Effects of hypoxia on selected psychophysiological stress responses of military aircrew

There is a lack of information on the psychophysiological response of pilots under hypoxic conditions. The study of the physiological, psychological, cardiorespiratory, neurological, behavioural, sensory, and cognitive symptoms that may appear during training in hypobaric chambers is essential to op...

Full description

Autores:
Bustamante-Sánchez, Álvaro
Gil Cabrera, Jaime
Tornero Aguilera, José Francisco
Fernández-Lucas, Jesús
Ramos-Campo, Domingo Jesús
Clemente-Suárez, Vicente Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9065
Acceso en línea:
https://hdl.handle.net/11323/9065
https://doi.org/10.1155/2021/6633851
https://repositorio.cuc.edu.co/
Palabra clave:
Hypoxia
Psychophysiological stress
Military aircrew
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_5b1017f8da5b2ec829fc244a62201c33
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9065
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Effects of hypoxia on selected psychophysiological stress responses of military aircrew
title Effects of hypoxia on selected psychophysiological stress responses of military aircrew
spellingShingle Effects of hypoxia on selected psychophysiological stress responses of military aircrew
Hypoxia
Psychophysiological stress
Military aircrew
title_short Effects of hypoxia on selected psychophysiological stress responses of military aircrew
title_full Effects of hypoxia on selected psychophysiological stress responses of military aircrew
title_fullStr Effects of hypoxia on selected psychophysiological stress responses of military aircrew
title_full_unstemmed Effects of hypoxia on selected psychophysiological stress responses of military aircrew
title_sort Effects of hypoxia on selected psychophysiological stress responses of military aircrew
dc.creator.fl_str_mv Bustamante-Sánchez, Álvaro
Gil Cabrera, Jaime
Tornero Aguilera, José Francisco
Fernández-Lucas, Jesús
Ramos-Campo, Domingo Jesús
Clemente-Suárez, Vicente Javier
dc.contributor.author.spa.fl_str_mv Bustamante-Sánchez, Álvaro
Gil Cabrera, Jaime
Tornero Aguilera, José Francisco
Fernández-Lucas, Jesús
Ramos-Campo, Domingo Jesús
Clemente-Suárez, Vicente Javier
dc.subject.proposal.eng.fl_str_mv Hypoxia
Psychophysiological stress
Military aircrew
topic Hypoxia
Psychophysiological stress
Military aircrew
description There is a lack of information on the psychophysiological response of pilots under hypoxic conditions. The study of the physiological, psychological, cardiorespiratory, neurological, behavioural, sensory, and cognitive symptoms that may appear during training in hypobaric chambers is essential to optimize the training processes of aircrew members. Thus, the present study is aimed at analyzing the psychophysiological responses of aircrew members in an incremental hypoxia training protocol. Psychophysiological responses of 44 aircrew members (34 males and 10 females) in an incremental hypoxia training protocol (3 minutes at 0 meters, 8 minutes at 5,000 meters, and maximum time at 7500 meters) were measured. Results suggested that the incremental hypoxia training protocol did not affect cortical arousal and handgrip strength; however, it increased the sympathetic tone, perceived stress, perceived effort, and heart rate and decreased forced expiratory volume and blood oxygen saturation. Thus, we concluded that acute hypoxic hypobaric exposure leads to decreased parasympathetic tone, blood oxygen saturation, and maximal spirometry values, without negatively affecting handgrip strength and cortical arousal. This information will lead to find specific training systems that meet the real needs of aircrew.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-03-10T19:05:26Z
dc.date.available.none.fl_str_mv 2022-03-10T19:05:26Z
dc.date.issued.none.fl_str_mv 2022-11-22
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2314-6133
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9065
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1155/2021/6633851
dc.identifier.doi.spa.fl_str_mv 10.1155/2021/6633851
dc.identifier.eissn.spa.fl_str_mv 2314-6141
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2314-6133
10.1155/2021/6633851
2314-6141
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9065
https://doi.org/10.1155/2021/6633851
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv BioMed Research International
dc.relation.references.spa.fl_str_mv [1] G. G. Cable, “In-flight hypoxia incidents in military aircraft: causes and implications for training,” Aviation, Space, and Environmental Medicine, vol. 74, no. 2, pp. 169–172, 2003.
[2] N. D. Green and L. Brown,“Head positioning and neck muscle activation during air combat,” Aviation, Space, and Environmental Medicine, vol. 75, no. 8, pp. 676–680, 2004.
[3] A. J. Hormeño-Holgado and V. J. Clemente-Suárez, “Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots,” Physiology & Behavior, vol. 208, pp. 112559–112559, 2019.
[4] C. Malle, P. Quinette, M. Laisney et al., “Working memory impairment in pilots exposed to acute hypobaric hypoxia,” Aviation, Space, and Environmental Medicine, vol. 84, no. 8, pp. 773–779, 2013.
[5] F. A. Petrassi, P. D. Hodkinson, P. L. Walters, and S. J. Gaydos, “Hypoxic hypoxia at moderate altitudes: review of the state of the science,” Aerospace medicine and human performance, vol. 83, no. 10, pp. 975–984, 2012.
[6] A. J. Pollard, P. W. Barry, N. P. Mason et al., “Hypoxia, Hypocapnia and spirometry at altitude,” Clinical Science, vol. 92, no. 6, pp. 593–598, 1997.
[7] A. Kikukawa and Y. S. Tachibana, “G-related musculoskeletal spine symptoms in Japan Air Self Defense Force F-15 pilots,” Aviation, Space, and Environmental Medicine, vol. 66, no. 3, pp. 269–272, 1995.
[8] F. H. Previc, N. Lopez, W. R. Ercoline et al., “The effects of sleep deprivation on flight performance. instrument scanning. and physiological arousal in pilots,” The International Journal of Aviation Psychology, vol. 19, no. 4, pp. 326–346, 2009.
[9] D. Asmaro, J. Mayall, and S. Ferguson, “Cognition at altitude: impairment in executive and memory processes under hypoxic conditions,” Aviation, Space, and Environmental Medicine, vol. 84, no. 11, pp. 1159–1165, 2013.
[10] O. Truszczyński, M. Wojtkowiak, M. Biernacki, and K. Kowalczuk, “The effect of hypoxia on the critical flicker fusion threshold in pilots,” International Journal of Occupational Medicine and Environmental Health, vol. 22, no. 1, pp. 13–18, 2009.
[11] D. Carmel, N. Lavie, and G. Rees, “Conscious awareness of flicker in humans involves frontal and parietal cortex,” Current Biology, vol. 16, no. 9, pp. 907–911, 2006.
[12] P. Prabhakaran and K. K. Tripath, “Autonomic modulations during 5 hours at 4574 m (15,000 ft) breathing 40% oxygen,” Aerospace medicine and human performance, vol. 82, no. 9, pp. 863–870, 2011.
[13] J. F. Tornero-Aguilera, J. G. Pelarigo, and V. J. ClementeSuárez, “Psychophysiological intervention to improve preparedness in military special operations forces,” Aviation, Space, and Environmental Medicine, vol. 90, no. 11, pp. 953– 958, 2019.
[14] Á. Bustamante-Sánchez, M. Delgado-Terán, and V. J. Clemente-Suárez, “Psychophysiological response of different aircrew in normobaric hypoxia training,” Ergonomics, vol. 62, no. 2, pp. 277–285, 2019.
[15] Á. Bustamante-Sánchez, J. F. Tornero-Aguilera, V. E. Fernández-Elías, A. J. Hormeño-Holgado, A. A. Dalamitros, and V. J. Clemente-Suárez, “Effect of stress on autonomic and cardiovascular systems in military population: a systematic review,” Cardiology Research and Practice, vol. 2020, 9 pages, 2020.
[16] Y. Barak, D. David, and S. Akselrod, “Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate,” Computers in Cardiology, vol. 26, pp. 627–630, 1999.
[17] K. Zużewicz, B. Biernat, G. Kempa, and K. Kwarecki, “Heart rate variability in exposure to high altitude hypoxia of short duration,” JOSE, vol. 5, no. 3, pp. 337–346, 1999.
[18] D. E. Vigo, S. P. Lloret, A. J. Videla et al., “Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude,” Wilderness & Environmental Medicine, vol. 21, no. 1, pp. 4–10, 2010.
[19] D. Zhang, J. She, Z. Zhang, and M. Yu, “Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization,” Biomedical Engineering Online, vol. 13, no. 1, p. 73, 2014.
[20] G. A. Reyes del Paso, W. Langewitz, L. J. M. Mulder, A. Van Roon, and S. Duschek, “The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies,” Psychophysiology, vol. 50, no. 5, pp. 477–487, 2013.
[21] G. E. Billman, “The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance,” Frontiers in Physiology, vol. 4, p. 26, 2013.
[22] F. Shaffer, R. McCraty, and C. L. Zerr, “A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability,” Frontiers in Psychology, vol. 5, p. 1040, 2014.
[23] C. Zerr, A. Kane, T. Vodopest, J. Allen, J. Hannan, and A. Cangelosi, “The nonlinear index SD1 predicts diastolic blood pressure and HRV time and frequency domain measurements in healthy undergraduates,” Applied Psychophysiology and Biofeedback, vol. 40, p. 134, 2015.
[24] S. Legg, S. Hill, A. Gilbey, A. Raman, Z. Schlader, and T. Mündel, “ Effect of mild hypoxia on working memory. complex logical reasoning and risk judgment,” The International Journal of Aviation Psychology, vol. 24, no. 2, pp. 126 –140, 2014.
[25] A. J. Hormeño-Holgado and V. J. Clemente-Suárez, “Psychophysiological monitorization in a special operation selection course, ” Journal of medical systems (Gainesville), vol. 43, no. 3, p. 47, 2019.
dc.relation.citationendpage.spa.fl_str_mv 7
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 2021
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hindawi Publishing Corporation
dc.publisher.place.spa.fl_str_mv United States
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.hindawi.com/journals/bmri/2021/6633851/
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7b3d7038-74d5-4e71-a394-6a458848f11b/download
https://repositorio.cuc.edu.co/bitstreams/010daeaf-6fae-4371-b5ed-881c5ca288ea/download
https://repositorio.cuc.edu.co/bitstreams/01b93842-2117-4258-8b4a-5697321002b2/download
https://repositorio.cuc.edu.co/bitstreams/b846a193-b2b9-472f-be92-7d459e3452c6/download
bitstream.checksum.fl_str_mv 5169ffe111fabd902e608ce982734e98
e30e9215131d99561d40d6b0abbe9bad
425f84f894d456ae819e0255ad12ee21
e6396e778537be885106cde4f76dac95
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760830462558208
spelling Bustamante-Sánchez, ÁlvaroGil Cabrera, JaimeTornero Aguilera, José FranciscoFernández-Lucas, JesúsRamos-Campo, Domingo JesúsClemente-Suárez, Vicente Javier2022-03-10T19:05:26Z2022-03-10T19:05:26Z2022-11-222314-6133https://hdl.handle.net/11323/9065https://doi.org/10.1155/2021/663385110.1155/2021/66338512314-6141Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/There is a lack of information on the psychophysiological response of pilots under hypoxic conditions. The study of the physiological, psychological, cardiorespiratory, neurological, behavioural, sensory, and cognitive symptoms that may appear during training in hypobaric chambers is essential to optimize the training processes of aircrew members. Thus, the present study is aimed at analyzing the psychophysiological responses of aircrew members in an incremental hypoxia training protocol. Psychophysiological responses of 44 aircrew members (34 males and 10 females) in an incremental hypoxia training protocol (3 minutes at 0 meters, 8 minutes at 5,000 meters, and maximum time at 7500 meters) were measured. Results suggested that the incremental hypoxia training protocol did not affect cortical arousal and handgrip strength; however, it increased the sympathetic tone, perceived stress, perceived effort, and heart rate and decreased forced expiratory volume and blood oxygen saturation. Thus, we concluded that acute hypoxic hypobaric exposure leads to decreased parasympathetic tone, blood oxygen saturation, and maximal spirometry values, without negatively affecting handgrip strength and cortical arousal. This information will lead to find specific training systems that meet the real needs of aircrew.7 páginasapplication/pdfengHindawi Publishing CorporationUnited StatesCopyright © 2021 A. Bustamante-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effects of hypoxia on selected psychophysiological stress responses of military aircrewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.hindawi.com/journals/bmri/2021/6633851/BioMed Research International[1] G. G. Cable, “In-flight hypoxia incidents in military aircraft: causes and implications for training,” Aviation, Space, and Environmental Medicine, vol. 74, no. 2, pp. 169–172, 2003.[2] N. D. Green and L. Brown,“Head positioning and neck muscle activation during air combat,” Aviation, Space, and Environmental Medicine, vol. 75, no. 8, pp. 676–680, 2004.[3] A. J. Hormeño-Holgado and V. J. Clemente-Suárez, “Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots,” Physiology & Behavior, vol. 208, pp. 112559–112559, 2019.[4] C. Malle, P. Quinette, M. Laisney et al., “Working memory impairment in pilots exposed to acute hypobaric hypoxia,” Aviation, Space, and Environmental Medicine, vol. 84, no. 8, pp. 773–779, 2013.[5] F. A. Petrassi, P. D. Hodkinson, P. L. Walters, and S. J. Gaydos, “Hypoxic hypoxia at moderate altitudes: review of the state of the science,” Aerospace medicine and human performance, vol. 83, no. 10, pp. 975–984, 2012.[6] A. J. Pollard, P. W. Barry, N. P. Mason et al., “Hypoxia, Hypocapnia and spirometry at altitude,” Clinical Science, vol. 92, no. 6, pp. 593–598, 1997.[7] A. Kikukawa and Y. S. Tachibana, “G-related musculoskeletal spine symptoms in Japan Air Self Defense Force F-15 pilots,” Aviation, Space, and Environmental Medicine, vol. 66, no. 3, pp. 269–272, 1995.[8] F. H. Previc, N. Lopez, W. R. Ercoline et al., “The effects of sleep deprivation on flight performance. instrument scanning. and physiological arousal in pilots,” The International Journal of Aviation Psychology, vol. 19, no. 4, pp. 326–346, 2009.[9] D. Asmaro, J. Mayall, and S. Ferguson, “Cognition at altitude: impairment in executive and memory processes under hypoxic conditions,” Aviation, Space, and Environmental Medicine, vol. 84, no. 11, pp. 1159–1165, 2013.[10] O. Truszczyński, M. Wojtkowiak, M. Biernacki, and K. Kowalczuk, “The effect of hypoxia on the critical flicker fusion threshold in pilots,” International Journal of Occupational Medicine and Environmental Health, vol. 22, no. 1, pp. 13–18, 2009.[11] D. Carmel, N. Lavie, and G. Rees, “Conscious awareness of flicker in humans involves frontal and parietal cortex,” Current Biology, vol. 16, no. 9, pp. 907–911, 2006.[12] P. Prabhakaran and K. K. Tripath, “Autonomic modulations during 5 hours at 4574 m (15,000 ft) breathing 40% oxygen,” Aerospace medicine and human performance, vol. 82, no. 9, pp. 863–870, 2011.[13] J. F. Tornero-Aguilera, J. G. Pelarigo, and V. J. ClementeSuárez, “Psychophysiological intervention to improve preparedness in military special operations forces,” Aviation, Space, and Environmental Medicine, vol. 90, no. 11, pp. 953– 958, 2019.[14] Á. Bustamante-Sánchez, M. Delgado-Terán, and V. J. Clemente-Suárez, “Psychophysiological response of different aircrew in normobaric hypoxia training,” Ergonomics, vol. 62, no. 2, pp. 277–285, 2019.[15] Á. Bustamante-Sánchez, J. F. Tornero-Aguilera, V. E. Fernández-Elías, A. J. Hormeño-Holgado, A. A. Dalamitros, and V. J. Clemente-Suárez, “Effect of stress on autonomic and cardiovascular systems in military population: a systematic review,” Cardiology Research and Practice, vol. 2020, 9 pages, 2020.[16] Y. Barak, D. David, and S. Akselrod, “Autonomic control of the cardiovascular system during acute hypobaric hypoxia, assessed by time-frequency decomposition of the heart rate,” Computers in Cardiology, vol. 26, pp. 627–630, 1999.[17] K. Zużewicz, B. Biernat, G. Kempa, and K. Kwarecki, “Heart rate variability in exposure to high altitude hypoxia of short duration,” JOSE, vol. 5, no. 3, pp. 337–346, 1999.[18] D. E. Vigo, S. P. Lloret, A. J. Videla et al., “Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude,” Wilderness & Environmental Medicine, vol. 21, no. 1, pp. 4–10, 2010.[19] D. Zhang, J. She, Z. Zhang, and M. Yu, “Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization,” Biomedical Engineering Online, vol. 13, no. 1, p. 73, 2014.[20] G. A. Reyes del Paso, W. Langewitz, L. J. M. Mulder, A. Van Roon, and S. Duschek, “The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies,” Psychophysiology, vol. 50, no. 5, pp. 477–487, 2013.[21] G. E. Billman, “The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance,” Frontiers in Physiology, vol. 4, p. 26, 2013.[22] F. Shaffer, R. McCraty, and C. L. Zerr, “A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability,” Frontiers in Psychology, vol. 5, p. 1040, 2014.[23] C. Zerr, A. Kane, T. Vodopest, J. Allen, J. Hannan, and A. Cangelosi, “The nonlinear index SD1 predicts diastolic blood pressure and HRV time and frequency domain measurements in healthy undergraduates,” Applied Psychophysiology and Biofeedback, vol. 40, p. 134, 2015.[24] S. Legg, S. Hill, A. Gilbey, A. Raman, Z. Schlader, and T. Mündel, “ Effect of mild hypoxia on working memory. complex logical reasoning and risk judgment,” The International Journal of Aviation Psychology, vol. 24, no. 2, pp. 126 –140, 2014.[25] A. J. Hormeño-Holgado and V. J. Clemente-Suárez, “Psychophysiological monitorization in a special operation selection course, ” Journal of medical systems (Gainesville), vol. 43, no. 3, p. 47, 2019.712021HypoxiaPsychophysiological stressMilitary aircrewPublicationORIGINALEffects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew.pdfEffects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew.pdfapplication/pdf432656https://repositorio.cuc.edu.co/bitstreams/7b3d7038-74d5-4e71-a394-6a458848f11b/download5169ffe111fabd902e608ce982734e98MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/010daeaf-6fae-4371-b5ed-881c5ca288ea/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEffects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew.pdf.txtEffects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew.pdf.txttext/plain33345https://repositorio.cuc.edu.co/bitstreams/01b93842-2117-4258-8b4a-5697321002b2/download425f84f894d456ae819e0255ad12ee21MD53THUMBNAILEffects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew.pdf.jpgEffects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew.pdf.jpgimage/jpeg13774https://repositorio.cuc.edu.co/bitstreams/b846a193-b2b9-472f-be92-7d459e3452c6/downloade6396e778537be885106cde4f76dac95MD5411323/9065oai:repositorio.cuc.edu.co:11323/90652024-09-17 14:06:54.038https://creativecommons.org/licenses/by/4.0/Copyright © 2021 A. Bustamante-Sánchez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==