Energy savings measures in compressed air systems
Compressed air is one of the most widely used application energies in the industry, such as good transportability, safety, purity, cleanliness, storage capacity and ease of use. In many countries, compressed air systems account for approximately 10% of the industry’s total electricity consumption. D...
- Autores:
-
Hernández Herrera, Hernan
Silva Ortega, Jorge I
Martínez Diaz, Vicente Leonel
García Sanchez, Zaid
González García, Gilberto
Escorcia, Sandra M.
Zarate, Habid E.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6206
- Acceso en línea:
- https://hdl.handle.net/11323/6206
https://doi.org/10.32479/ijeep.9059
https://repositorio.cuc.edu.co/
- Palabra clave:
- Compressed air systems
Electricity consumption
Energy efficiency
Energy savings
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_5a13e113c42575ee8f2ce4bdc40cbb7f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6206 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Energy savings measures in compressed air systems |
title |
Energy savings measures in compressed air systems |
spellingShingle |
Energy savings measures in compressed air systems Compressed air systems Electricity consumption Energy efficiency Energy savings |
title_short |
Energy savings measures in compressed air systems |
title_full |
Energy savings measures in compressed air systems |
title_fullStr |
Energy savings measures in compressed air systems |
title_full_unstemmed |
Energy savings measures in compressed air systems |
title_sort |
Energy savings measures in compressed air systems |
dc.creator.fl_str_mv |
Hernández Herrera, Hernan Silva Ortega, Jorge I Martínez Diaz, Vicente Leonel García Sanchez, Zaid González García, Gilberto Escorcia, Sandra M. Zarate, Habid E. |
dc.contributor.author.spa.fl_str_mv |
Hernández Herrera, Hernan Silva Ortega, Jorge I Martínez Diaz, Vicente Leonel García Sanchez, Zaid González García, Gilberto Escorcia, Sandra M. Zarate, Habid E. |
dc.subject.spa.fl_str_mv |
Compressed air systems Electricity consumption Energy efficiency Energy savings |
topic |
Compressed air systems Electricity consumption Energy efficiency Energy savings |
description |
Compressed air is one of the most widely used application energies in the industry, such as good transportability, safety, purity, cleanliness, storage capacity and ease of use. In many countries, compressed air systems account for approximately 10% of the industry’s total electricity consumption. Despite all its advantages, compressed air is expensive, only between 10% and 30% of the energy consumed reaches the point of final use. Energy is lost as heat, leaks, pressure drop, misuse, among others. Energy efficiency measures such as: reducing compressor pressure, lowering air inlet temperature, adequate storage capacity, recovering residual heat from the air compressor and reducing leakage, can produce energy savings between 20% and 60%, with an average return on investment lower than 2 years. This paper analyzes the main energy efficiency measures that can be applied in the CASs, the potential energy savings, implementation costs and return rate of each of them are being calculated giving a necessary tool for companies in their objectives to reduce greenhouse gas emissions and energy consumption. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-17T00:04:44Z |
dc.date.available.none.fl_str_mv |
2020-04-17T00:04:44Z |
dc.date.issued.none.fl_str_mv |
2020-02-20 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2146-4553 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6206 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.32479/ijeep.9059 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2146-4553 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/6206 https://doi.org/10.32479/ijeep.9059 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abdelaziz, E.A., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150-168. Air Compressor Service. (2010), Compressed Air System Guide Designing Your Compressed Air System Provided as a Service by Kaeser Compressors, Inc., 2010. Available from: http://www. kaeser.com.co. Anderson, E., Arfwidsson, O., Thollander, P. (2018), Benchmarking energy performance of industrial small and medium-sized enterprises using an energy efficiency index: Results based on an energy audit policy program. Journal of Cleaner Production, 182, 883-895. Angarita, E.N., Eras, J.J.C., Herrera, H.H., Santos, V.S., Morejón, M.B., Ortega, J.I.S., Gutiérrez, A.S. (2019), Energy planning and management during battery manufacturing. Gestão and Produção, 26(4), e3928. Anglani, N., Mura, P. (2010), Opportunità di Ottimizzazione dei Consumi Nella Produzione, Distribuzione, Utilizzo Dell’aria Compressa nei Settori Industriali Più Sensi. Report RdS, No. 222. Benedetti, M., Bertini, I., Introna, V., Ubertini, S. (2018), Explorative study on compressed air systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436-448. Bonacina, F., Corsini, A., De Propris, L., Marchegiani, A., Mori, F. (2015), Industrial energy management systems in Italy: State of the art and perspective. Energy Procedia, 82, 562-569. Bonfàa, F., Salvatorib, S., Benedettic, M., Intronad, V., Ubertinie, S. (2017), Monitoring compressed air systems energy performance in industrial production: Lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403. Bose, J.R., Olson, M.K. (1993), TAPS’s leak detection seeks greater precision. Oil and Gas Journal, 91(14), 14. Broniszewski, M., Werle, S. (2018), The Study on the Heat Recovery from Air Compressors. In: E3S Web of Conferences, No. 70, 03001 EDP Sciences. Castellanos, L.M., Hernández-Herrera, H., Silva-Ortega, J.I., Martínez Diaz, V.L., García Sanchez, Z. (2019), Potential energy savings and Co2 emissions reduction in Colombia compressed air systems. International Journal of Energy Economics and Policy, 9(6), 71-79. Cloete, S., le Roux, D., Buhrmann, T. (2013), Reducing Compressed Air Wastage by Installing New Technology in Underground Mines. South Africa: 2013 Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE. Correa, J., Borroto, A., González, R., Curbelo, M., Díaz, A.M. (2014), Diseño y aplicación de un procedimiento para la planificación energética según la NC-ISO 50001: 2011. Ingeniería Energética, 35(1), 38-47. Corsini, A., De Propris, L., Feudo, S., Stefanato, M. (2015), Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778. Dindorf, R. (2012), Estimating potential energy savings in compressed air systems. Procedia Engineering, 39, 204-211. DoE, U.S. (1998), Improving Compressed Air System Performance, a Sourcebook for Industry. Washington, DC: Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC). dos Santos Mascarenhas, J., Chowdhury, H., Thirugnanasambandam, M., Chowdhury, T., Saidur, R. (2019), Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production, 231, 183-195. Dudić, S., Ignjatović, I., Šešlija, D., Blagojević, V., Stojiljković, M. (2012), Leakage quantification of compressed air using ultrasound and infrared thermography. Measurement, 45(7), 1689-1694. Eras, J.J.C., Gutiérrez, A.S., Santos, V.S., Herrera, H.H., Morejón, M.B., Ortega, J.S., Vandecasteele, C. (2019), Energy management in the formation of light, starter, and ignition lead-acid batteries. Energy Efficiency, 12(5), 1219-1236. European Commission. (2009), Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://www. eippcb.jrc.ec.europa.eu. Festel, G., Würmseher, M. (2014), Benchmarking of energy and utility infrastructures in industrial parks. Journal of Cleaner Production, 70, 15-26. Fleiter, T., Hirzel, S., Worrell, E. (2012), The characteristics of energyefficiency measures a neglected dimension. Energy Policy, 51, 502-513. Goldstein, D., Almaguer, J.A. (2013), Developing a Suite of Energy Performance Indicators (EnPIs) to Optimize Outcomes. Washington, DC: Proceedings of the 2013 ACEEE Summer Study on Energy Efficiency in Industry, American Council for an Energy-Efficient Economy. Goodarzia, G., Dehghani, S., Akbarzadeh, A., Date, A. (2017), Energy saving opportunities in air drying process in high-pressure compressors. Energy Procedia, 110, 428-433. Gopalakrishnan, B., Ramamoorthy, K., Crowe, E., Chaudhari, S., Latif, H. (2014), A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector. Sustainable Energy Technologies and Assessments, 7, 154-165. Huang, B., Jian, Q., Luo, L., Zhao, J. (2017), Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell. Energy Conversion and Management, 138, 38-44. ISO. 50001. (2011), Energy Management Systems--Requirements with Guidance for Use. United Kingdom: International Organization for Standardization. Kanneganti, H., Gopalakrishnan, B., Crowe, E., Al-Shebeeb, O., Yelamanchi, T., Nimbarte, A., Abolhassani, A. (2017), Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustainable Energy Technologies and Assessments, 23, 121-135. Kaya, D., Phelan, P., Chau, D., Ibrahim, S.H. (2002), Energy conservation in compressed air systems. International Journal of Energy Research, 26(9), 837-849. Kluczek, A., Olszewski, P. (2017), Energy audits in industrial processes. Journal of Cleaner Production, 142, 3437-3453. Kriel, C.J.R., Marais, J.H., Kleingeld, M., (2014), Modernising Underground Compressed Air DSM Projects to Reduce Operating Costs. South Africa: 2014 Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE. Madrigal, J.A., Eras, J.J.C., Herrera, H.H., Santos, V.S., Morejón, M.B. (2018), Planificación energética para el ahorro de fueloil en una lavandería industrial. Ingeniare. Revista Chilena de Ingeniería, 26(1), 86-96. Mousavi, S., Kara, S., Kornfeld, B. (2014), Energy efficiency of compressed air systems. Procedia Cirp, 15, 313-318. Murvay, P.S., Silea, I. (2012), A survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries, 25(6), 966-973. Neale, J.R., Kamp, P.J.J. (2009), Compressed air system best practice programmes: What needs to change to secure long term energy savings for New Zealand. Energy Policy, 37, 3400-3408. Nethler, T. (2018a), Linking energy efficiency measures in industrial compressed air systems with non-energy benefits-a review. Renewable and Sustainable Energy Reviews, 89, 72-87. Nethler, T., Parra, R., Thollander, P. (2018), Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits. Energy Efficiency, 11(5), 1281-1302. Olszewski, P., Borgnakke, C. (2016), Influence of volumetric capacity on energy consumption in oil-lubricated compressed air systems. Journal of Thermal Science and Engineering Applications, 8(4), 10. Paffel, K. (2017), Air system leak. Hydrualics and Pneumatics, 70(11), 22-27. Radgen, P., Annegret, C. (2003), Efficient Compressed Air a Successful Campaign for Energy Efficient Compressed Air Systems in Germany. Saint-Raphaël, France: ECEEE 2003 Summer Study Proceedings. Radgen, P., Blaustein, E. (2001), Compressed air Systems in the European Union: Energy, Emissions, Savings Potential and Policy Actions. Stuttgart: LOG_X. Reddy, H.P., Narasimhan, S., Bhallamudi, S.M., Bairagi, S. (2011), Leak detection in gas pipeline networks using an efficient state estimator. Part-I: Theory and simulations. Computer Chemical Engineering, 35(4), 651-661. Reddy, H.P., Narasimhan, S., Bhallamudi, S.M., Bairagi, S. (2011a), Leak detection in gas pipeline networks using an efficient state estimator. Part II. Experimental and field evaluation. Computer Chemical Engineering, 35(4), 662-670. Saidur, R., Rahim, N.A., Hasanuzzaman, M. (2010), A review on compressed-air energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(4), 1135-1153. Sarduy, J.R., Felipe, P., Torres, Y., Plascencia, M., Santos, V., Haeseldonckx, D. (2018), A new energy performance indicator for energy management system of a wheat mill plant. International Journal of Energy Economics and Policy, 8(4), 324-330. Schulze, M., Nehler, H., Ottosson, M., Thollander, P. (2016), Energy management in industry a systematic review of previous findings and an integrative conceptual framework. Journal of Cleaner Production, 112, 3692-3708. Šešlija, D., Ignjatović, I., Dudić, S., Lagod, B. (2011), Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645. Shaw, W., Mathews, M., Marais, J. (2019), Using specific energy as a metric to characterise compressor system performance. Energy Technologies and Assessments, 31, 329-338. Shim, H.S., Lee, S.J. (2018), A Study of Determination of Energy Performance Indicator for Applying Energy Management System in Industrial Sector. USA: 2018 Portland: International Conference on Management of Engineering and Technology (PICMET), IEEE. p1-6. Taheri, K., Gadow, R. (2017), Industrial compressed air system analysis: Exergy and thermoeconomic analysis. CIRP Journal of Manufacturing Science and Technology, 18, 10-17. UPME Corpoema. (2014), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. I. Colombia. Available from: http://www.upme. gov.co/estudios/2014/informe_final_ volumen_1.pdf. [Last accessed on 2019 Sep 12]. UPME Corpoema. (2014a), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. II. Colombia. Available from: http:// www1.upme.gov.co/demandaenergetica/determinacioneficiencia/ informe_final_volumen_2.pdf. [Last accessed on 2019 Sep 12]. UPME Incombustion. (2013), Determinación del Potencial de Reducción del Consumo Energético en los Subsectores Manufactureros Códigos CIIU 10 a 18 en Colombia. Available from: http://www.upme.gov. co/demandaenergetica/INFORME_III_caracterizacion_energetica_ Verpub.pdf. [Last accessed on 2019 Sep 12]. Viholainen, J., Grönman, K., Jaatinen-Värri, A., Grönman, A., Ukkonen, P., Luoranen, M. (2015), Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment. Energy Conversion and Management, 101, 336-342. Vittorini, D., Cipollone, R. (2016), Energy saving potential in existing industrial compressors. Energy, 102, 502-515. Yang, M. (2009), Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337. Yin, Y., Zheng, B., Yang, C., Zhang, X. (2015), A proposed compressed air drying method using pressurized liquid desiccant and experimental verification. Applied Energy, 141, 80-89. Zahlan, J., Shihab, A. (2015), A multi-objective approach for determining optimal air compressor location in a manufacturing facility. Journal of Manufacturing Systems, 35, 176-190. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
International Journal of Energy Economics and Policy |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3aa46aca-3107-4fd5-94f9-6c8cbbdcd821/download https://repositorio.cuc.edu.co/bitstreams/cceebd88-f6d8-4630-bb5c-8165b6ee5bd1/download https://repositorio.cuc.edu.co/bitstreams/ee62eafd-a893-4b44-9e7e-c9337bbd09bd/download https://repositorio.cuc.edu.co/bitstreams/edb9cb7d-6ad3-4e84-bd4d-d39b2f1932ce/download https://repositorio.cuc.edu.co/bitstreams/6de20acb-bd19-416a-bc05-8b919f9cfcf2/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 3245e423512abce3ebfac126b509f13b cec62be31a878179c0a01f1a929db131 f425dc066adef3f147275daa9807a04d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760856927567872 |
spelling |
Hernández Herrera, HernanSilva Ortega, Jorge IMartínez Diaz, Vicente LeonelGarcía Sanchez, ZaidGonzález García, GilbertoEscorcia, Sandra M.Zarate, Habid E.2020-04-17T00:04:44Z2020-04-17T00:04:44Z2020-02-202146-4553https://hdl.handle.net/11323/6206https://doi.org/10.32479/ijeep.9059Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Compressed air is one of the most widely used application energies in the industry, such as good transportability, safety, purity, cleanliness, storage capacity and ease of use. In many countries, compressed air systems account for approximately 10% of the industry’s total electricity consumption. Despite all its advantages, compressed air is expensive, only between 10% and 30% of the energy consumed reaches the point of final use. Energy is lost as heat, leaks, pressure drop, misuse, among others. Energy efficiency measures such as: reducing compressor pressure, lowering air inlet temperature, adequate storage capacity, recovering residual heat from the air compressor and reducing leakage, can produce energy savings between 20% and 60%, with an average return on investment lower than 2 years. This paper analyzes the main energy efficiency measures that can be applied in the CASs, the potential energy savings, implementation costs and return rate of each of them are being calculated giving a necessary tool for companies in their objectives to reduce greenhouse gas emissions and energy consumption.Hernández Herrera, Hernan-will be generated-orcid-0000-0002-6035-245X-600Silva Ortega, Jorge I-will be generated-orcid-0000-0002-7813-0142-600Martínez Diaz, Vicente LeonelGarcía Sanchez, ZaidGonzález García, GilbertoEscorcia, Sandra M.Zarate, Habid E.engInternational Journal of Energy Economics and PolicyCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Compressed air systemsElectricity consumptionEnergy efficiencyEnergy savingsEnergy savings measures in compressed air systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAbdelaziz, E.A., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150-168.Air Compressor Service. (2010), Compressed Air System Guide Designing Your Compressed Air System Provided as a Service by Kaeser Compressors, Inc., 2010. Available from: http://www. kaeser.com.co.Anderson, E., Arfwidsson, O., Thollander, P. (2018), Benchmarking energy performance of industrial small and medium-sized enterprises using an energy efficiency index: Results based on an energy audit policy program. Journal of Cleaner Production, 182, 883-895. Angarita, E.N., Eras, J.J.C., Herrera, H.H., Santos, V.S., Morejón, M.B., Ortega, J.I.S., Gutiérrez, A.S. (2019), Energy planning and management during battery manufacturing. Gestão and Produção, 26(4), e3928.Anglani, N., Mura, P. (2010), Opportunità di Ottimizzazione dei Consumi Nella Produzione, Distribuzione, Utilizzo Dell’aria Compressa nei Settori Industriali Più Sensi. Report RdS, No. 222.Benedetti, M., Bertini, I., Introna, V., Ubertini, S. (2018), Explorative study on compressed air systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436-448.Bonacina, F., Corsini, A., De Propris, L., Marchegiani, A., Mori, F. (2015), Industrial energy management systems in Italy: State of the art and perspective. Energy Procedia, 82, 562-569.Bonfàa, F., Salvatorib, S., Benedettic, M., Intronad, V., Ubertinie, S. (2017), Monitoring compressed air systems energy performance in industrial production: Lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403.Bose, J.R., Olson, M.K. (1993), TAPS’s leak detection seeks greater precision. Oil and Gas Journal, 91(14), 14.Broniszewski, M., Werle, S. (2018), The Study on the Heat Recovery from Air Compressors. In: E3S Web of Conferences, No. 70, 03001 EDP Sciences.Castellanos, L.M., Hernández-Herrera, H., Silva-Ortega, J.I., Martínez Diaz, V.L., García Sanchez, Z. (2019), Potential energy savings and Co2 emissions reduction in Colombia compressed air systems. International Journal of Energy Economics and Policy, 9(6), 71-79.Cloete, S., le Roux, D., Buhrmann, T. (2013), Reducing Compressed Air Wastage by Installing New Technology in Underground Mines. South Africa: 2013 Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE.Correa, J., Borroto, A., González, R., Curbelo, M., Díaz, A.M. (2014), Diseño y aplicación de un procedimiento para la planificación energética según la NC-ISO 50001: 2011. Ingeniería Energética, 35(1), 38-47.Corsini, A., De Propris, L., Feudo, S., Stefanato, M. (2015), Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778.Dindorf, R. (2012), Estimating potential energy savings in compressed air systems. Procedia Engineering, 39, 204-211.DoE, U.S. (1998), Improving Compressed Air System Performance, a Sourcebook for Industry. Washington, DC: Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC).dos Santos Mascarenhas, J., Chowdhury, H., Thirugnanasambandam, M., Chowdhury, T., Saidur, R. (2019), Energy, exergy, sustainability, and emission analysis of industrial air compressors. Journal of Cleaner Production, 231, 183-195.Dudić, S., Ignjatović, I., Šešlija, D., Blagojević, V., Stojiljković, M. (2012), Leakage quantification of compressed air using ultrasound and infrared thermography. Measurement, 45(7), 1689-1694.Eras, J.J.C., Gutiérrez, A.S., Santos, V.S., Herrera, H.H., Morejón, M.B., Ortega, J.S., Vandecasteele, C. (2019), Energy management in the formation of light, starter, and ignition lead-acid batteries. Energy Efficiency, 12(5), 1219-1236.European Commission. (2009), Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://www. eippcb.jrc.ec.europa.eu.Festel, G., Würmseher, M. (2014), Benchmarking of energy and utility infrastructures in industrial parks. Journal of Cleaner Production, 70, 15-26.Fleiter, T., Hirzel, S., Worrell, E. (2012), The characteristics of energyefficiency measures a neglected dimension. Energy Policy, 51, 502-513.Goldstein, D., Almaguer, J.A. (2013), Developing a Suite of Energy Performance Indicators (EnPIs) to Optimize Outcomes. Washington, DC: Proceedings of the 2013 ACEEE Summer Study on Energy Efficiency in Industry, American Council for an Energy-Efficient Economy.Goodarzia, G., Dehghani, S., Akbarzadeh, A., Date, A. (2017), Energy saving opportunities in air drying process in high-pressure compressors. Energy Procedia, 110, 428-433.Gopalakrishnan, B., Ramamoorthy, K., Crowe, E., Chaudhari, S., Latif, H. (2014), A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector. Sustainable Energy Technologies and Assessments, 7, 154-165.Huang, B., Jian, Q., Luo, L., Zhao, J. (2017), Experimental study of enhancing heating performance of the air-source heat pump by using a novel heat recovery device designed for reusing the energy of the compressor shell. Energy Conversion and Management, 138, 38-44.ISO. 50001. (2011), Energy Management Systems--Requirements with Guidance for Use. United Kingdom: International Organization for Standardization.Kanneganti, H., Gopalakrishnan, B., Crowe, E., Al-Shebeeb, O., Yelamanchi, T., Nimbarte, A., Abolhassani, A. (2017), Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustainable Energy Technologies and Assessments, 23, 121-135.Kaya, D., Phelan, P., Chau, D., Ibrahim, S.H. (2002), Energy conservation in compressed air systems. International Journal of Energy Research, 26(9), 837-849.Kluczek, A., Olszewski, P. (2017), Energy audits in industrial processes. Journal of Cleaner Production, 142, 3437-3453.Kriel, C.J.R., Marais, J.H., Kleingeld, M., (2014), Modernising Underground Compressed Air DSM Projects to Reduce Operating Costs. South Africa: 2014 Proceedings of the Conference on the Industrial and Commercial Use of Energy, ICUE.Madrigal, J.A., Eras, J.J.C., Herrera, H.H., Santos, V.S., Morejón, M.B. (2018), Planificación energética para el ahorro de fueloil en una lavandería industrial. Ingeniare. Revista Chilena de Ingeniería, 26(1), 86-96.Mousavi, S., Kara, S., Kornfeld, B. (2014), Energy efficiency of compressed air systems. Procedia Cirp, 15, 313-318.Murvay, P.S., Silea, I. (2012), A survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries, 25(6), 966-973.Neale, J.R., Kamp, P.J.J. (2009), Compressed air system best practice programmes: What needs to change to secure long term energy savings for New Zealand. Energy Policy, 37, 3400-3408.Nethler, T. (2018a), Linking energy efficiency measures in industrial compressed air systems with non-energy benefits-a review. Renewable and Sustainable Energy Reviews, 89, 72-87.Nethler, T., Parra, R., Thollander, P. (2018), Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits. Energy Efficiency, 11(5), 1281-1302.Olszewski, P., Borgnakke, C. (2016), Influence of volumetric capacity on energy consumption in oil-lubricated compressed air systems. Journal of Thermal Science and Engineering Applications, 8(4), 10.Paffel, K. (2017), Air system leak. Hydrualics and Pneumatics, 70(11), 22-27.Radgen, P., Annegret, C. (2003), Efficient Compressed Air a Successful Campaign for Energy Efficient Compressed Air Systems in Germany. Saint-Raphaël, France: ECEEE 2003 Summer Study Proceedings.Radgen, P., Blaustein, E. (2001), Compressed air Systems in the European Union: Energy, Emissions, Savings Potential and Policy Actions. Stuttgart: LOG_X.Reddy, H.P., Narasimhan, S., Bhallamudi, S.M., Bairagi, S. (2011), Leak detection in gas pipeline networks using an efficient state estimator. Part-I: Theory and simulations. Computer Chemical Engineering, 35(4), 651-661.Reddy, H.P., Narasimhan, S., Bhallamudi, S.M., Bairagi, S. (2011a), Leak detection in gas pipeline networks using an efficient state estimator. Part II. Experimental and field evaluation. Computer Chemical Engineering, 35(4), 662-670.Saidur, R., Rahim, N.A., Hasanuzzaman, M. (2010), A review on compressed-air energy use and energy savings. Renewable and Sustainable Energy Reviews, 14(4), 1135-1153.Sarduy, J.R., Felipe, P., Torres, Y., Plascencia, M., Santos, V., Haeseldonckx, D. (2018), A new energy performance indicator for energy management system of a wheat mill plant. International Journal of Energy Economics and Policy, 8(4), 324-330.Schulze, M., Nehler, H., Ottosson, M., Thollander, P. (2016), Energy management in industry a systematic review of previous findings and an integrative conceptual framework. Journal of Cleaner Production, 112, 3692-3708.Šešlija, D., Ignjatović, I., Dudić, S., Lagod, B. (2011), Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645.Shaw, W., Mathews, M., Marais, J. (2019), Using specific energy as a metric to characterise compressor system performance. Energy Technologies and Assessments, 31, 329-338.Shim, H.S., Lee, S.J. (2018), A Study of Determination of Energy Performance Indicator for Applying Energy Management System in Industrial Sector. USA: 2018 Portland: International Conference on Management of Engineering and Technology (PICMET), IEEE. p1-6.Taheri, K., Gadow, R. (2017), Industrial compressed air system analysis: Exergy and thermoeconomic analysis. CIRP Journal of Manufacturing Science and Technology, 18, 10-17.UPME Corpoema. (2014), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. I. Colombia. Available from: http://www.upme. gov.co/estudios/2014/informe_final_ volumen_1.pdf. [Last accessed on 2019 Sep 12].UPME Corpoema. (2014a), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. II. Colombia. Available from: http:// www1.upme.gov.co/demandaenergetica/determinacioneficiencia/ informe_final_volumen_2.pdf. [Last accessed on 2019 Sep 12].UPME Incombustion. (2013), Determinación del Potencial de Reducción del Consumo Energético en los Subsectores Manufactureros Códigos CIIU 10 a 18 en Colombia. Available from: http://www.upme.gov. co/demandaenergetica/INFORME_III_caracterizacion_energetica_ Verpub.pdf. [Last accessed on 2019 Sep 12].Viholainen, J., Grönman, K., Jaatinen-Värri, A., Grönman, A., Ukkonen, P., Luoranen, M. (2015), Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment. Energy Conversion and Management, 101, 336-342.Vittorini, D., Cipollone, R. (2016), Energy saving potential in existing industrial compressors. Energy, 102, 502-515.Yang, M. (2009), Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337.Yin, Y., Zheng, B., Yang, C., Zhang, X. (2015), A proposed compressed air drying method using pressurized liquid desiccant and experimental verification. Applied Energy, 141, 80-89.Zahlan, J., Shihab, A. (2015), A multi-objective approach for determining optimal air compressor location in a manufacturing facility. Journal of Manufacturing Systems, 35, 176-190.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/3aa46aca-3107-4fd5-94f9-6c8cbbdcd821/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/cceebd88-f6d8-4630-bb5c-8165b6ee5bd1/download8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALEnergy savings measures in compressed air systems.pdfEnergy savings measures in compressed air systems.pdfapplication/pdf2453228https://repositorio.cuc.edu.co/bitstreams/ee62eafd-a893-4b44-9e7e-c9337bbd09bd/download3245e423512abce3ebfac126b509f13bMD51THUMBNAILEnergy savings measures in compressed air systems.pdf.jpgEnergy savings measures in compressed air systems.pdf.jpgimage/jpeg74558https://repositorio.cuc.edu.co/bitstreams/edb9cb7d-6ad3-4e84-bd4d-d39b2f1932ce/downloadcec62be31a878179c0a01f1a929db131MD54TEXTEnergy savings measures in compressed air systems.pdf.txtEnergy savings measures in compressed air systems.pdf.txttext/plain38880https://repositorio.cuc.edu.co/bitstreams/6de20acb-bd19-416a-bc05-8b919f9cfcf2/downloadf425dc066adef3f147275daa9807a04dMD5511323/6206oai:repositorio.cuc.edu.co:11323/62062024-09-17 14:11:59.073http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |