorción
Desorción
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_5bcdbbfd5b77a5fb5c3249dc2e9ebaff |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6216 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
dc.title.translated.spa.fl_str_mv |
Modelamiento Matemático de las isotermas de sorción de tres variedades de yuca industrial |
title |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
spellingShingle |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava Equilibrium moisture content Model adjustment Adsorption Desorption Humedad de equilibrio Ajuste del modelo Adsorción Desorción |
title_short |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
title_full |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
title_fullStr |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
title_full_unstemmed |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
title_sort |
Mathematical modeling of the sorption isotherms of three varieties of industrial cassava |
dc.creator.fl_str_mv |
Torregroza Espinosa, Ana Carolina Rodriguez Manrique, Jhonatan Andrés López Martínez, Rolando José |
dc.contributor.author.spa.fl_str_mv |
Torregroza Espinosa, Ana Carolina Rodriguez Manrique, Jhonatan Andrés López Martínez, Rolando José |
dc.subject.spa.fl_str_mv |
Equilibrium moisture content Model adjustment Adsorption Desorption Humedad de equilibrio Ajuste del modelo Adsorción Desorción |
topic |
Equilibrium moisture content Model adjustment Adsorption Desorption Humedad de equilibrio Ajuste del modelo Adsorción Desorción |
description |
A completely randomized design was used to model the sorption isotherms of three types of industrial cassava. The samples consisted of slices (3.6 cm ×0.6 cm ×0.5 cm) of three varieties of cassava: Corpoica Tai, Corpoica Gynes and Corpoica Veronica. Temperature was set at 20 °C, 30 °C and 45 °C. All experiments were performed in triplicate. Data were obtained through an experimental dynamic method to calculate desorption and adsorption isotherms. Results were analyzed for each temperature, and isotherms were calculated for each variety. Isotherms were statistically equal for all temperatures at a 95 % confidence level. The isotherms were adjusted based on mathematical models (GAB, BET, Smith, Oswin, Henderson, and Peleg). The GAB model was considered the most appropriate for data correlation |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013-11-25 |
dc.date.accessioned.none.fl_str_mv |
2020-04-17T00:18:10Z |
dc.date.available.none.fl_str_mv |
2020-04-17T00:18:10Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2414-6390 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6216 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2414-6390 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6216 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Olsen, K.M. and Schaal, B.A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142, 2001. [2] Ceballos, H. and De la Cruz, A. Taxonomía y morfología de la yuca. En: Ceballos, H. y Ospina, B. La yuca en el tercer milenio. Sistemas modernos de producción, procesamiento, utilización y comercialización, p. 28. CIAT. Cali, Colombia. 586 pp, 2002. [3] Agronet. Sistemas de estadísticas Agropecuarias– SEA, Estadísticas Agroforestales MADR_DANE_GREMIOS_1987-2013 - Consolidado Nacional (2015). [4] Martínez, A. “seminario la yuca como componente de la cadena avícola”, Julio 2003. [5] García, M., Alvis A. and García C.. Evaluación de los pretratamientos de deshidratación osmótica y microondas en la obtención de hojuelas de mango (Tommy Atkins). Inf. Tecnol. 26(5), 63-70, 2015. [6] Martínez, E., Torregroza A., Torregroza A. and Mogollón D. Efecto de la deshidratación osmótica-microondas sobre propiedades fisicoquímicas del mango (Mangifera indica L.) variedad Corazón. Agronomía Colombiana 34: 1236-1239, 2016. [7] Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J. y Meza, I., Modelado de las isotermas de desorción del ñame (Dioscorea rotundata), DYNA, 76 (157), pp. 145-152, 2009. [8] Rossi, J. R., Roa, G. Secagem e armazanamento de produtos agropecuários com uso de energia solar e ar natural. Sao Pablo: ACIESP, 293p, 1980. [9] Akpinar, E., Bicer, Y. and Yildiz, C., Thin layer drying of red pepper. Journal of Food Engineering, 59 (1), pp. 99-104, 2003. [10] Quirijns, E., Boxtel, A., Loon, W., and Straten, G. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805-1814, 2005. [11] García, S., Schmalko, M., and Tanzariello, A. Isotermas de adsorción y cinética de secado de ciertas hortalizas y aromáticas cultivadas en misiones. RIA, 36 (1): 115-129, 2007. [12] Prieto, J., Prieto, F., Román A., Otazo, E., and Méndez. M.; Correlación de modelos matemáticos de adsorción de humedad en cereales para desayuno. Avances en Ciencias e Ingeniería, VOL. 3(1), pp. 137-150. 2012. [13] [Maroulis, Z.B., Tsami, E. and Marinos, D. Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering 7, pp63-78, 1988. [14] Hyun K., Yoonseok S. and Yam K. L. Water sorption characteristic of dried red peppers (Capsicum annum L.) International Journal of Food Science and technology 29, pp339-345, 1991. [15] Maroulis, Z.B., Kiranoudis, C.T., and Marinos Kouris, D. Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering, vol26, 113-130, 1995. [16] Iglesias, H.A. and Chirife, J. An alternative to de Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Research inernational. Vol.28, N°3, pp317-321, 1995. [17] Diosady, L.L. Rizvi, S.S.H. Cai, W. and Jadgeo, D.J. Moisture sorption isotherms of canola meals, and applications to packaging. Journal of Food Science vol61, N°1 pp204-208, 1996. [18] Timmermann, E.O., Chirife, J. and Iglesias, H.A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters, Journal of Food Engineering 48, 19-31, 2001. [19] Giovanelli,G., Zanoni, B., Lavelli, V., and Nani, R. Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering. Vol. 52, 135-141, 2002. [20] Viswanathan, R., Jayas, D.S., and Hulasare, R.B. Sorption isotherms of tomato slices and onion shreds. Biosystems Engineering 86 (4), 465- 472, 2003. [21] Krokida, M.K., Karathanos. V.T., Maroulis, Z.B. and Marinos-Kouris. D. Drying kinetics of some vegetables. J. Food Eng., 59, 391-403, 2003. [22] Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J. and Labuza, T.P. Water Activity in Foods: Fundaments and Applications, Blackwell publishing Ltd, 2007. [23] Badui, S., Valdés Martínez, S. E., and Cejudo, H. Química de los alimentos (4a ed.). México [etc.]: Pearson Educación. 2006. [24] Alvarado, L. Obtención de la harina de yuca para el desarrollo de productos dulces destinados para la alimentación de celiacos. Tesis de Grado. Escuela politécnica superior del litoral. Facultad de ingeniería mecánica y producción. Guayaquil-Ecuador, 2009. [25] Ayala, A. Estimación de las isotermas de absorción y del calor isostérico en harina de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial 20(1):88-96, 2011. [26] Navia, D., Ayala, A., and Villada, H., Isotermas de adsorción de bioplásticos de harina de yuca moldeados por compresión, Biotecnología en el Sector Agropecuario y Agroindustrial: 9(1), 77-87, 2011. [27] Goula M., Adamopoulos G. and Kazakis A. Influence of Spray Drying Conditions on Tomato Powder Properties, Drying Technology, 22:5, 1129-1151, 2007. [28] Iguedjtal , T., Louka , N., and Allaf , K. Sorption isotherms of Granny Smith apples hot-air dried and texturized by “controlled sudden decompression to the vacuum.” International Journal of Food Engineering, 3(5), 2007. [29] Zhengyong, M., Sousa, J., and Oliveira A., Effect of temperature and initial moisture content on sorption isotherms of banana dried by tunnel [30] Peng, G., and Westerfield, M. Lhx5 promotes forebrain development and activates transcription of secreted Wnt antagonists. Development (Cambridge, England). 133(16):3191-3200, 2006. [31] Perdomo, J., Cova, A., Sandoval, A., García, L., Laredo, E., and Müller, A. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, v.76, n.2, p.305-313, 2009. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
17th LACCEI International Multi-Conference for Engineering, Education, and Technology |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cf85ab03-4698-4988-8684-cb5992a213db/download https://repositorio.cuc.edu.co/bitstreams/a5b68cac-861c-4bef-9311-ab129b6943f7/download https://repositorio.cuc.edu.co/bitstreams/91845db1-2889-4bbe-9d84-ce2db9dabffe/download https://repositorio.cuc.edu.co/bitstreams/1af7187e-cec9-40d9-9a59-83a91424f1c2/download https://repositorio.cuc.edu.co/bitstreams/eb8eafcc-f1a3-48e5-bf7f-9399763e1c16/download |
bitstream.checksum.fl_str_mv |
2aaa4d91ec46e99645a701c1040a09c6 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 067ceadab34c896ceeb024091b9575cd d2a0e148494bef418468fd0de35dcb44 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166907579072512 |
spelling |
Torregroza Espinosa, Ana CarolinaRodriguez Manrique, Jhonatan AndrésLópez Martínez, Rolando José2020-04-17T00:18:10Z2020-04-17T00:18:10Z2013-11-252414-6390https://hdl.handle.net/11323/6216Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A completely randomized design was used to model the sorption isotherms of three types of industrial cassava. The samples consisted of slices (3.6 cm ×0.6 cm ×0.5 cm) of three varieties of cassava: Corpoica Tai, Corpoica Gynes and Corpoica Veronica. Temperature was set at 20 °C, 30 °C and 45 °C. All experiments were performed in triplicate. Data were obtained through an experimental dynamic method to calculate desorption and adsorption isotherms. Results were analyzed for each temperature, and isotherms were calculated for each variety. Isotherms were statistically equal for all temperatures at a 95 % confidence level. The isotherms were adjusted based on mathematical models (GAB, BET, Smith, Oswin, Henderson, and Peleg). The GAB model was considered the most appropriate for data correlationCon el fin de modelar las isoterma de sorción de láminas (3.6 cm ×0.6 cm ×0.5 cm) de tres variedades de yuca industrial, se empleó un diseño completamente al azar en arreglo factorial con dos factores: temperatura (20 °C, 30 °C y 45 ºC) y variedad (Corpoica Tai, Corpoica Gynes y Corpoica Veronica), con tres repeticiones. Para la obtención de los datos se empleó la técnica experimental del método dinámico para determinar las isotermas de desorción y adsorción. Los datos obtenidos fueron analizados para cada temperatura, determinándose las isotermas para las variedades estudiadas, las cuales fueron estadísticamente iguales entre sí para las tres temperaturas utilizadas aun nivel de confianza del 95%. Las isotermas fueron ajustadas a los modelos matemáticos de Gab, Bet, Smith, Oswin, Henderson y el modelo de Peleg y se determinó que el modelo de GAB es el más adecuado para correlacionar los datos obtenidos.Torregroza Espinosa, Ana Carolina-will be generated-orcid-0000-0001-8077-8880-600Rodriguez Manrique, Jhonatan Andrés-will be generated-orcid-0000-0002-7378-9968-600López Martínez, Rolando José-will be generated-orcid-0000-0002-2230-9821-600eng17th LACCEI International Multi-Conference for Engineering, Education, and TechnologyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Equilibrium moisture contentModel adjustmentAdsorptionDesorptionHumedad de equilibrioAjuste del modeloAdsorciónDesorciónMathematical modeling of the sorption isotherms of three varieties of industrial cassavaModelamiento Matemático de las isotermas de sorción de tres variedades de yuca industrialArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Olsen, K.M. and Schaal, B.A. Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am. J. Bot. 88, 131–142, 2001.[2] Ceballos, H. and De la Cruz, A. Taxonomía y morfología de la yuca. En: Ceballos, H. y Ospina, B. La yuca en el tercer milenio. Sistemas modernos de producción, procesamiento, utilización y comercialización, p. 28. CIAT. Cali, Colombia. 586 pp, 2002.[3] Agronet. Sistemas de estadísticas Agropecuarias– SEA, Estadísticas Agroforestales MADR_DANE_GREMIOS_1987-2013 - Consolidado Nacional (2015).[4] Martínez, A. “seminario la yuca como componente de la cadena avícola”, Julio 2003.[5] García, M., Alvis A. and García C.. Evaluación de los pretratamientos de deshidratación osmótica y microondas en la obtención de hojuelas de mango (Tommy Atkins). Inf. Tecnol. 26(5), 63-70, 2015.[6] Martínez, E., Torregroza A., Torregroza A. and Mogollón D. Efecto de la deshidratación osmótica-microondas sobre propiedades fisicoquímicas del mango (Mangifera indica L.) variedad Corazón. Agronomía Colombiana 34: 1236-1239, 2016.[7] Montes, E., Torres, R., Andrade, R., Pérez, O., Marimon, J. y Meza, I., Modelado de las isotermas de desorción del ñame (Dioscorea rotundata), DYNA, 76 (157), pp. 145-152, 2009.[8] Rossi, J. R., Roa, G. Secagem e armazanamento de produtos agropecuários com uso de energia solar e ar natural. Sao Pablo: ACIESP, 293p, 1980.[9] Akpinar, E., Bicer, Y. and Yildiz, C., Thin layer drying of red pepper. Journal of Food Engineering, 59 (1), pp. 99-104, 2003.[10] Quirijns, E., Boxtel, A., Loon, W., and Straten, G. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture, 85, 1805-1814, 2005.[11] García, S., Schmalko, M., and Tanzariello, A. Isotermas de adsorción y cinética de secado de ciertas hortalizas y aromáticas cultivadas en misiones. RIA, 36 (1): 115-129, 2007.[12] Prieto, J., Prieto, F., Román A., Otazo, E., and Méndez. M.; Correlación de modelos matemáticos de adsorción de humedad en cereales para desayuno. Avances en Ciencias e Ingeniería, VOL. 3(1), pp. 137-150. 2012.[13] [Maroulis, Z.B., Tsami, E. and Marinos, D. Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering 7, pp63-78, 1988.[14] Hyun K., Yoonseok S. and Yam K. L. Water sorption characteristic of dried red peppers (Capsicum annum L.) International Journal of Food Science and technology 29, pp339-345, 1991.[15] Maroulis, Z.B., Kiranoudis, C.T., and Marinos Kouris, D. Heat and mass transfer modeling in air drying of foods. Journal of Food Engineering, vol26, 113-130, 1995.[16] Iglesias, H.A. and Chirife, J. An alternative to de Guggenheim, Anderson and De Boer model for the mathematical description of moisture sorption isotherms of foods. Food Research inernational. Vol.28, N°3, pp317-321, 1995.[17] Diosady, L.L. Rizvi, S.S.H. Cai, W. and Jadgeo, D.J. Moisture sorption isotherms of canola meals, and applications to packaging. Journal of Food Science vol61, N°1 pp204-208, 1996.[18] Timmermann, E.O., Chirife, J. and Iglesias, H.A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters, Journal of Food Engineering 48, 19-31, 2001.[19] Giovanelli,G., Zanoni, B., Lavelli, V., and Nani, R. Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering. Vol. 52, 135-141, 2002.[20] Viswanathan, R., Jayas, D.S., and Hulasare, R.B. Sorption isotherms of tomato slices and onion shreds. Biosystems Engineering 86 (4), 465- 472, 2003.[21] Krokida, M.K., Karathanos. V.T., Maroulis, Z.B. and Marinos-Kouris. D. Drying kinetics of some vegetables. J. Food Eng., 59, 391-403, 2003.[22] Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J. and Labuza, T.P. Water Activity in Foods: Fundaments and Applications, Blackwell publishing Ltd, 2007.[23] Badui, S., Valdés Martínez, S. E., and Cejudo, H. Química de los alimentos (4a ed.). México [etc.]: Pearson Educación. 2006.[24] Alvarado, L. Obtención de la harina de yuca para el desarrollo de productos dulces destinados para la alimentación de celiacos. Tesis de Grado. Escuela politécnica superior del litoral. Facultad de ingeniería mecánica y producción. Guayaquil-Ecuador, 2009.[25] Ayala, A. Estimación de las isotermas de absorción y del calor isostérico en harina de yuca. Biotecnología en el Sector Agropecuario y Agroindustrial 20(1):88-96, 2011.[26] Navia, D., Ayala, A., and Villada, H., Isotermas de adsorción de bioplásticos de harina de yuca moldeados por compresión, Biotecnología en el Sector Agropecuario y Agroindustrial: 9(1), 77-87, 2011.[27] Goula M., Adamopoulos G. and Kazakis A. Influence of Spray Drying Conditions on Tomato Powder Properties, Drying Technology, 22:5, 1129-1151, 2007.[28] Iguedjtal , T., Louka , N., and Allaf , K. Sorption isotherms of Granny Smith apples hot-air dried and texturized by “controlled sudden decompression to the vacuum.” International Journal of Food Engineering, 3(5), 2007.[29] Zhengyong, M., Sousa, J., and Oliveira A., Effect of temperature and initial moisture content on sorption isotherms of banana dried by tunnel[30] Peng, G., and Westerfield, M. Lhx5 promotes forebrain development and activates transcription of secreted Wnt antagonists. Development (Cambridge, England). 133(16):3191-3200, 2006.[31] Perdomo, J., Cova, A., Sandoval, A., García, L., Laredo, E., and Müller, A. Glass transition temperatures and water sorption isotherms of cassava starch. Carbohydrate Polymers, v.76, n.2, p.305-313, 2009.PublicationORIGINALMathematical modeling of the sorption isotherms of three varieties.pdfMathematical modeling of the sorption isotherms of three varieties.pdfapplication/pdf397623https://repositorio.cuc.edu.co/bitstreams/cf85ab03-4698-4988-8684-cb5992a213db/download2aaa4d91ec46e99645a701c1040a09c6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a5b68cac-861c-4bef-9311-ab129b6943f7/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/91845db1-2889-4bbe-9d84-ce2db9dabffe/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILMathematical modeling of the sorption isotherms of three varieties.pdf.jpgMathematical modeling of the sorption isotherms of three varieties.pdf.jpgimage/jpeg69538https://repositorio.cuc.edu.co/bitstreams/1af7187e-cec9-40d9-9a59-83a91424f1c2/download067ceadab34c896ceeb024091b9575cdMD54TEXTMathematical modeling of the sorption isotherms of three varieties.pdf.txtMathematical modeling of the sorption isotherms of three varieties.pdf.txttext/plain27680https://repositorio.cuc.edu.co/bitstreams/eb8eafcc-f1a3-48e5-bf7f-9399763e1c16/downloadd2a0e148494bef418468fd0de35dcb44MD5511323/6216oai:repositorio.cuc.edu.co:11323/62162024-09-17 14:24:38.367http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |