Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption
In the present work, multi-walled carbon nanotubes (MWCNTs) were used as support material for the impregnation of metallic nanoparticles (MNPs) produced by green synthesis. The influences of the plant extracts (pomegranate (Punica Granatum), Eucalyptus, and pecan (Carya illinoinensis, leaves), metal...
- Autores:
-
Diel, Júlia C.
P. Franco, Dison S.
Igansi, Andrei V.
S. Cadaval Jr., Tito R.
Pereira, Hércules A.
S. Nunes, Isaac dos
Basso, Charles W.
M. Alves, Maria do Carmo
Morais, Jonder
Pinto, Diana
Dotto, Guilherme L.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8491
- Acceso en línea:
- https://hdl.handle.net/11323/8491
https://doi.org/10.1016/j.chemosphere.2021.131193
https://repositorio.cuc.edu.co/
- Palabra clave:
- Glyphosate
Adsorption
Carbon nanotubes
Nanoparticles
Green synthesis
XPS analyses
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_5a9b2fc3ceb7bbc8edcc17ef9e244ca0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8491 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
title |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
spellingShingle |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption Glyphosate Adsorption Carbon nanotubes Nanoparticles Green synthesis XPS analyses |
title_short |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
title_full |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
title_fullStr |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
title_full_unstemmed |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
title_sort |
Green synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorption |
dc.creator.fl_str_mv |
Diel, Júlia C. P. Franco, Dison S. Igansi, Andrei V. S. Cadaval Jr., Tito R. Pereira, Hércules A. S. Nunes, Isaac dos Basso, Charles W. M. Alves, Maria do Carmo Morais, Jonder Pinto, Diana Dotto, Guilherme L. |
dc.contributor.author.spa.fl_str_mv |
Diel, Júlia C. P. Franco, Dison S. Igansi, Andrei V. S. Cadaval Jr., Tito R. Pereira, Hércules A. S. Nunes, Isaac dos Basso, Charles W. M. Alves, Maria do Carmo Morais, Jonder Pinto, Diana Dotto, Guilherme L. |
dc.subject.spa.fl_str_mv |
Glyphosate Adsorption Carbon nanotubes Nanoparticles Green synthesis XPS analyses |
topic |
Glyphosate Adsorption Carbon nanotubes Nanoparticles Green synthesis XPS analyses |
description |
In the present work, multi-walled carbon nanotubes (MWCNTs) were used as support material for the impregnation of metallic nanoparticles (MNPs) produced by green synthesis. The influences of the plant extracts (pomegranate (Punica Granatum), Eucalyptus, and pecan (Carya illinoinensis, leaves), metal species (copper and iron), metallic concentrations, and type of functionalization (OH and COOH) on the characteristics of the obtained materials were studied. The precursor and impregnated MWCNTs were characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, point of charge, N2 adsorption/desorption isotherms and, X-ray photoelectron spectroscopy. All the synthesized materials were tested as adsorbents to remove glyphosate (GLY) in an aqueous medium. The MWCNTs were resistant to withstand the synthesis process, preserving its structure and morphological characteristics. The copper and iron on the surface of MWCNTS confirm the successful synthesis and impregnation of the MNPs. The MWCNTs impregnated with high metallic concentrations showed favorable adsorption of GLY. The adsorption capacity and percentage of removal were 21.17 mg g−1 and 84.08%, respectively, for the MWCNTs impregnated with iron MNPs using the pecan leaves as a reducing agent. The results indicated that an advanced adsorbent for GLY could be obtained by green synthesis, using MWCNTs as precursors and pecan leaves as a reducing agent. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-27T13:39:54Z |
dc.date.available.none.fl_str_mv |
2021-07-27T13:39:54Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8491 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.chemosphere.2021.131193 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8491 https://doi.org/10.1016/j.chemosphere.2021.131193 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
M. Abu-dalo, A. Jaradat, B.A. Albiss, N.A.F. Al-rawashdeh Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection J. Environ. Chem. Eng., 7 (2019), p. 103370, 10.1016/j.jece.2019.103370 N. Al-Jammal, T.A. Abdullah, T. Juzsakova, B. Zsirka, I. Cretescu, V. Vágvölgyi, V. Sebestyén, C. Le Phuoc, R.T. Rasheed, E. Domokos Functionalized carbon nanotubes for hydrocarbon removal from water J. Environ. Chem. Eng., 8 (2020), p. 103570, 10.1016/j.jece.2019.103570 P.T. Anastas, T.C. Williamson Green chemistry: an overview Green Chem. Des. Chem. Environ. (1996), 10.1021/bk-1996-0626.ch001 N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang Carbon nanotube - a review on Synthesis, Properties and plethora of applications in the field of biomedical science Sensors Int, 1 (2020), p. 100003, 10.1016/j.sintl.2020.100003 A. Bankar, B. Joshi, A. Ravi, S. Zinjarde Banana peel extract mediated synthesis of gold nanoparticles Colloids Surf. B Biointerfaces, 80 (2010), pp. 45-50, 10.1016/j.colsurfb.2010.05.029 B.L. Bhaskara, P. Nagaraja Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples Helv. Chim. Acta, 89 (2006), pp. 2686-2693, 10.1002/hlca.200690240 A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, G.L. Dotto, C.J. Duran-Valle Adsorption in water treatment Chem. Mol. Sci. Chem. Eng. (2019), pp. 1-19, 10.1016/B978-0-12-409547-2.14390-2 M. Bordbar, N. Mortazavimanesh Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time Environ. Sci. Pollut. Res. (2016), 10.1007/s11356-016-8183-y L.F.F.P.G. Bragança, R.R. Avillez, C.R. Moreira, M.I. Pais da Silva Synthesis and characterization of Co-Fe nanoparticles supported on mesoporous silicas Mater. Chem. Phys., 138 (2013), pp. 17-28, 10.1016/j.matchemphys.2012.10.012 R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. De Moraes, C.M.G. Silva, M.M. Beppu, L.F. Fraceto Removal of glyphosate herbicide from water using biopolymer membranes J. Environ. Manag., 151 (2015), pp. 353-360, 10.1016/j.jenvman.2015.01.005 A. Chowdhry, J. Kaur, M. Khatri, V. Puri, R. Tuli, S. Puri Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo Heliyon, 5 (2019), Article e02605, 10.1016/j.heliyon.2019.e02605 B.R.C. De Menezes, F.V. Ferreira Effects of octadecylamine functionalization of carbon nanotubes on dispersion , polarity , and mechanical properties of CNT/HDPE nanocomposites J. Mater. Sci. (2018), 10.1007/s10853-018-2627-3 J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. Thiago, E.L. Foletto, G.L. Dotto Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix J. Environ. Chem. Eng., 9 (2021), 10.1016/j.jece.2021.105178 G.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects Adsorption, 22 (2016), pp. 973-983, 10.1007/s10450-016-9804-y S. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta, M. Coïsson, B. Onida Applied Surface Science Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water Appl. Surf. Sci., 411 (2017), pp. 457-465, 10.1016/j.apsusc.2017.03.206 S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafi Review on heavy metal adsorption processes by carbon nanotubes J. Clean. Prod., 230 (2019), pp. 783-793, 10.1016/j.jclepro.2019.05.154 C.R. Galan, M.F. Silva, D. Mantovani, R. Bergamasco, M.F. Vieira Green synthesis of copper oxide nanoparticles impregnated on activated carbon using moringa oleifera leaves extract for the removal of nitrates from water Can. J. Chem. Eng., 9999 (2018), pp. 1-9, 10.1002/cjce.23185 M. Ghaedi, A. Ansari, R. Sahraei ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 114 (2013), pp. 687-694, 10.1016/j.saa.2013.04.091 M. Gomathi, A. Prakasam, P. V Rajkumar, S. Rajeshkumar, R. Chandrasekaran, P.M. Anbarasan Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity S. Afr. J. Chem. Eng., 32 (2020), pp. 1-4, 10.1016/j.sajce.2019.11.005 I. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R.A. Usman, M. Vithanage Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar Microporous Mesoporous Mater., 225 (2016), pp. 280-288, 10.1016/j.micromeso.2016.01.017 G.A.D. Herath, L.S. Poh, W.J. Ng Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology Chemosphere, 227 (2019), pp. 533-540, 10.1016/j.chemosphere.2019.04.078 Y. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells Catalysts, 5 (2015), pp. 310-348, 10.3390/catal5010310 Z. Hosseini-Dastgerdi, S.S. Meshkat An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution J. Petrol. Sci. Eng., 174 (2019), pp. 1053-1061, 10.1016/j.petrol.2018.12.024 Z. Hosseini-Dastgerdi, S.S. Meshkat An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution J. Petrol. Sci. Eng., 174 (2019), pp. 1053-1061, 10.1016/j.petrol.2018.12.024 M. Karuppiah, R. Rajmohan Green synthesis of silver nanoparticles using Ixora coccinea leaves extract Mater. Lett., 97 (2013), pp. 141-143, 10.1016/j.matlet.2013.01.087 S.M.S. Khademi, U. Telgheder, Y. Valadbeigi, V. Ilbeigi, M. Tabrizchi Direct detection of glyphosate in drinking water using corona-discharge ion mobility spectrometry: a theoretical and experimental study Int. J. Mass Spectrom., 442 (2019), pp. 29-34, 10.1016/j.ijms.2019.05.002 O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez The greener synthesis of nanoparticles Trends Biotechnol., 31 (2013), pp. 240-248, 10.1016/j.tibtech.2013.01.003 G. Leofanti, G. Tozzola, M. Padovan, G. Petrini, S. Bordiga, A. Zecchina Catalyst characterization: characterization techniques Catal. Today (1997), pp. 307-327, 10.1016/S0920-5861(96)00056-9 L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang, J. Gao A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation J. Power Sources, 263 (2014), pp. 13-21, 10.1016/j.jpowsour.2014.04.021 P. Marin, R. Bergamasco, A.N. Módenes, P.R. Paraiso, S. Hamoudi Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column Process Saf. Environ. Protect., 123 (2019), pp. 59-71, 10.1016/j.psep.2018.12.027 J.L. Marques Jr., S.F. Lütke, T.S. Frantz, J.B.S. Espinelli, R. Carapelli, L.A.A. Pinto, T.R.S. Cadaval Removal of Al (III) and Fe (III) from binary system and industrial effluent using chitosan films Int. J. Biol. Macromol., 120 (2018), pp. 1667-1673, 10.1016/j.ijbiomac.2018.09.135 Y. Mo, Y. Tang, S. Wang, J. Lin, H. Zhang, D. Luo Green synthesis of silver nanoparticles using eucalyptus leaf extract Mater. Lett., 144 (2015), pp. 165-167, 10.1016/j.matlet.2015.01.004 P. Mondal, A. Anweshan, M.K. Purkait Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review Chemosphere, 259 (2020), p. 127509, 10.1016/j.chemosphere.2020.127509 K.D.B.J.F. Moulder, W.F. Stickle, P.E. Sobol Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer Corporation Physical Electronics Division, Eden Prain, Minnesota USA (1992) M. Naderi Surface area: brunauer-emmett-teller (BET) Prog. Filtr. Sep. (2015), pp. 585-608, 10.1016/B978-0-12-384746-1.00014-8 F.G. Pacheco, A.A.C. Cotta, H.F. Gorgulho, A.P. Santos, W.A.A. Macedo, C.A. Furtado Applied Surface Science Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions : evaluating chemical modifications on true nanotube surface Appl. Surf. Sci., 357 (2015), pp. 1015-1023, 10.1016/j.apsusc.2015.09.054 M.R. Páez, Y. Ochoa-Muñoz, J.E. Rodriguez-Páez Efficient removal of a glyphosate - based herbicide from water using ZnO Biocatal. Agric. Biotechnol., 22 (2019), p. 101434, 10.1016/j.bcab.2019.101434 G. Pal, P. Rai, A. Pandey Green synthesis of nanoparticles: a greener approach for a cleaner future Green Synth. Charact. Appl. Nanoparticles, Elsevier Inc. (2019), pp. 1-26, 10.1016/b978-0-08-102579-6.00001-0 J. Peternela, M.F. Silva, M.F. Vieira, R. Bergamasco, A.M.S. Vieira Synthesis and impregnation of copper oxide nanoparticles on activated carbon through green synthesis for water pollutant removal Mater. Res., 21 (2018), Article e20160460, 10.1590/1980-5373-MR-2016-0460%0ASynthesis V.N. Popov Carbon nanotubes: properties and application Mater. Sci. Eng. Reports., 43 (2004), pp. 61-102, 10.1016/j.mser.2003.10.001 S.M. Pourmortazavi, M. Taghdiri, V. Makari, M. Rahimi-Nasrabadi Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 136 (2015), pp. 1249-1254, 10.1016/j.saa.2014.10.010 C. Ramesh, M. Hariprasad, V. Ragunathan Effect of Arachis hypogaea L . Leaf extract on barfoed's solution; green synthesis of Cu2O nanoparticles and its antibacterial effect Curr. Nanosci., 7 (2011), pp. 995-999, 10.2174/157341311798220781 L. Ramrakhiani, S. Ghosh, A.K. Mandal, S. Majumdar Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation Chem. Eng. J., 361 (2019), pp. 1063-1077, 10.1016/j.cej.2018.12.163 J.M. Salman, F.M. Abid Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2,4-D using response surface methodology Water Sci. Technol., 68 (2013), pp. 1503-1512, 10.2166/wst.2013.370 L. Samuel, R. Wang, G. Dubois, R. Allen, R. Wojtecki, Y.-H. La Amine-functionalized, multi-arm star polymers: a novel platform for removing glyphosate from aqueous media Chemosphere, 169 (2017), pp. 437-442, 10.1016/j.chemosphere.2016.11.049 K. Sen, N.K. Mondal, S. Chattoraj, J.K. Datta Statistical optimization study of adsorption parameters for the removal of glyphosate on forest soil using the response surface methodology Environ. Earth Sci., 76 (2017), pp. 1-15, 10.1007/s12665-016-6333-7 A. Shaji, A.K. Zachariah Surface area analysis of nanomaterials Therm. Rheol. Meas. Tech. Nanomater. Charact., Elsevier Inc. (2017), pp. 197-231, 10.1016/B978-0-323-46139-9.00009-8 M. Shanmugavadivu, S. Kuppusamy, R. Ranjithkumar Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity Am. J. Adv. Drug Deliv., 2 (2014), pp. 174-182 D.A. Shirley High-resolution X-ray photoemission spectrum of the valence bands ofGold~ Phys. Rev. B, 5 (1972), pp. 4709-4714 K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl. Chem., 57 (1985), pp. 603-619, 10.1515/iupac.57.0007 G. Singer, P. Siedlaczek, G. Sinn, H. Rennhofer, M. Mič, M. Omastov, M.M. Unterlass, J. Wendrinsky, V. Milotti Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP (2018), pp. 1-18, 10.3390/nano8110912 L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods J. Alloys Compd., 501 (2010), pp. 77-84, 10.1016/j.jallcom.2010.04.032 I. Subhankari, P.L. Nayak Synthesis of copper nanoparticles using syzygium aromaticum (cloves) aqueous extract by using green chemistry World J. Nano Sci. Technol., 2 (2013), pp. 14-17, 10.5829/idosi.wjnst.2013.2.1.21134 M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117 F.V. Ferreira, W. Franceschi, B.R.C. Menezes, A.F. Biagioni, A.R. Coutinho, L.S. Cividanes Synthesis, characterization, and applications of carbon nanotubes Carbon-Based Nanofillers and Their Rubber Nanocomposites (2019), pp. 1-45, 10.1016/B978-0-12-813248-7.00001-8%0A© L. Vanyorek, Á. Prekob, V. Hajdu, G. Muránszky, B. Fiser, E. Sikora, F. Kristály, B. Viskolcz Ultrasonic cavitation assisted deposition of catalytically active metals on nitrogen-doped and non-doped carbon nanotubes - a comparative study J. Mater. Res. Technol. (2020), pp. 1-9, 10.1016/j.jmrt.2020.02.054 B. Verma, C. Balomajumder Surface modification of one-dimensional Carbon Nanotubes: a review for the management of heavy metals in wastewater Environ. Technol. Innov., 17 (2020), p. 100596, 10.1016/j.eti.2019.100596 S. Vivekanandhan, M. Venkateswarlu, D. Carnahan, M. Misra, A.K. Mohanty, N. Satyanarayana Functionalization of single-walled carbon nanotubes with silver nanoparticles using Tecoma stans leaf extract Phys. E., 44 (2012), pp. 1725-1729, 10.1016/j.physe.2011.10.013 T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution J. Clean. Prod., 83 (2014), pp. 413-419, 10.1016/j.jclepro.2014.07.006 T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater Sci. Total Environ. (2014), pp. 466-467, 10.1016/j.scitotenv.2013.07.022 210–213 World Health Organization (Who) Environmental Health Criteria 159: Glyphosate (1994), p. 178 https://apps.who.int/iris/bitstream/handle/10665/40044/9241571594-eng.pdf?sequence=1&isAllowed=y, Accessed 15th Jan 2021 B. Wouters, X. Sheng, A. Boschin, T. Breugelmans, E. Ahlberg, I.F.J. Vankelecom, P.P. Pescarmona, A. Hubin The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol Electrochim. Acta, 111 (2013), pp. 405-410, 10.1016/j.electacta.2013.07.210 G. Xiao, R. Wen Comparative adsorption of glyphosate from aqueous solution by 2-aminopyridine modified polystyrene resin, D301 resin and 330 resin: influencing factors, salinity resistance and mechanism Fluid Phase Equil., 411 (2016), pp. 1-6, 10.1016/j.fluid.2015.11.026 N.U. Yamaguchi, R. Bergamasco, S. Hamoudi Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water Chem. Eng. J., 295 (2016), pp. 391-402, 10.1016/j.cej.2016.03.051 S. Yurdakal, C. Garlisi, O. Levent, M. Bellardita, G. Palmisano (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV-vis, photoluminescence, and electrochemical, characterizations Heterog. Photocatal. (2019), pp. 87-152, 10.1016/B978-0-444-64015-4.00004-3 S. Zavareh, Z. Farrokhzad, F. Darvishi Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water Ecotoxicol. Environ. Saf., 155 (2018), pp. 1-8, 10.1016/j.ecoenv.2018.02.043 C.R. Zhou, G.P. Li, D.G. Jiang Fluid Phase Equilibria Study on behavior of alkalescent fiber FFA-1 adsorbing glyphosate from production wastewater of glyphosate Fluid Phase Equil., 362 (2014), pp. 69-73, 10.1016/j.fluid.2013.09.00 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Chemosphere |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0045653521016659 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b2c62b00-7de4-4e33-bb6b-07770e2fb380/download https://repositorio.cuc.edu.co/bitstreams/77dacc7b-bfb6-4774-9558-7a967cc843d5/download https://repositorio.cuc.edu.co/bitstreams/2430be6a-8c98-4664-a3be-4bef83e48453/download https://repositorio.cuc.edu.co/bitstreams/d5cedf54-2648-41a1-b69d-31463b247ff4/download https://repositorio.cuc.edu.co/bitstreams/ed3d25b9-4055-4936-8de9-664f88732d05/download |
bitstream.checksum.fl_str_mv |
d3fcb5f3764b1e372a3704c08bb6c661 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 3cc3197e4a991cfb08e5f9246b88db49 face46340cacdb23096a6ca4d9681af4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166828909658112 |
spelling |
Diel, Júlia C.P. Franco, Dison S.Igansi, Andrei V.S. Cadaval Jr., Tito R.Pereira, Hércules A.S. Nunes, Isaac dosBasso, Charles W.M. Alves, Maria do CarmoMorais, JonderPinto, DianaDotto, Guilherme L.2021-07-27T13:39:54Z2021-07-27T13:39:54Z2021https://hdl.handle.net/11323/8491https://doi.org/10.1016/j.chemosphere.2021.131193Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the present work, multi-walled carbon nanotubes (MWCNTs) were used as support material for the impregnation of metallic nanoparticles (MNPs) produced by green synthesis. The influences of the plant extracts (pomegranate (Punica Granatum), Eucalyptus, and pecan (Carya illinoinensis, leaves), metal species (copper and iron), metallic concentrations, and type of functionalization (OH and COOH) on the characteristics of the obtained materials were studied. The precursor and impregnated MWCNTs were characterized through X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, point of charge, N2 adsorption/desorption isotherms and, X-ray photoelectron spectroscopy. All the synthesized materials were tested as adsorbents to remove glyphosate (GLY) in an aqueous medium. The MWCNTs were resistant to withstand the synthesis process, preserving its structure and morphological characteristics. The copper and iron on the surface of MWCNTS confirm the successful synthesis and impregnation of the MNPs. The MWCNTs impregnated with high metallic concentrations showed favorable adsorption of GLY. The adsorption capacity and percentage of removal were 21.17 mg g−1 and 84.08%, respectively, for the MWCNTs impregnated with iron MNPs using the pecan leaves as a reducing agent. The results indicated that an advanced adsorbent for GLY could be obtained by green synthesis, using MWCNTs as precursors and pecan leaves as a reducing agent.Diel, Júlia C.P. Franco, Dison S.Igansi, Andrei V.S. Cadaval Jr., Tito R.Pereira, Hércules A.S. Nunes, Isaac dosBasso, Charles W.M. Alves, Maria do CarmoMorais, JonderPinto, DianaDotto, Guilherme L.application/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chemospherehttps://www.sciencedirect.com/science/article/abs/pii/S0045653521016659GlyphosateAdsorptionCarbon nanotubesNanoparticlesGreen synthesisXPS analysesGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles: Characterization and application in glyphosate adsorptionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionM. Abu-dalo, A. Jaradat, B.A. Albiss, N.A.F. Al-rawashdeh Green synthesis of TiO2 NPs/pristine pomegranate peel extract nanocomposite and its antimicrobial activity for water disinfection J. Environ. Chem. Eng., 7 (2019), p. 103370, 10.1016/j.jece.2019.103370N. Al-Jammal, T.A. Abdullah, T. Juzsakova, B. Zsirka, I. Cretescu, V. Vágvölgyi, V. Sebestyén, C. Le Phuoc, R.T. Rasheed, E. Domokos Functionalized carbon nanotubes for hydrocarbon removal from water J. Environ. Chem. Eng., 8 (2020), p. 103570, 10.1016/j.jece.2019.103570P.T. Anastas, T.C. Williamson Green chemistry: an overview Green Chem. Des. Chem. Environ. (1996), 10.1021/bk-1996-0626.ch001N. Anzar, R. Hasan, M. Tyagi, N. Yadav, J. Narang Carbon nanotube - a review on Synthesis, Properties and plethora of applications in the field of biomedical science Sensors Int, 1 (2020), p. 100003, 10.1016/j.sintl.2020.100003A. Bankar, B. Joshi, A. Ravi, S. Zinjarde Banana peel extract mediated synthesis of gold nanoparticles Colloids Surf. B Biointerfaces, 80 (2010), pp. 45-50, 10.1016/j.colsurfb.2010.05.029B.L. Bhaskara, P. Nagaraja Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples Helv. Chim. Acta, 89 (2006), pp. 2686-2693, 10.1002/hlca.200690240A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, G.L. Dotto, C.J. Duran-Valle Adsorption in water treatment Chem. Mol. Sci. Chem. Eng. (2019), pp. 1-19, 10.1016/B978-0-12-409547-2.14390-2M. Bordbar, N. Mortazavimanesh Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time Environ. Sci. Pollut. Res. (2016), 10.1007/s11356-016-8183-yL.F.F.P.G. Bragança, R.R. Avillez, C.R. Moreira, M.I. Pais da Silva Synthesis and characterization of Co-Fe nanoparticles supported on mesoporous silicas Mater. Chem. Phys., 138 (2013), pp. 17-28, 10.1016/j.matchemphys.2012.10.012R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. De Moraes, C.M.G. Silva, M.M. Beppu, L.F. Fraceto Removal of glyphosate herbicide from water using biopolymer membranes J. Environ. Manag., 151 (2015), pp. 353-360, 10.1016/j.jenvman.2015.01.005A. Chowdhry, J. Kaur, M. Khatri, V. Puri, R. Tuli, S. Puri Characterization of functionalized multiwalled carbon nanotubes and comparison of their cellular toxicity between HEK 293 cells and zebra fish in vivo Heliyon, 5 (2019), Article e02605, 10.1016/j.heliyon.2019.e02605B.R.C. De Menezes, F.V. Ferreira Effects of octadecylamine functionalization of carbon nanotubes on dispersion , polarity , and mechanical properties of CNT/HDPE nanocomposites J. Mater. Sci. (2018), 10.1007/s10853-018-2627-3J.C. Diel, D.S.P. Franco, I.D.S. Nunes, H.A. Pereira, K.S. Moreira, T.A. Thiago, E.L. Foletto, G.L. Dotto Carbon nanotubes impregnated with metallic nanoparticles and their application as an adsorbent for the glyphosate removal in an aqueous matrix J. Environ. Chem. Eng., 9 (2021), 10.1016/j.jece.2021.105178G.L. Dotto, R. Ocampo-Pérez, J.M. Moura, T.R.S. Cadaval, L.A.A. Pinto Adsorption rate of Reactive Black 5 on chitosan based materials: geometry and swelling effects Adsorption, 22 (2016), pp. 973-983, 10.1007/s10450-016-9804-yS. Fiorilli, L. Rivoira, G. Calì, M. Appendini, M. Concetta, M. Coïsson, B. Onida Applied Surface Science Iron oxide inside SBA-15 modified with amino groups as reusable adsorbent for highly efficient removal of glyphosate from water Appl. Surf. Sci., 411 (2017), pp. 457-465, 10.1016/j.apsusc.2017.03.206S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafi Review on heavy metal adsorption processes by carbon nanotubes J. Clean. Prod., 230 (2019), pp. 783-793, 10.1016/j.jclepro.2019.05.154C.R. Galan, M.F. Silva, D. Mantovani, R. Bergamasco, M.F. Vieira Green synthesis of copper oxide nanoparticles impregnated on activated carbon using moringa oleifera leaves extract for the removal of nitrates from water Can. J. Chem. Eng., 9999 (2018), pp. 1-9, 10.1002/cjce.23185M. Ghaedi, A. Ansari, R. Sahraei ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 114 (2013), pp. 687-694, 10.1016/j.saa.2013.04.091M. Gomathi, A. Prakasam, P. V Rajkumar, S. Rajeshkumar, R. Chandrasekaran, P.M. Anbarasan Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity S. Afr. J. Chem. Eng., 32 (2020), pp. 1-4, 10.1016/j.sajce.2019.11.005I. Herath, P. Kumarathilaka, M.I. Al-Wabel, A. Abduljabbar, M. Ahmad, A.R.A. Usman, M. Vithanage Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar Microporous Mesoporous Mater., 225 (2016), pp. 280-288, 10.1016/j.micromeso.2016.01.017G.A.D. Herath, L.S. Poh, W.J. Ng Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology Chemosphere, 227 (2019), pp. 533-540, 10.1016/j.chemosphere.2019.04.078Y. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells Catalysts, 5 (2015), pp. 310-348, 10.3390/catal5010310Z. Hosseini-Dastgerdi, S.S. Meshkat An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution J. Petrol. Sci. Eng., 174 (2019), pp. 1053-1061, 10.1016/j.petrol.2018.12.024Z. Hosseini-Dastgerdi, S.S. Meshkat An experimental and modeling study of asphaltene adsorption by carbon nanotubes from model oil solution J. Petrol. Sci. Eng., 174 (2019), pp. 1053-1061, 10.1016/j.petrol.2018.12.024M. Karuppiah, R. Rajmohan Green synthesis of silver nanoparticles using Ixora coccinea leaves extract Mater. Lett., 97 (2013), pp. 141-143, 10.1016/j.matlet.2013.01.087S.M.S. Khademi, U. Telgheder, Y. Valadbeigi, V. Ilbeigi, M. Tabrizchi Direct detection of glyphosate in drinking water using corona-discharge ion mobility spectrometry: a theoretical and experimental study Int. J. Mass Spectrom., 442 (2019), pp. 29-34, 10.1016/j.ijms.2019.05.002O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez The greener synthesis of nanoparticles Trends Biotechnol., 31 (2013), pp. 240-248, 10.1016/j.tibtech.2013.01.003G. Leofanti, G. Tozzola, M. Padovan, G. Petrini, S. Bordiga, A. Zecchina Catalyst characterization: characterization techniques Catal. Today (1997), pp. 307-327, 10.1016/S0920-5861(96)00056-9L. Li, M. Chen, G. Huang, N. Yang, L. Zhang, H. Wang, Y. Liu, W. Wang, J. Gao A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation J. Power Sources, 263 (2014), pp. 13-21, 10.1016/j.jpowsour.2014.04.021P. Marin, R. Bergamasco, A.N. Módenes, P.R. Paraiso, S. Hamoudi Synthesis and characterization of graphene oxide functionalized with MnFe2O4 and supported on activated carbon for glyphosate adsorption in fixed bed column Process Saf. Environ. Protect., 123 (2019), pp. 59-71, 10.1016/j.psep.2018.12.027J.L. Marques Jr., S.F. Lütke, T.S. Frantz, J.B.S. Espinelli, R. Carapelli, L.A.A. Pinto, T.R.S. Cadaval Removal of Al (III) and Fe (III) from binary system and industrial effluent using chitosan films Int. J. Biol. Macromol., 120 (2018), pp. 1667-1673, 10.1016/j.ijbiomac.2018.09.135Y. Mo, Y. Tang, S. Wang, J. Lin, H. Zhang, D. Luo Green synthesis of silver nanoparticles using eucalyptus leaf extract Mater. Lett., 144 (2015), pp. 165-167, 10.1016/j.matlet.2015.01.004P. Mondal, A. Anweshan, M.K. Purkait Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review Chemosphere, 259 (2020), p. 127509, 10.1016/j.chemosphere.2020.127509K.D.B.J.F. Moulder, W.F. Stickle, P.E. Sobol Handbook of X-Ray Photoelectron Spectroscopy Perkin-Elmer Corporation Physical Electronics Division, Eden Prain, Minnesota USA (1992)M. Naderi Surface area: brunauer-emmett-teller (BET) Prog. Filtr. Sep. (2015), pp. 585-608, 10.1016/B978-0-12-384746-1.00014-8F.G. Pacheco, A.A.C. Cotta, H.F. Gorgulho, A.P. Santos, W.A.A. Macedo, C.A. Furtado Applied Surface Science Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions : evaluating chemical modifications on true nanotube surface Appl. Surf. Sci., 357 (2015), pp. 1015-1023, 10.1016/j.apsusc.2015.09.054M.R. Páez, Y. Ochoa-Muñoz, J.E. Rodriguez-Páez Efficient removal of a glyphosate - based herbicide from water using ZnO Biocatal. Agric. Biotechnol., 22 (2019), p. 101434, 10.1016/j.bcab.2019.101434G. Pal, P. Rai, A. Pandey Green synthesis of nanoparticles: a greener approach for a cleaner future Green Synth. Charact. Appl. Nanoparticles, Elsevier Inc. (2019), pp. 1-26, 10.1016/b978-0-08-102579-6.00001-0J. Peternela, M.F. Silva, M.F. Vieira, R. Bergamasco, A.M.S. Vieira Synthesis and impregnation of copper oxide nanoparticles on activated carbon through green synthesis for water pollutant removal Mater. Res., 21 (2018), Article e20160460, 10.1590/1980-5373-MR-2016-0460%0ASynthesisV.N. Popov Carbon nanotubes: properties and application Mater. Sci. Eng. Reports., 43 (2004), pp. 61-102, 10.1016/j.mser.2003.10.001S.M. Pourmortazavi, M. Taghdiri, V. Makari, M. Rahimi-Nasrabadi Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 136 (2015), pp. 1249-1254, 10.1016/j.saa.2014.10.010C. Ramesh, M. Hariprasad, V. Ragunathan Effect of Arachis hypogaea L . Leaf extract on barfoed's solution; green synthesis of Cu2O nanoparticles and its antibacterial effect Curr. Nanosci., 7 (2011), pp. 995-999, 10.2174/157341311798220781L. Ramrakhiani, S. Ghosh, A.K. Mandal, S. Majumdar Utilization of multi-metal laden spent biosorbent for removal of glyphosate herbicide from aqueous solution and its mechanism elucidation Chem. Eng. J., 361 (2019), pp. 1063-1077, 10.1016/j.cej.2018.12.163J.M. Salman, F.M. Abid Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2,4-D using response surface methodology Water Sci. Technol., 68 (2013), pp. 1503-1512, 10.2166/wst.2013.370L. Samuel, R. Wang, G. Dubois, R. Allen, R. Wojtecki, Y.-H. La Amine-functionalized, multi-arm star polymers: a novel platform for removing glyphosate from aqueous media Chemosphere, 169 (2017), pp. 437-442, 10.1016/j.chemosphere.2016.11.049K. Sen, N.K. Mondal, S. Chattoraj, J.K. Datta Statistical optimization study of adsorption parameters for the removal of glyphosate on forest soil using the response surface methodology Environ. Earth Sci., 76 (2017), pp. 1-15, 10.1007/s12665-016-6333-7A. Shaji, A.K. Zachariah Surface area analysis of nanomaterials Therm. Rheol. Meas. Tech. Nanomater. Charact., Elsevier Inc. (2017), pp. 197-231, 10.1016/B978-0-323-46139-9.00009-8M. Shanmugavadivu, S. Kuppusamy, R. Ranjithkumar Synthesis of pomegranate peel extract mediated silver nanoparticles and its antibacterial activity Am. J. Adv. Drug Deliv., 2 (2014), pp. 174-182D.A. Shirley High-resolution X-ray photoemission spectrum of the valence bands ofGold~ Phys. Rev. B, 5 (1972), pp. 4709-4714K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, T. Siemieniewska Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity Pure Appl. Chem., 57 (1985), pp. 603-619, 10.1515/iupac.57.0007G. Singer, P. Siedlaczek, G. Sinn, H. Rennhofer, M. Mič, M. Omastov, M.M. Unterlass, J. Wendrinsky, V. Milotti Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP (2018), pp. 1-18, 10.3390/nano8110912L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods J. Alloys Compd., 501 (2010), pp. 77-84, 10.1016/j.jallcom.2010.04.032I. Subhankari, P.L. Nayak Synthesis of copper nanoparticles using syzygium aromaticum (cloves) aqueous extract by using green chemistry World J. Nano Sci. Technol., 2 (2013), pp. 14-17, 10.5829/idosi.wjnst.2013.2.1.21134M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem., 87 (2015), pp. 1051-1069, 10.1515/pac-2014-1117F.V. Ferreira, W. Franceschi, B.R.C. Menezes, A.F. Biagioni, A.R. Coutinho, L.S. Cividanes Synthesis, characterization, and applications of carbon nanotubes Carbon-Based Nanofillers and Their Rubber Nanocomposites (2019), pp. 1-45, 10.1016/B978-0-12-813248-7.00001-8%0A©L. Vanyorek, Á. Prekob, V. Hajdu, G. Muránszky, B. Fiser, E. Sikora, F. Kristály, B. Viskolcz Ultrasonic cavitation assisted deposition of catalytically active metals on nitrogen-doped and non-doped carbon nanotubes - a comparative study J. Mater. Res. Technol. (2020), pp. 1-9, 10.1016/j.jmrt.2020.02.054B. Verma, C. Balomajumder Surface modification of one-dimensional Carbon Nanotubes: a review for the management of heavy metals in wastewater Environ. Technol. Innov., 17 (2020), p. 100596, 10.1016/j.eti.2019.100596S. Vivekanandhan, M. Venkateswarlu, D. Carnahan, M. Misra, A.K. Mohanty, N. Satyanarayana Functionalization of single-walled carbon nanotubes with silver nanoparticles using Tecoma stans leaf extract Phys. E., 44 (2012), pp. 1725-1729, 10.1016/j.physe.2011.10.013T. Wang, J. Lin, Z. Chen, M. Megharaj, R. Naidu Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution J. Clean. Prod., 83 (2014), pp. 413-419, 10.1016/j.jclepro.2014.07.006T. Wang, X. Jin, Z. Chen, M. Megharaj, R. Naidu Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater Sci. Total Environ. (2014), pp. 466-467, 10.1016/j.scitotenv.2013.07.022 210–213World Health Organization (Who) Environmental Health Criteria 159: Glyphosate (1994), p. 178 https://apps.who.int/iris/bitstream/handle/10665/40044/9241571594-eng.pdf?sequence=1&isAllowed=y, Accessed 15th Jan 2021B. Wouters, X. Sheng, A. Boschin, T. Breugelmans, E. Ahlberg, I.F.J. Vankelecom, P.P. Pescarmona, A. Hubin The electrocatalytic behaviour of Pt and Cu nanoparticles supported on carbon nanotubes for the nitrobenzene reduction in ethanol Electrochim. Acta, 111 (2013), pp. 405-410, 10.1016/j.electacta.2013.07.210G. Xiao, R. Wen Comparative adsorption of glyphosate from aqueous solution by 2-aminopyridine modified polystyrene resin, D301 resin and 330 resin: influencing factors, salinity resistance and mechanism Fluid Phase Equil., 411 (2016), pp. 1-6, 10.1016/j.fluid.2015.11.026N.U. Yamaguchi, R. Bergamasco, S. Hamoudi Magnetic MnFe2O4–graphene hybrid composite for efficient removal of glyphosate from water Chem. Eng. J., 295 (2016), pp. 391-402, 10.1016/j.cej.2016.03.051S. Yurdakal, C. Garlisi, O. Levent, M. Bellardita, G. Palmisano (Photo)catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV-vis, photoluminescence, and electrochemical, characterizations Heterog. Photocatal. (2019), pp. 87-152, 10.1016/B978-0-444-64015-4.00004-3S. Zavareh, Z. Farrokhzad, F. Darvishi Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water Ecotoxicol. Environ. Saf., 155 (2018), pp. 1-8, 10.1016/j.ecoenv.2018.02.043C.R. Zhou, G.P. Li, D.G. Jiang Fluid Phase Equilibria Study on behavior of alkalescent fiber FFA-1 adsorbing glyphosate from production wastewater of glyphosate Fluid Phase Equil., 362 (2014), pp. 69-73, 10.1016/j.fluid.2013.09.00PublicationORIGINALGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles.pdfGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles.pdfapplication/pdf110555https://repositorio.cuc.edu.co/bitstreams/b2c62b00-7de4-4e33-bb6b-07770e2fb380/downloadd3fcb5f3764b1e372a3704c08bb6c661MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/77dacc7b-bfb6-4774-9558-7a967cc843d5/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/2430be6a-8c98-4664-a3be-4bef83e48453/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles.pdf.jpgGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles.pdf.jpgimage/jpeg56418https://repositorio.cuc.edu.co/bitstreams/d5cedf54-2648-41a1-b69d-31463b247ff4/download3cc3197e4a991cfb08e5f9246b88db49MD54TEXTGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles.pdf.txtGreen synthesis of carbon nanotubes impregnated with metallic nanoparticles.pdf.txttext/plain2062https://repositorio.cuc.edu.co/bitstreams/ed3d25b9-4055-4936-8de9-664f88732d05/downloadface46340cacdb23096a6ca4d9681af4MD5511323/8491oai:repositorio.cuc.edu.co:11323/84912024-09-17 14:15:00.137http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |