Iron status in late pregnancy is inversely associated with birth weight in Colombia

Objective: Gestational anaemia (GA) is common in developing countries. This study assessed the relationship of late GA and negative perinatal outcomes in participants recruited in a reference maternity unit of the Caribbean region of Colombia. Design: Prospective analytical birth cohort study. Mater...

Full description

Autores:
puerto lopez, alejandra
Trojan, Annabelle
ALVIS ZAKZUK, NELSON RAFAEL
López-Saleme, Rossana
edna estrada, francisco
Alvarez, Alvaro
Alvis-Guzmán, Nelson
Zakzuk, Josefina
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9082
Acceso en línea:
https://hdl.handle.net/11323/9082
https://doi.org/10.1017/S136898002100166X
https://repositorio.cuc.edu.co/
Palabra clave:
Anaemia
Birth outcomes
Iron deficiency
Iron status
Low birth weight
Pregnancy
Colombia
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_5a67f19304c6c566a69c90a7bdb46530
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9082
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Iron status in late pregnancy is inversely associated with birth weight in Colombia
title Iron status in late pregnancy is inversely associated with birth weight in Colombia
spellingShingle Iron status in late pregnancy is inversely associated with birth weight in Colombia
Anaemia
Birth outcomes
Iron deficiency
Iron status
Low birth weight
Pregnancy
Colombia
title_short Iron status in late pregnancy is inversely associated with birth weight in Colombia
title_full Iron status in late pregnancy is inversely associated with birth weight in Colombia
title_fullStr Iron status in late pregnancy is inversely associated with birth weight in Colombia
title_full_unstemmed Iron status in late pregnancy is inversely associated with birth weight in Colombia
title_sort Iron status in late pregnancy is inversely associated with birth weight in Colombia
dc.creator.fl_str_mv puerto lopez, alejandra
Trojan, Annabelle
ALVIS ZAKZUK, NELSON RAFAEL
López-Saleme, Rossana
edna estrada, francisco
Alvarez, Alvaro
Alvis-Guzmán, Nelson
Zakzuk, Josefina
dc.contributor.author.spa.fl_str_mv puerto lopez, alejandra
Trojan, Annabelle
ALVIS ZAKZUK, NELSON RAFAEL
López-Saleme, Rossana
edna estrada, francisco
Alvarez, Alvaro
Alvis-Guzmán, Nelson
Zakzuk, Josefina
dc.subject.proposal.eng.fl_str_mv Anaemia
Birth outcomes
Iron deficiency
Iron status
Low birth weight
Pregnancy
topic Anaemia
Birth outcomes
Iron deficiency
Iron status
Low birth weight
Pregnancy
Colombia
dc.subject.proposal.spa.fl_str_mv Colombia
description Objective: Gestational anaemia (GA) is common in developing countries. This study assessed the relationship of late GA and negative perinatal outcomes in participants recruited in a reference maternity unit of the Caribbean region of Colombia. Design: Prospective analytical birth cohort study. Maternal Hb and serum ferritin (SF) levels were measured. GA was defined as Hb levels <6·82 mmol/l (<11 g/dl), SF depletion as SF levels <12 µg/l. Birth outcomes such as low birth weight (LBW), preterm birth (PB) and small for gestational age (SGA) were examined. Setting: Mothers in the first stage of labour, living in urban or rural areas of Bolívar, were enrolled in an obstetrical centre located in Cartagena, Colombia. Blood and stool samples were taken prior delivery. Maternal blood count, SF levels and infant anthropometric data were recorded for analysis. Participants: 1218 pregnant women aged 18-42 years and their newborns. Results: Prevalence of GA and SF depletion was 41·6 % and 41·1 %, respectively. GA was positively associated with poverty-related sociodemographic conditions. Prenatal care attendance lowered the risk of PB, LBW and SGA. Birth weight was inversely associated with Hb levels, observing a -36·8 g decrease in newborn weight per 0·62 mmol/l (or 1 g/dl) of maternal Hb. SF depletion, but not anaemia, was associated with PB. SGA outcome showed a significant association with anaemia, but not a significant relationship with SF depletion. Conclusions: Birth weight and other-related perinatal outcomes are negatively associated with Hb and SF depletion. Prenatal care attendance reduced the risk of negative birth outcomes.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-04-16
dc.date.accessioned.none.fl_str_mv 2022-03-16T21:01:31Z
dc.date.available.none.fl_str_mv 2022-03-16T21:01:31Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1368-9800
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9082
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1017/S136898002100166X
dc.identifier.doi.spa.fl_str_mv 10.1017/S136898002100166X
dc.identifier.eissn.spa.fl_str_mv 1475-2727
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1368-9800
10.1017/S136898002100166X
1475-2727
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9082
https://doi.org/10.1017/S136898002100166X
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Public Health Nutrition
dc.relation.references.spa.fl_str_mv 1. World Health Organization (2011) Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Geneva, Switzerland: World Health Organization.
2. World Health Organization (2020) WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Geneva: World Health Organization.
3. Figueiredo ACMG, Gomes-Filho IS, Batista JET et al. (2019) Maternal anemia and birth weight: a prospective cohort study. PLoS One 14, e0212817.
4. Yi SW, Han YJ & Ohrr H (2013) Anemia before pregnancy and risk of preterm birth, low birth weight and small-forgestational-age birth in Korean women. Eur J Clin Nutr 67, 337–342.
5. Malhotra M, Sharma JB, Batra S et al. (2002) Maternal and perinatal outcome in varying degrees of anemia. Int J Gynecol Obstet 79, 93–100.
6. Col Madendag I, Eraslan Sahin M, Madendag Y et al. (2019) The effect of iron deficiency anemia early in the third trimester on small for gestational age and birth weight: a retrospective cohort study on iron deficiency anemia and fetal weight. Biomed Res Int 2019, 7613868.
7. Suitor CW (1991) Perspectives on nutrition during pregnancy: part I, weight gain; part II, nutrient supplements. J Am Diet Assoc 91, 96–98.
8. Friedrisch JR & Friedrisch BK (2017) Prophylactic iron supplementation in pregnancy: a controversial issue. Biochem Insights 10, 117862641773773.
9. Fisher AL & Nemeth E (2017) Iron homeostasis during pregnancy. Am J Clin Nutr 106, 1567S–1574S.
10. Brannon PM & Taylor CL (2017) Iron supplementation during pregnancy and infancy: uncertainties and implications for research and policy. Nutrients 9, 1–17.
11. Ng SW, Norwitz SG & Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20, 3283.
12. Ziaei S, Norrozi M, Faghihzadeh S et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin ≥ 13.2 g/dl. BJOG 114, 684–688.
13. Shastri L, Mishra PE, Dwarkanath P et al. (2015) Association of oral iron supplementation with birth outcomes in nonanaemic South Indian pregnant women. Eur J Clin Nutr 69, 609–613.
14. Dewey KG & Oaks BM (2017) U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr 106, 1694S–1702S.
15. World Health Organization (2012) Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva, Switzerland: World Health Organization.
16. Gonzales GF, Olavegoya P, Gonzales GF et al. (2019) Pathophysiology of anemia in pregnancy: anemia or hemodilution ? Rev Peru Ginecol Obstet 65, 489–502.
17. Taipe-Ruiz BR (2019) Anemia en el primer control de gestantes en un centro de salud de Lima, Perú y su relación con el estado nutricional pregestacional (Anemia at the first prenatal visit in a health center in Lima, Peru, and its relationship with the pregestational nutrit). Horiz Med (Barcelona) 19, 6–11.
18. Forero Y, Galindo M, Hernández J et al. (2015) National Survey of Nutritional Situation ENSIN 2015. Politic note [Internet]. General document of analysis National Survey of the Nutritional Situation in Colombia – ENSIN 2015. ENSIN 2015. https://www.icbf.gov.co/bienestar/nutricion/encuestanacional-situacion-nutricional#ensin3 (accessed January 2021).
19. World Health Organization (2020) WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. https://apps.who.int/iris/handle/10665/331505 (accessed January 2021).
20. Ministerio de Salud y Protecci ´on Social (2015) Lines of action for the prevention and control of micronutrient deficiencies. National Strategy for the Prevention and Control of Micronutrient Deficiencies in Colombia 2014–2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficienciamicronutrientes.pdf (accessed January 2021).
21. Oaks BM, Jorgensen JM, Baldiviez LM et al. (2019) Prenatal iron deficiency and replete iron status are associated with adverse birth outcomes, but associations differ in Ghana and Malawi. J Nutr 149, 513–521.
22. Hwang JY, Lee JY, Kim KN et al. (2013) Maternal iron intake at mid-pregnancy is associated with reduced fetal growth: results from Mothers and Children’s Environmental Health (MOCEH) study. Nutr J 12, 1–7.
23. DANE (2015) Urban socioeconomic stratification methodology for home public services. Conceptual approach. https://www.dane.gov.co/files/geoestadistica/estratificacion/EnfoqueConceptual.pdf (accessed January 2021).
24. Cunningham GF, Leveno KJ, Bloom SL et al. (editors) (2018) Labor. In Williams Obstetrics, 25e, p. 424. New York, USA: McGraw-Hill Education/Medical.
25. World Health Organization (2001) Iron deficiency anaemia. Assessment, prevention and control. WHO/NHD/01.3. https://doi.org/10.7748/ns2013.02.27.23.59.p10441.
26. WHO (2009) WHO Child Growth Standards: Head Circumference-for-age, Arm Circumference-for-age, Triceps Skin Fold-for-age and Sub Scapular Skin Fold-forage. Geneva, Switzerland: WHO.
27. WHO (2014) Global Nutrition Targets 2025: Low Birth Weight Policy Brief (No. WHO/NMH/NHD/14.5). Geneve, Switzerland: World Health Organization.
28. World Health Organization (2012) Born Too Soon. The Global Action Report on Preterm Birth. Geneva, Switzerland: World Health Organization.
29. Villar J, Ismail LC, Victora CG et al. (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn CrossSectional Study of the INTERGROWTH-21st Project. Lancet 384, 857–868.
30. Mikolajczyk RT, Zhang J, Betran AP et al. (2011) A global reference for fetal-weight and birthweight percentiles. Lancet 377, 1855–1861.
31. Wei T, Simko V, Levy M et al. (2017) Package ‘corrplot’. Statistician 56, 316–324.
32. Fl ´orez-Tanus Á, Alvis-Guzmán N, Caraballo L et al. (2018) Health care costs and resource utilization for different asthma severity stages in Colombia: a claims data analysis. World Allergy Organ J 11, D26.
33. Mahamoud NK, Mwambi B, Oyet C et al. (2020) Prevalence of anemia and its associated socio-demographic factors among pregnant women attending an antenatal care clinic at Kisugu Health Center IV, Makindye Division, Kampala, Uganda. J Blood Med 11, 13–18.
34. Okia CC, Aine B, Kiiza R et al. (2019) Prevalence, morphological classification, and factors associated with anemia among pregnant women accessing antenatal clinic at Itojo Hospital, South Western Uganda. J Blood Med 10, 351–357.
35. Rahman MM, Abe SK, Rahman MS et al. (2016) Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis, 2. Am J Clin Nutr 103, 495–504.
36. Mohamed MA, Ahmad T, MacRi C et al. (2012) Racial disparities in maternal hemoglobin concentrations and pregnancy outcomes. J Perinat Med 40, 141–149.
37. Zhang Q, Ananth CV, Rhoads GG et al. (2009) The impact of maternal anemia on perinatal mortality: a population-based, prospective cohort study in China. Ann Epidemiol 19, 793–799.
38. Meng Lu Z, Goldenberg RL, Cliver S et al. (1991) The relationship between maternal hematocrit and pregnancy outcomes. Obstet Gynecol 77, 190–194.
39. Chang S-C, O’Brien KO, Nathanson MS et al. (2003) Hemoglobin concentrations influence birth outcomes in pregnant African-American adolescents. J Nutr 133, 2348–2355.
40. Maghsoudlou S, Cnattingius S, Stephansson O et al. (2016) Maternal haemoglobin concentrations before and during pregnancy and stillbirth risk: a population-based casecontrol study. BMC Pregnancy Childbirth 16, 1–8.
41. Xiong X, Buekens P, Alexander S et al. (2000) Anemia during pregnancy and birth outcome: a meta-analysis. Am J Perinatol 17, 137–146.
42. Fowkes FJI, Moore KA, Opi DH et al. (2018) Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study. BMC Med 16, 156.
43. Symington EA, Baumgartner J, Malan L et al. (2019) Maternal iron-deficiency is associated with premature birth and higher birth weight despite routine antenatal iron supplementation in an urban South African setting: the NuPED prospective study. PLoS One 14, e0221299.
44. Yuan X, Hu H, Zhang M et al. (2019) Iron deficiency in late pregnancy and its associations with birth outcomes in Chinese pregnant women: a retrospective cohort study. Nutr Metab 16, 1–11.
45. Hsu WY, Wu CH, Hsieh CTC et al. (2013) Low body weight gain, low white blood cell count and high serum ferritin as markers of poor nutrition and increased risk for preterm delivery. Asia Pac J Clin Nutr 22, 90–99.
46. Chu FC, Shaw SW, Lo LM et al. (2020) Association between maternal anemia at admission for delivery and adverse perinatal outcomes. J Chin Med Assoc 83, 402–407.
47. Lao TT (2000) Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod 15, 1843–1848.
48. De Haas S, Ghossein-Doha C, Van Kuijk SMJ et al. (2017) Physiological adaptation of maternal plasma volumen during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 49, 177–187.
49. Gernand AD, Christian P, Schulze KJ et al. (2012) Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh. J Nutr 142, 1109–1115.
50. Ng S-W, Norwitz SG & Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20, 3283.
51. Ziaei S, Norrozi M, Faghihzadeh S et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin ≥ 13.2 g/dl. BJOG 114, 684–688.
52. Casanueva E & Viteri FE (2003) Iron and oxidative stress in pregnancy. J Nutr 133, 1700S–1708S.
53. Mannaerts D, Faes E, Cos P et al. (2018) Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One 13, 1–14.
54. Stangret A, Wnuk A, Szewczyk G et al. (2017) Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis. J Matern Neonatal Med 30, 199–204.
55. Valappil SA, Varkey M, Areeckal B et al. (2015) Serum ferritin as a marker for preterm premature rupture of membranes – a study from a tertiary centre in central Kerala. J Clin Diagn Res 9, BC09–BC12.
56. Rayman MP, Barlis J, Evans RW et al. (2002) Abnormal iron parameters in the pregnancy syndrome preeclampsia. Am J Obstet Gynecol 187, 412–418.
57. Rawal S, Hinkle SN, Bao W et al. (2017) A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia 60, 249–257.
58. Soheilykhah S, Mojibian M & Moghadam MJ (2017) Serum ferritin concentration in early pregnancy and risk of subsequent development of gestational diabetes: a prospective study. Int J Reprod Biomed 15, 155–160.
59. Martins R, Maier J, Gorki AD et al. (2016) Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol 17, 1361–1372.
60. Arezes J, Foy N, McHugh K et al. (2018) Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477.
61. Drakesmith H & Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338, 768–772.
62. Jaeggi T, Kortman GAM, Moretti D et al. (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64, 731–742.
63. Ziaei S, Janghorban R, Shariatdoust S et al. (2008) The effects of iron supplementation on serum copper and zinc levels in pregnant women with high-normal hemoglobin. Int J Gynecol Obstet 100, 133–135.
64. Pathak P & Kapil U (2004) Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr 71, 1003–1005.
65. Ikeanyi EM & Ibrahim AI (2015) Does antenatal care attendance prevent anemia in pregnancy at term? Niger J Clin Pract 18, 323–327.
66. Zhou H, Wang A, Huang X et al. (2019) Quality antenatal care protects against low birth weight in 42 poor counties of Western China. PLoS One 14, 1–14.
67. Pinz ´on-Rond ´on ÁM, Gutiérrez-Pinzon V, Madrinan-Navia H ˜ et al. (2015) Low birth weight and prenatal care in Colombia: a cross-sectional study. BMC Pregnancy Childbirth 15, 118.
68. Gyorkos TW & Gilbert NL (2014) Blood drain: soiltransmitted helminths and anemia in pregnant women. PLoS Negl Trop Dis 8, 7–8.
69. Gopalakrishnan S, Eashwar VA, Muthulakshmi M et al. (2018) Intestinal parasitic infestations and anemia among urban female school children in Kancheepuram district, Tamil Nadu. J Fam Med Prim Care 7, 1395.
70. Brooker S, Hotez PJ & Bundy DAP (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis 2, e291.
71. Acevedo N, Sánchez J, Zakzuk J et al. (2012) Particular characteristics of allergic symptoms in tropical environments: follow up to 24 months in the FRAAT birth cohort study. BMC Pulm Med 12, 13.
72. Ministry of Health and Social Protection (2013) Deworming Guideline “WHO Preventive Anthelmintic Chemotherapy”. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/LINEAMIENTO DESPARASIT ANTIHELMÍNTICA 080122014.pdf (accessed January 2021).
dc.relation.citationendpage.spa.fl_str_mv 5100
dc.relation.citationstartpage.spa.fl_str_mv 5090
dc.relation.citationissue.spa.fl_str_mv 15
dc.relation.citationvolume.spa.fl_str_mv 24
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Society
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Cambridge University Press
dc.publisher.place.spa.fl_str_mv United Kingdom
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.cambridge.org/core/journals/public-health-nutrition/article/iron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia/6B9A19D15B530A8C0B1DAE0A92DD39AC
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c3a605bc-1a96-410a-b478-43b93b037f72/download
https://repositorio.cuc.edu.co/bitstreams/b172cea3-884b-4de9-a5af-0e69bce68efb/download
https://repositorio.cuc.edu.co/bitstreams/fa98d41c-4b1e-478b-be4a-e21c401c4f72/download
https://repositorio.cuc.edu.co/bitstreams/cee69c36-5ca4-4a85-b665-a5d2a6ae209e/download
bitstream.checksum.fl_str_mv 79ffe9677e36f94c57372131e18d1b79
e30e9215131d99561d40d6b0abbe9bad
21485b107bb91597ce11ac6bc5fc906a
c1ac2eb8c22ab9422ce57d5d71ff7334
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760746991714304
spelling puerto lopez, alejandraTrojan, AnnabelleALVIS ZAKZUK, NELSON RAFAELLópez-Saleme, Rossanaedna estrada, franciscoAlvarez, AlvaroAlvis-Guzmán, NelsonZakzuk, Josefina2022-03-16T21:01:31Z2022-03-16T21:01:31Z2021-04-161368-9800https://hdl.handle.net/11323/9082https://doi.org/10.1017/S136898002100166X10.1017/S136898002100166X1475-2727Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Objective: Gestational anaemia (GA) is common in developing countries. This study assessed the relationship of late GA and negative perinatal outcomes in participants recruited in a reference maternity unit of the Caribbean region of Colombia. Design: Prospective analytical birth cohort study. Maternal Hb and serum ferritin (SF) levels were measured. GA was defined as Hb levels <6·82 mmol/l (<11 g/dl), SF depletion as SF levels <12 µg/l. Birth outcomes such as low birth weight (LBW), preterm birth (PB) and small for gestational age (SGA) were examined. Setting: Mothers in the first stage of labour, living in urban or rural areas of Bolívar, were enrolled in an obstetrical centre located in Cartagena, Colombia. Blood and stool samples were taken prior delivery. Maternal blood count, SF levels and infant anthropometric data were recorded for analysis. Participants: 1218 pregnant women aged 18-42 years and their newborns. Results: Prevalence of GA and SF depletion was 41·6 % and 41·1 %, respectively. GA was positively associated with poverty-related sociodemographic conditions. Prenatal care attendance lowered the risk of PB, LBW and SGA. Birth weight was inversely associated with Hb levels, observing a -36·8 g decrease in newborn weight per 0·62 mmol/l (or 1 g/dl) of maternal Hb. SF depletion, but not anaemia, was associated with PB. SGA outcome showed a significant association with anaemia, but not a significant relationship with SF depletion. Conclusions: Birth weight and other-related perinatal outcomes are negatively associated with Hb and SF depletion. Prenatal care attendance reduced the risk of negative birth outcomes.11 Páginasapplication/pdfspaCambridge University PressUnited KingdomAtribución 4.0 Internacional (CC BY 4.0)© The Author(s), 2021. Published by Cambridge University Press on behalf of The Nutrition Societyhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Iron status in late pregnancy is inversely associated with birth weight in ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.cambridge.org/core/journals/public-health-nutrition/article/iron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia/6B9A19D15B530A8C0B1DAE0A92DD39ACColombiaPublic Health Nutrition1. World Health Organization (2011) Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. Geneva, Switzerland: World Health Organization.2. World Health Organization (2020) WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. Geneva: World Health Organization.3. Figueiredo ACMG, Gomes-Filho IS, Batista JET et al. (2019) Maternal anemia and birth weight: a prospective cohort study. PLoS One 14, e0212817.4. Yi SW, Han YJ & Ohrr H (2013) Anemia before pregnancy and risk of preterm birth, low birth weight and small-forgestational-age birth in Korean women. Eur J Clin Nutr 67, 337–342.5. Malhotra M, Sharma JB, Batra S et al. (2002) Maternal and perinatal outcome in varying degrees of anemia. Int J Gynecol Obstet 79, 93–100.6. Col Madendag I, Eraslan Sahin M, Madendag Y et al. (2019) The effect of iron deficiency anemia early in the third trimester on small for gestational age and birth weight: a retrospective cohort study on iron deficiency anemia and fetal weight. Biomed Res Int 2019, 7613868.7. Suitor CW (1991) Perspectives on nutrition during pregnancy: part I, weight gain; part II, nutrient supplements. J Am Diet Assoc 91, 96–98.8. Friedrisch JR & Friedrisch BK (2017) Prophylactic iron supplementation in pregnancy: a controversial issue. Biochem Insights 10, 117862641773773.9. Fisher AL & Nemeth E (2017) Iron homeostasis during pregnancy. Am J Clin Nutr 106, 1567S–1574S.10. Brannon PM & Taylor CL (2017) Iron supplementation during pregnancy and infancy: uncertainties and implications for research and policy. Nutrients 9, 1–17.11. Ng SW, Norwitz SG & Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20, 3283.12. Ziaei S, Norrozi M, Faghihzadeh S et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin ≥ 13.2 g/dl. BJOG 114, 684–688.13. Shastri L, Mishra PE, Dwarkanath P et al. (2015) Association of oral iron supplementation with birth outcomes in nonanaemic South Indian pregnant women. Eur J Clin Nutr 69, 609–613.14. Dewey KG & Oaks BM (2017) U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am J Clin Nutr 106, 1694S–1702S.15. World Health Organization (2012) Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva, Switzerland: World Health Organization.16. Gonzales GF, Olavegoya P, Gonzales GF et al. (2019) Pathophysiology of anemia in pregnancy: anemia or hemodilution ? Rev Peru Ginecol Obstet 65, 489–502.17. Taipe-Ruiz BR (2019) Anemia en el primer control de gestantes en un centro de salud de Lima, Perú y su relación con el estado nutricional pregestacional (Anemia at the first prenatal visit in a health center in Lima, Peru, and its relationship with the pregestational nutrit). Horiz Med (Barcelona) 19, 6–11.18. Forero Y, Galindo M, Hernández J et al. (2015) National Survey of Nutritional Situation ENSIN 2015. Politic note [Internet]. General document of analysis National Survey of the Nutritional Situation in Colombia – ENSIN 2015. ENSIN 2015. https://www.icbf.gov.co/bienestar/nutricion/encuestanacional-situacion-nutricional#ensin3 (accessed January 2021).19. World Health Organization (2020) WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations. https://apps.who.int/iris/handle/10665/331505 (accessed January 2021).20. Ministerio de Salud y Protecci ´on Social (2015) Lines of action for the prevention and control of micronutrient deficiencies. National Strategy for the Prevention and Control of Micronutrient Deficiencies in Colombia 2014–2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficienciamicronutrientes.pdf (accessed January 2021).21. Oaks BM, Jorgensen JM, Baldiviez LM et al. (2019) Prenatal iron deficiency and replete iron status are associated with adverse birth outcomes, but associations differ in Ghana and Malawi. J Nutr 149, 513–521.22. Hwang JY, Lee JY, Kim KN et al. (2013) Maternal iron intake at mid-pregnancy is associated with reduced fetal growth: results from Mothers and Children’s Environmental Health (MOCEH) study. Nutr J 12, 1–7.23. DANE (2015) Urban socioeconomic stratification methodology for home public services. Conceptual approach. https://www.dane.gov.co/files/geoestadistica/estratificacion/EnfoqueConceptual.pdf (accessed January 2021).24. Cunningham GF, Leveno KJ, Bloom SL et al. (editors) (2018) Labor. In Williams Obstetrics, 25e, p. 424. New York, USA: McGraw-Hill Education/Medical.25. World Health Organization (2001) Iron deficiency anaemia. Assessment, prevention and control. WHO/NHD/01.3. https://doi.org/10.7748/ns2013.02.27.23.59.p10441.26. WHO (2009) WHO Child Growth Standards: Head Circumference-for-age, Arm Circumference-for-age, Triceps Skin Fold-for-age and Sub Scapular Skin Fold-forage. Geneva, Switzerland: WHO.27. WHO (2014) Global Nutrition Targets 2025: Low Birth Weight Policy Brief (No. WHO/NMH/NHD/14.5). Geneve, Switzerland: World Health Organization.28. World Health Organization (2012) Born Too Soon. The Global Action Report on Preterm Birth. Geneva, Switzerland: World Health Organization.29. Villar J, Ismail LC, Victora CG et al. (2014) International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn CrossSectional Study of the INTERGROWTH-21st Project. Lancet 384, 857–868.30. Mikolajczyk RT, Zhang J, Betran AP et al. (2011) A global reference for fetal-weight and birthweight percentiles. Lancet 377, 1855–1861.31. Wei T, Simko V, Levy M et al. (2017) Package ‘corrplot’. Statistician 56, 316–324.32. Fl ´orez-Tanus Á, Alvis-Guzmán N, Caraballo L et al. (2018) Health care costs and resource utilization for different asthma severity stages in Colombia: a claims data analysis. World Allergy Organ J 11, D26.33. Mahamoud NK, Mwambi B, Oyet C et al. (2020) Prevalence of anemia and its associated socio-demographic factors among pregnant women attending an antenatal care clinic at Kisugu Health Center IV, Makindye Division, Kampala, Uganda. J Blood Med 11, 13–18.34. Okia CC, Aine B, Kiiza R et al. (2019) Prevalence, morphological classification, and factors associated with anemia among pregnant women accessing antenatal clinic at Itojo Hospital, South Western Uganda. J Blood Med 10, 351–357.35. Rahman MM, Abe SK, Rahman MS et al. (2016) Maternal anemia and risk of adverse birth and health outcomes in low-and middle-income countries: systematic review and meta-analysis, 2. Am J Clin Nutr 103, 495–504.36. Mohamed MA, Ahmad T, MacRi C et al. (2012) Racial disparities in maternal hemoglobin concentrations and pregnancy outcomes. J Perinat Med 40, 141–149.37. Zhang Q, Ananth CV, Rhoads GG et al. (2009) The impact of maternal anemia on perinatal mortality: a population-based, prospective cohort study in China. Ann Epidemiol 19, 793–799.38. Meng Lu Z, Goldenberg RL, Cliver S et al. (1991) The relationship between maternal hematocrit and pregnancy outcomes. Obstet Gynecol 77, 190–194.39. Chang S-C, O’Brien KO, Nathanson MS et al. (2003) Hemoglobin concentrations influence birth outcomes in pregnant African-American adolescents. J Nutr 133, 2348–2355.40. Maghsoudlou S, Cnattingius S, Stephansson O et al. (2016) Maternal haemoglobin concentrations before and during pregnancy and stillbirth risk: a population-based casecontrol study. BMC Pregnancy Childbirth 16, 1–8.41. Xiong X, Buekens P, Alexander S et al. (2000) Anemia during pregnancy and birth outcome: a meta-analysis. Am J Perinatol 17, 137–146.42. Fowkes FJI, Moore KA, Opi DH et al. (2018) Iron deficiency during pregnancy is associated with a reduced risk of adverse birth outcomes in a malaria-endemic area in a longitudinal cohort study. BMC Med 16, 156.43. Symington EA, Baumgartner J, Malan L et al. (2019) Maternal iron-deficiency is associated with premature birth and higher birth weight despite routine antenatal iron supplementation in an urban South African setting: the NuPED prospective study. PLoS One 14, e0221299.44. Yuan X, Hu H, Zhang M et al. (2019) Iron deficiency in late pregnancy and its associations with birth outcomes in Chinese pregnant women: a retrospective cohort study. Nutr Metab 16, 1–11.45. Hsu WY, Wu CH, Hsieh CTC et al. (2013) Low body weight gain, low white blood cell count and high serum ferritin as markers of poor nutrition and increased risk for preterm delivery. Asia Pac J Clin Nutr 22, 90–99.46. Chu FC, Shaw SW, Lo LM et al. (2020) Association between maternal anemia at admission for delivery and adverse perinatal outcomes. J Chin Med Assoc 83, 402–407.47. Lao TT (2000) Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum Reprod 15, 1843–1848.48. De Haas S, Ghossein-Doha C, Van Kuijk SMJ et al. (2017) Physiological adaptation of maternal plasma volumen during pregnancy: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 49, 177–187.49. Gernand AD, Christian P, Schulze KJ et al. (2012) Maternal nutritional status in early pregnancy is associated with body water and plasma volume changes in a pregnancy cohort in rural Bangladesh. J Nutr 142, 1109–1115.50. Ng S-W, Norwitz SG & Norwitz ER (2019) The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci 20, 3283.51. Ziaei S, Norrozi M, Faghihzadeh S et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin ≥ 13.2 g/dl. BJOG 114, 684–688.52. Casanueva E & Viteri FE (2003) Iron and oxidative stress in pregnancy. J Nutr 133, 1700S–1708S.53. Mannaerts D, Faes E, Cos P et al. (2018) Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS One 13, 1–14.54. Stangret A, Wnuk A, Szewczyk G et al. (2017) Maternal hemoglobin concentration and hematocrit values may affect fetus development by influencing placental angiogenesis. J Matern Neonatal Med 30, 199–204.55. Valappil SA, Varkey M, Areeckal B et al. (2015) Serum ferritin as a marker for preterm premature rupture of membranes – a study from a tertiary centre in central Kerala. J Clin Diagn Res 9, BC09–BC12.56. Rayman MP, Barlis J, Evans RW et al. (2002) Abnormal iron parameters in the pregnancy syndrome preeclampsia. Am J Obstet Gynecol 187, 412–418.57. Rawal S, Hinkle SN, Bao W et al. (2017) A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia 60, 249–257.58. Soheilykhah S, Mojibian M & Moghadam MJ (2017) Serum ferritin concentration in early pregnancy and risk of subsequent development of gestational diabetes: a prospective study. Int J Reprod Biomed 15, 155–160.59. Martins R, Maier J, Gorki AD et al. (2016) Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat Immunol 17, 1361–1372.60. Arezes J, Foy N, McHugh K et al. (2018) Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477.61. Drakesmith H & Prentice AM (2012) Hepcidin and the iron-infection axis. Science 338, 768–772.62. Jaeggi T, Kortman GAM, Moretti D et al. (2015) Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut 64, 731–742.63. Ziaei S, Janghorban R, Shariatdoust S et al. (2008) The effects of iron supplementation on serum copper and zinc levels in pregnant women with high-normal hemoglobin. Int J Gynecol Obstet 100, 133–135.64. Pathak P & Kapil U (2004) Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J Pediatr 71, 1003–1005.65. Ikeanyi EM & Ibrahim AI (2015) Does antenatal care attendance prevent anemia in pregnancy at term? Niger J Clin Pract 18, 323–327.66. Zhou H, Wang A, Huang X et al. (2019) Quality antenatal care protects against low birth weight in 42 poor counties of Western China. PLoS One 14, 1–14.67. Pinz ´on-Rond ´on ÁM, Gutiérrez-Pinzon V, Madrinan-Navia H ˜ et al. (2015) Low birth weight and prenatal care in Colombia: a cross-sectional study. BMC Pregnancy Childbirth 15, 118.68. Gyorkos TW & Gilbert NL (2014) Blood drain: soiltransmitted helminths and anemia in pregnant women. PLoS Negl Trop Dis 8, 7–8.69. Gopalakrishnan S, Eashwar VA, Muthulakshmi M et al. (2018) Intestinal parasitic infestations and anemia among urban female school children in Kancheepuram district, Tamil Nadu. J Fam Med Prim Care 7, 1395.70. Brooker S, Hotez PJ & Bundy DAP (2008) Hookworm-related anaemia among pregnant women: a systematic review. PLoS Negl Trop Dis 2, e291.71. Acevedo N, Sánchez J, Zakzuk J et al. (2012) Particular characteristics of allergic symptoms in tropical environments: follow up to 24 months in the FRAAT birth cohort study. BMC Pulm Med 12, 13.72. Ministry of Health and Social Protection (2013) Deworming Guideline “WHO Preventive Anthelmintic Chemotherapy”. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/LINEAMIENTO DESPARASIT ANTIHELMÍNTICA 080122014.pdf (accessed January 2021).510050901524AnaemiaBirth outcomesIron deficiencyIron statusLow birth weightPregnancyColombiaPublicationORIGINALiron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia.pdfiron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia.pdfapplication/pdf767044https://repositorio.cuc.edu.co/bitstreams/c3a605bc-1a96-410a-b478-43b93b037f72/download79ffe9677e36f94c57372131e18d1b79MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b172cea3-884b-4de9-a5af-0e69bce68efb/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTiron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia.pdf.txtiron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia.pdf.txttext/plain52210https://repositorio.cuc.edu.co/bitstreams/fa98d41c-4b1e-478b-be4a-e21c401c4f72/download21485b107bb91597ce11ac6bc5fc906aMD53THUMBNAILiron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia.pdf.jpgiron-status-in-late-pregnancy-is-inversely-associated-with-birth-weight-in-colombia.pdf.jpgimage/jpeg15500https://repositorio.cuc.edu.co/bitstreams/cee69c36-5ca4-4a85-b665-a5d2a6ae209e/downloadc1ac2eb8c22ab9422ce57d5d71ff7334MD5411323/9082oai:repositorio.cuc.edu.co:11323/90822024-09-17 10:56:49.187https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==