Experimental study and analysis of thermal comfort in a university campus building in tropical climate

This study presents the evaluation of the performance and acceptability of thermal comfort by students in the classrooms of a university building with minisplit-type air-conditioning systems, in a tropical climate. To carry out the study, temperature and humidity measurements were recorded, both out...

Full description

Autores:
BALBIS MOREJON, MILEN
Rey Hernandez, Javier M
Amaris-Castilla, Carlos
velasco, eloy
San José, Julio
Rey-Martínez, Francisco Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7311
Acceso en línea:
https://hdl.handle.net/11323/7311
https://repositorio.cuc.edu.co/
Palabra clave:
Indoor environmental quality (IEQ)
Thermal comfort methods
Thermal acceptability
Tropical climate
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_59e5625389903ca356665bab336add43
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7311
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Experimental study and analysis of thermal comfort in a university campus building in tropical climate
title Experimental study and analysis of thermal comfort in a university campus building in tropical climate
spellingShingle Experimental study and analysis of thermal comfort in a university campus building in tropical climate
Indoor environmental quality (IEQ)
Thermal comfort methods
Thermal acceptability
Tropical climate
title_short Experimental study and analysis of thermal comfort in a university campus building in tropical climate
title_full Experimental study and analysis of thermal comfort in a university campus building in tropical climate
title_fullStr Experimental study and analysis of thermal comfort in a university campus building in tropical climate
title_full_unstemmed Experimental study and analysis of thermal comfort in a university campus building in tropical climate
title_sort Experimental study and analysis of thermal comfort in a university campus building in tropical climate
dc.creator.fl_str_mv BALBIS MOREJON, MILEN
Rey Hernandez, Javier M
Amaris-Castilla, Carlos
velasco, eloy
San José, Julio
Rey-Martínez, Francisco Javier
dc.contributor.author.spa.fl_str_mv BALBIS MOREJON, MILEN
Rey Hernandez, Javier M
Amaris-Castilla, Carlos
velasco, eloy
San José, Julio
Rey-Martínez, Francisco Javier
dc.subject.spa.fl_str_mv Indoor environmental quality (IEQ)
Thermal comfort methods
Thermal acceptability
Tropical climate
topic Indoor environmental quality (IEQ)
Thermal comfort methods
Thermal acceptability
Tropical climate
description This study presents the evaluation of the performance and acceptability of thermal comfort by students in the classrooms of a university building with minisplit-type air-conditioning systems, in a tropical climate. To carry out the study, temperature and humidity measurements were recorded, both outside and inside the selected classrooms, while the students were asked to complete thermal surveys on site. The survey model is based on the template proposed by Fanger and it was applied to a total number of 584 students. In each classroom, the Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) were estimated according to Fanger’s methodology, as well as the Thermal Sensation Vote (TSV) and the Actual Percentage Dissatisfied (APD), which were obtained from the measurements and the surveys. The results of this study showed that the PMV values, although they may vary with the insulation of the clothing, do not affect the TSV. Furthermore, comparing PMV vs. TSV scores, a 2 ◦C to 3 ◦C difference in operating temperature was found, whereby the thermal sensitivity for TSV was colder, so it could be assumed that the PMV model overestimates the thermal sensitivity of students in low-temperature conditions. In addition, an acceptability by 90% with thermal preferences between 23 ◦C and 24 ◦C were also found. These results indicate that it is possible to increase the temperature set point in minisplit-type air-conditioning system from 4 ◦C to 7 ◦C with respect to the currently set temperatures, without affecting the acceptability of the thermal environment to the students in the building.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-13T19:54:50Z
dc.date.available.none.fl_str_mv 2020-11-13T19:54:50Z
dc.date.issued.none.fl_str_mv 2020-10-26
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2071-1050
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7311
dc.identifier.doi.spa.fl_str_mv DOI: 10.3390/su12218886
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2071-1050
DOI: 10.3390/su12218886
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7311
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Jiang, J.; Wang, D.; Liu, Y.; Xu, Y.; Liu, J. A study on pupils’ learning performance and thermal comfort of primary schools in China. Build. Environ. 2018, 134, 102–113. [CrossRef]
2. Corgnati, S.P.; Filippi, M.; Viazzo, S. Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort. Build. Environ. 2007, 42, 951–959. [CrossRef]
3. Mishra, A.K.; Derks, M.T.H.; Kooi, L.; Loomans, M.G.L.C.; Kort, H.S.M. Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Build. Environ. 2017, 125, 464–474. [CrossRef]
4. Jing, S.; Lei, Y.; Wang, H.; Song, C.; Yan, X. Thermal comfort and energy-saving potential in university classrooms during the heating season. Energy Build. 2019, 202, 109390. [CrossRef]
5. ANSI/ASHRAE. Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2017.
6. Madrigal, J.A.; Cabello, J.J.; Sagastume, A.; Balbis, M. Evaluación de la Climatización en Locales Comerciales, Integrando Técnicas de Termografía, Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings, Integrating Thermography Techniques, Simulation and Modeling. Inf. Tecnol. 2018, 29, 179–188. [CrossRef]
7. Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [CrossRef]
8. Mondelo, P.R.; Torada, E.G.; Vilella, E.C.; Úriz, S.C.; Lacambra, E.B. ERGONOMIA 2—Confort y Estrés Térmico, 3rd ed.; Alfaomega: Madrid, España; Edicions UPC: Barcelona, España, 2001.
9. Jara, P. Thermal comfort and its importance for the architectural design and environmental quality of indoors space. Arquit. Cult. 2015, 7, 106–121.
10. Vera, S.; Ordenes, M. Thermal and Energy Performance Evaluation of a Social Housing in Chile, Using a Building Energy Simulation Software. Rev. Ing. Constr. 2011, 17, 133–142.
11. Djamila, H.; Chu, C.M.; Kumaresan, S. Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Build. Environ. 2013, 62, 133–142. [CrossRef]
12. Mirrahimi, S.; Mohamed, M.F.; Haw, L.C.; Ibrahim, N.L.N.; Yusoff, W.F.M.; Aflaki, A. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renew. Sustain. Energy Rev. 2016, 53, 1508–1519. [CrossRef]
13. Castilla, M.M.; Álvarez, J.D.; Berenguel, M.; Pérez, M.; Rodríguez, F.; Guzmán, J.L. Técnicas de Control del Confort en Edificios. Rev. Iberoam. Autom. Inform. Ind. 2010, 7, 5–24. [CrossRef]
14. van Hoof, J.; Schellen, L.; Soebarto, V.; Wong, J.K.W.; Kazak, J.K. Ten questions concerning thermal comfort and ageing. Build. Environ. 2017, 120, 123–133. [CrossRef]
15. Fabbri, K. Indoor thermal comfort perception: A questionnaire approach focusing on children, In Indoor Thermal Comfort Perception A Quest. Approach Focus. Child.; Springer: Cham, Switzerland, 2015; p. 302. [CrossRef]
16. Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [CrossRef]
17. Mishra, A.K.; Ramgopal, M. Field studies on human thermal comfort d An overview. Build. Environ. 2013, 64, 94–106. [CrossRef]
18. ISO 7730:2005. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005.
19. EN 16798-1:2019. Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardization-CNE: Geneva, Switzerland, 2019.
20. ICONTEC. Thermal Environmental Conditions for Human Occupancy; NTC 5316; ICONTEC: Bogota, Colombia, 2004.
21. Aghniaey, S.; Lawrence, T.M.; Sharpton, T.N.; Douglass, S.P.; Oliver, T.; Sutter, M. Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response. Build. Environ. 2019, 148, 488–497. [CrossRef]
22. Natarajan, S.; Rodriguez, J.; Vellei, M. A field study of indoor thermal comfort in the subtropical highland climate of Bogota, Colombia. J. Build. Eng. 2015, 4, 237–246. [CrossRef]
23. Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [CrossRef]
24. Ealiwa, M.R.S.M.A.; Taki, A.H.; Howarth, A.T. An investigation into thermal comfort in the summer season of Ghadames, Libya. Build. Environ. 2001, 36, 231–237. [CrossRef]
25. Koelblen, B.; Psikuta, A.; Bogdan, A.; Annaheim, S.; Rossi, R.M. Thermal sensation models: Validation and sensitivity towards thermo-physiological parameters. Build. Environ. 2018, 130, 200–211. [CrossRef]
26. Hwang, R.L.; Lin, T.P.; Kuo, N.J. Field experiments on thermal comfort in campus classrooms in Taiwan. Energy Build. 2006, 38, 53–62. [CrossRef]
27. Buonocore, C.; de Vecchi, R.; Scalco, V.; Lamberts, R. Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil. Energy Build. 2020, 211, 109783. [CrossRef]
28. Kuchen, E.; Fisch, M.N.; Gonzalo, G.E.; Nozica, G.N. Predicción del indice de disconformidad térmica en espacios de oficina considerando el diagnóstico de usuarios. Av. Energías Renov. Medio Ambient. 2009, 13, 15–22.
29. Cruz, E.M.G.; Claret, G.; Morales, B. About thermal comfort: Neutral temperatures in the humid tropic. Rev. Investig. Científica Arquit. J. Sci. Res. 2009, 33–38. Available online: http://www.redalyc.org/pdf/948/94814777005.pdf (accessed on 7 March 2020).
30. Batlle, E.A.O.; Palacio, J.C.E.; Lora, E.E.S.; Reyes, A.M.M.; Moreno, M.M.; Morejón, M.B. A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: Case study, Federal University of Itajubá (UNIFEI). J. Clean. Prod. 2020, 244, 118551. [CrossRef]
31. Valderrama, C.; Cohen, A.; Lagiere, P.; Puiggali, J.R. Análisis del comportamiento energético en un conjunto de edifi cios multifuncionales. Caso de estudio Campus Universitario. Rev. Constr. 2011, 10, 26–39.
32. Campos, A. Confort Térmico Y Eficiencia Energética En Un Centro Docente. 2017. Available online: https://riunet.upv.es/handle/10251/86736?show=full (accessed on 7 March 2020).
33. Sánchez-García, D.; Sánchez-Guevara, C.; Rubio, C. El enfoque adaptativo del confort térmico en Sevilla. Master’s Thesis, Universidad Politécnica de Madrid, Anales, España, 2015. Volume 2. p. 110.
34. Lin, Z.; Deng, S. A study on the thermal comfort in sleeping environments in the subtropics-Developing a thermal comfort model for sleeping environments. Build. Environ. 2008, 43, 70–81. [CrossRef]
35. Guerra-Santin, O.; Tweed, C.A. In-use monitoring of buildings: An overview of data collection methods. Energy Build. 2015, 93, 189–207. [CrossRef]
36. Stevenson, F.H.B.R. Developing occupancy feedback from a prototype to improve housing production. Build. Res. Inf. 2010, 38, 549–563. [CrossRef]
37. Ekici, C. A review of thermal comfort and method of using Fanger’s PMV equation. In Proceedings of the 5th International Symposium on Measurement, Analysis and Modelling of Human Functions, ISHF 2013, Vancouver, BC, Canada, 27–29 June 2013; pp. 61–64.
38. Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [CrossRef]
39. Doherty, T.J.; Arens, E. Evaluation of the physiological bases of thermal comfort models. ASHRAE Trans. 1988, 94, 1371–1385. Available online: www.ashrae.org (accessed on 7 March 2020).
40. Balbis-Morejon1, M.; Noya-Sambrano1, A. Thermal comfort evaluation in an educational building with air conditioning located in the warm tropical climate of Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 012030. [CrossRef]
41. Arballo, B.; Kuchen, E.; Scientific, N.; Naranjo, Y.A. Evaluación de modelos de confort térmico para interiores. In Proceedings of the VIII Congreso Regional de Tecnología de la Arquitectura—CRETA, Desarrollo Tecnológico Regional Sustentable, San Juan, Argentina, 19–21 October 2016; p. 10.
42. Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy Rev. 2016. [CrossRef]
43. ASHRAE. STANDARD 55 USER’ S MANUAL; ASHRAE: Atlanta, GA, USA, 2016.
44. ANSI/ASHRAE. Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2013.
45. Huizenga, C.; Hui, Z.; Arens, E. A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 2001, 36, 691–699. [CrossRef]
46. CBE Center for the Built Environment. CBE Thermal Comfort Tools. 2020. Available online: https: //comfort.cbe.berkeley.edu (accessed on 7 March 2020).
47. Mui, K.W.; Tsang, T.W.; Wong, L.T. Bayesian updates for indoor thermal comfort models. J. Build. Eng. 2020, 29, 101117. [CrossRef]
48. Walikewitz, N.; Jänicke, B.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [CrossRef]
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Sustainability
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2071-1050/12/21/8886
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/29522a6d-cc53-4b5e-9970-2ffc90977592/download
https://repositorio.cuc.edu.co/bitstreams/63df8358-440a-4373-9698-7ddb8b7027d9/download
https://repositorio.cuc.edu.co/bitstreams/f47cf8d9-fca7-4b4a-8445-2f0c887db135/download
https://repositorio.cuc.edu.co/bitstreams/41240d18-a528-47f0-b987-fba399a37fa6/download
https://repositorio.cuc.edu.co/bitstreams/71d988a5-a1b3-42b6-a18a-ce0b23e9a8cf/download
bitstream.checksum.fl_str_mv 861f41e023f1f268c24525fac121e445
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d475a425e0de2626fd1a41527898ab5b
fde49eee1860aceee3a022f8905a01b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760824976408576
spelling BALBIS MOREJON, MILENRey Hernandez, Javier MAmaris-Castilla, Carlosvelasco, eloySan José, JulioRey-Martínez, Francisco Javier2020-11-13T19:54:50Z2020-11-13T19:54:50Z2020-10-262071-1050https://hdl.handle.net/11323/7311DOI: 10.3390/su12218886Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study presents the evaluation of the performance and acceptability of thermal comfort by students in the classrooms of a university building with minisplit-type air-conditioning systems, in a tropical climate. To carry out the study, temperature and humidity measurements were recorded, both outside and inside the selected classrooms, while the students were asked to complete thermal surveys on site. The survey model is based on the template proposed by Fanger and it was applied to a total number of 584 students. In each classroom, the Predicted Mean Vote (PMV) and the Predicted Percentage Dissatisfied (PPD) were estimated according to Fanger’s methodology, as well as the Thermal Sensation Vote (TSV) and the Actual Percentage Dissatisfied (APD), which were obtained from the measurements and the surveys. The results of this study showed that the PMV values, although they may vary with the insulation of the clothing, do not affect the TSV. Furthermore, comparing PMV vs. TSV scores, a 2 ◦C to 3 ◦C difference in operating temperature was found, whereby the thermal sensitivity for TSV was colder, so it could be assumed that the PMV model overestimates the thermal sensitivity of students in low-temperature conditions. In addition, an acceptability by 90% with thermal preferences between 23 ◦C and 24 ◦C were also found. These results indicate that it is possible to increase the temperature set point in minisplit-type air-conditioning system from 4 ◦C to 7 ◦C with respect to the currently set temperatures, without affecting the acceptability of the thermal environment to the students in the building.BALBIS MOREJON, MILEN-will be generated-orcid-0000-0002-8053-6651-600Rey Hernandez, Javier M-will be generated-orcid-0000-0002-3305-6292-600Amaris-Castilla, Carlosvelasco, eloy-will be generated-orcid-0000-0003-4889-4069-600San José, Julio-will be generated-orcid-0000-0003-0077-9280-600Rey-Martínez, Francisco Javier-will be generated-orcid-0000-0002-4539-239X-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sustainabilityhttps://www.mdpi.com/2071-1050/12/21/8886Indoor environmental quality (IEQ)Thermal comfort methodsThermal acceptabilityTropical climateExperimental study and analysis of thermal comfort in a university campus building in tropical climateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Jiang, J.; Wang, D.; Liu, Y.; Xu, Y.; Liu, J. A study on pupils’ learning performance and thermal comfort of primary schools in China. Build. Environ. 2018, 134, 102–113. [CrossRef]2. Corgnati, S.P.; Filippi, M.; Viazzo, S. Perception of the thermal environment in high school and university classrooms: Subjective preferences and thermal comfort. Build. Environ. 2007, 42, 951–959. [CrossRef]3. Mishra, A.K.; Derks, M.T.H.; Kooi, L.; Loomans, M.G.L.C.; Kort, H.S.M. Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Build. Environ. 2017, 125, 464–474. [CrossRef]4. Jing, S.; Lei, Y.; Wang, H.; Song, C.; Yan, X. Thermal comfort and energy-saving potential in university classrooms during the heating season. Energy Build. 2019, 202, 109390. [CrossRef]5. ANSI/ASHRAE. Standard 55: 2017, Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2017.6. Madrigal, J.A.; Cabello, J.J.; Sagastume, A.; Balbis, M. Evaluación de la Climatización en Locales Comerciales, Integrando Técnicas de Termografía, Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings, Integrating Thermography Techniques, Simulation and Modeling. Inf. Tecnol. 2018, 29, 179–188. [CrossRef]7. Höppe, P. Different aspects of assessing indoor and outdoor thermal comfort. Energy Build. 2002, 34, 661–665. [CrossRef]8. Mondelo, P.R.; Torada, E.G.; Vilella, E.C.; Úriz, S.C.; Lacambra, E.B. ERGONOMIA 2—Confort y Estrés Térmico, 3rd ed.; Alfaomega: Madrid, España; Edicions UPC: Barcelona, España, 2001.9. Jara, P. Thermal comfort and its importance for the architectural design and environmental quality of indoors space. Arquit. Cult. 2015, 7, 106–121.10. Vera, S.; Ordenes, M. Thermal and Energy Performance Evaluation of a Social Housing in Chile, Using a Building Energy Simulation Software. Rev. Ing. Constr. 2011, 17, 133–142.11. Djamila, H.; Chu, C.M.; Kumaresan, S. Field study of thermal comfort in residential buildings in the equatorial hot-humid climate of Malaysia. Build. Environ. 2013, 62, 133–142. [CrossRef]12. Mirrahimi, S.; Mohamed, M.F.; Haw, L.C.; Ibrahim, N.L.N.; Yusoff, W.F.M.; Aflaki, A. The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot-humid climate. Renew. Sustain. Energy Rev. 2016, 53, 1508–1519. [CrossRef]13. Castilla, M.M.; Álvarez, J.D.; Berenguel, M.; Pérez, M.; Rodríguez, F.; Guzmán, J.L. Técnicas de Control del Confort en Edificios. Rev. Iberoam. Autom. Inform. Ind. 2010, 7, 5–24. [CrossRef]14. van Hoof, J.; Schellen, L.; Soebarto, V.; Wong, J.K.W.; Kazak, J.K. Ten questions concerning thermal comfort and ageing. Build. Environ. 2017, 120, 123–133. [CrossRef]15. Fabbri, K. Indoor thermal comfort perception: A questionnaire approach focusing on children, In Indoor Thermal Comfort Perception A Quest. Approach Focus. Child.; Springer: Cham, Switzerland, 2015; p. 302. [CrossRef]16. Frontczak, M.; Wargocki, P. Literature survey on how different factors influence human comfort in indoor environments. Build. Environ. 2011, 46, 922–937. [CrossRef]17. Mishra, A.K.; Ramgopal, M. Field studies on human thermal comfort d An overview. Build. Environ. 2013, 64, 94–106. [CrossRef]18. ISO 7730:2005. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005.19. EN 16798-1:2019. Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardization-CNE: Geneva, Switzerland, 2019.20. ICONTEC. Thermal Environmental Conditions for Human Occupancy; NTC 5316; ICONTEC: Bogota, Colombia, 2004.21. Aghniaey, S.; Lawrence, T.M.; Sharpton, T.N.; Douglass, S.P.; Oliver, T.; Sutter, M. Thermal comfort evaluation in campus classrooms during room temperature adjustment corresponding to demand response. Build. Environ. 2019, 148, 488–497. [CrossRef]22. Natarajan, S.; Rodriguez, J.; Vellei, M. A field study of indoor thermal comfort in the subtropical highland climate of Bogota, Colombia. J. Build. Eng. 2015, 4, 237–246. [CrossRef]23. Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [CrossRef]24. Ealiwa, M.R.S.M.A.; Taki, A.H.; Howarth, A.T. An investigation into thermal comfort in the summer season of Ghadames, Libya. Build. Environ. 2001, 36, 231–237. [CrossRef]25. Koelblen, B.; Psikuta, A.; Bogdan, A.; Annaheim, S.; Rossi, R.M. Thermal sensation models: Validation and sensitivity towards thermo-physiological parameters. Build. Environ. 2018, 130, 200–211. [CrossRef]26. Hwang, R.L.; Lin, T.P.; Kuo, N.J. Field experiments on thermal comfort in campus classrooms in Taiwan. Energy Build. 2006, 38, 53–62. [CrossRef]27. Buonocore, C.; de Vecchi, R.; Scalco, V.; Lamberts, R. Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil. Energy Build. 2020, 211, 109783. [CrossRef]28. Kuchen, E.; Fisch, M.N.; Gonzalo, G.E.; Nozica, G.N. Predicción del indice de disconformidad térmica en espacios de oficina considerando el diagnóstico de usuarios. Av. Energías Renov. Medio Ambient. 2009, 13, 15–22.29. Cruz, E.M.G.; Claret, G.; Morales, B. About thermal comfort: Neutral temperatures in the humid tropic. Rev. Investig. Científica Arquit. J. Sci. Res. 2009, 33–38. Available online: http://www.redalyc.org/pdf/948/94814777005.pdf (accessed on 7 March 2020).30. Batlle, E.A.O.; Palacio, J.C.E.; Lora, E.E.S.; Reyes, A.M.M.; Moreno, M.M.; Morejón, M.B. A methodology to estimate baseline energy use and quantify savings in electrical energy consumption in higher education institution buildings: Case study, Federal University of Itajubá (UNIFEI). J. Clean. Prod. 2020, 244, 118551. [CrossRef]31. Valderrama, C.; Cohen, A.; Lagiere, P.; Puiggali, J.R. Análisis del comportamiento energético en un conjunto de edifi cios multifuncionales. Caso de estudio Campus Universitario. Rev. Constr. 2011, 10, 26–39.32. Campos, A. Confort Térmico Y Eficiencia Energética En Un Centro Docente. 2017. Available online: https://riunet.upv.es/handle/10251/86736?show=full (accessed on 7 March 2020).33. Sánchez-García, D.; Sánchez-Guevara, C.; Rubio, C. El enfoque adaptativo del confort térmico en Sevilla. Master’s Thesis, Universidad Politécnica de Madrid, Anales, España, 2015. Volume 2. p. 110.34. Lin, Z.; Deng, S. A study on the thermal comfort in sleeping environments in the subtropics-Developing a thermal comfort model for sleeping environments. Build. Environ. 2008, 43, 70–81. [CrossRef]35. Guerra-Santin, O.; Tweed, C.A. In-use monitoring of buildings: An overview of data collection methods. Energy Build. 2015, 93, 189–207. [CrossRef]36. Stevenson, F.H.B.R. Developing occupancy feedback from a prototype to improve housing production. Build. Res. Inf. 2010, 38, 549–563. [CrossRef]37. Ekici, C. A review of thermal comfort and method of using Fanger’s PMV equation. In Proceedings of the 5th International Symposium on Measurement, Analysis and Modelling of Human Functions, ISHF 2013, Vancouver, BC, Canada, 27–29 June 2013; pp. 61–64.38. Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [CrossRef]39. Doherty, T.J.; Arens, E. Evaluation of the physiological bases of thermal comfort models. ASHRAE Trans. 1988, 94, 1371–1385. Available online: www.ashrae.org (accessed on 7 March 2020).40. Balbis-Morejon1, M.; Noya-Sambrano1, A. Thermal comfort evaluation in an educational building with air conditioning located in the warm tropical climate of Colombia. IOP Conf. Ser. Mater. Sci. Eng. 2020, 844, 012030. [CrossRef]41. Arballo, B.; Kuchen, E.; Scientific, N.; Naranjo, Y.A. Evaluación de modelos de confort térmico para interiores. In Proceedings of the VIII Congreso Regional de Tecnología de la Arquitectura—CRETA, Desarrollo Tecnológico Regional Sustentable, San Juan, Argentina, 19–21 October 2016; p. 10.42. Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy Rev. 2016. [CrossRef]43. ASHRAE. STANDARD 55 USER’ S MANUAL; ASHRAE: Atlanta, GA, USA, 2016.44. ANSI/ASHRAE. Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2013.45. Huizenga, C.; Hui, Z.; Arens, E. A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 2001, 36, 691–699. [CrossRef]46. CBE Center for the Built Environment. CBE Thermal Comfort Tools. 2020. Available online: https: //comfort.cbe.berkeley.edu (accessed on 7 March 2020).47. Mui, K.W.; Tsang, T.W.; Wong, L.T. Bayesian updates for indoor thermal comfort models. J. Build. Eng. 2020, 29, 101117. [CrossRef]48. Walikewitz, N.; Jänicke, B.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [CrossRef]PublicationORIGINALExperimental Study and Analysis of Thermal Comfort.pdfExperimental Study and Analysis of Thermal Comfort.pdfapplication/pdf2461460https://repositorio.cuc.edu.co/bitstreams/29522a6d-cc53-4b5e-9970-2ffc90977592/download861f41e023f1f268c24525fac121e445MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/63df8358-440a-4373-9698-7ddb8b7027d9/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f47cf8d9-fca7-4b4a-8445-2f0c887db135/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILExperimental Study and Analysis of Thermal Comfort.pdf.jpgExperimental Study and Analysis of Thermal Comfort.pdf.jpgimage/jpeg67597https://repositorio.cuc.edu.co/bitstreams/41240d18-a528-47f0-b987-fba399a37fa6/downloadd475a425e0de2626fd1a41527898ab5bMD54TEXTExperimental Study and Analysis of Thermal Comfort.pdf.txtExperimental Study and Analysis of Thermal Comfort.pdf.txttext/plain76300https://repositorio.cuc.edu.co/bitstreams/71d988a5-a1b3-42b6-a18a-ce0b23e9a8cf/downloadfde49eee1860aceee3a022f8905a01b3MD5511323/7311oai:repositorio.cuc.edu.co:11323/73112024-09-17 14:05:51.659http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==