Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems

This paper presents a voltage sensitivity analysis with respect to the real power injected with renewable energies to determine the optimal integration of distributed generation (DG) in distribution systems (DS). The best nodes where the power injections improve voltages magnitudes complying with th...

Full description

Autores:
Cabana, Katherine
Candelo, John
Castillo, Rafael
De-La-Hoz-Franco, Emiro
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6092
Acceso en línea:
https://hdl.handle.net/11323/6092
https://repositorio.cuc.edu.co/
Palabra clave:
Voltage magnitudes
Sensitivity analysis
Distribution networks
Distributed generation
Metaheuristic algorithms
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_59c39356673a41a8ba81eeb95a91a80f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6092
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
title Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
spellingShingle Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
Voltage magnitudes
Sensitivity analysis
Distribution networks
Distributed generation
Metaheuristic algorithms
title_short Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
title_full Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
title_fullStr Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
title_full_unstemmed Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
title_sort Voltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems
dc.creator.fl_str_mv Cabana, Katherine
Candelo, John
Castillo, Rafael
De-La-Hoz-Franco, Emiro
dc.contributor.author.spa.fl_str_mv Cabana, Katherine
Candelo, John
Castillo, Rafael
De-La-Hoz-Franco, Emiro
dc.subject.spa.fl_str_mv Voltage magnitudes
Sensitivity analysis
Distribution networks
Distributed generation
Metaheuristic algorithms
topic Voltage magnitudes
Sensitivity analysis
Distribution networks
Distributed generation
Metaheuristic algorithms
description This paper presents a voltage sensitivity analysis with respect to the real power injected with renewable energies to determine the optimal integration of distributed generation (DG) in distribution systems (DS). The best nodes where the power injections improve voltages magnitudes complying with the constraints are determined. As it is a combinatorial problem, particle swarm optimization (PSO) and simulated annealing (SA) were used to change injections from 10% to 60% of the total power load using solar and wind generators and find the candidate nodes for installing power sources. The method was tested using the 33-node, 69-node and 118-node radial distribution networks. The results showed that the best nodes for injecting real power with renewable energies were selected for the distribution network by using the voltage sensitivity analysis. Algorithms found the best nodes for the three radial distribution networks with similar values in the maximum injection of real power, suggesting that this value maintains for all the power system cases. The injections applied to the different nodes showed that voltage magnitudes increase significantly, especially when exceeding the maximum penetration of DG. The test showed that some nodes support injections up to the limits, but the voltages increase considerably on all nodes.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-02
dc.date.accessioned.none.fl_str_mv 2020-03-10T13:07:20Z
dc.date.available.none.fl_str_mv 2020-03-10T13:07:20Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2088-8708
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6092
dc.identifier.doi.spa.fl_str_mv DOI: 10.11591/ijece.v9i1.pp55-65
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2088-8708
DOI: 10.11591/ijece.v9i1.pp55-65
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6092
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] P. Suresh Babu and R. Madhan Mohan, “Optimal Performance Enhancement of DG for Loss Reduction using Fuzzy and Harmony Search Algorithm,” in 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015, pp. 1–5.
[2] Y. O. Gummadi Srinivasa Rao, “Voltage Profile Improvement of Distribution System using Distributed Generating Units,” Int. J. Electr. Comput. Eng., vol. 3, no. 2088–8708, pp. 337–343, 2013.
[3] A. Yadav and L. Srivastava, “Optimal Placement of Distributed Generation: An Overview and Key Issues,” in 2014 International Conference on Power Signals Control and Computations (EPSCICON), 2014, pp. 1–6.
[4] M. P.S. and S. Hemamalini, “Optimal Siting of Distributed Generators in a Distribution Network using Artificial Immune System,” Int. J. Electr. Comput. Eng., 2017.
[5] A. A. Abou El-Ela, A. M. Azmay, and A. A. Shammah, “Optimal Sitting and Sizing of Distributed Generations In Distribution Networks Using Heuristic Algorithm,” in 2015 50th International Universities Power Engineering Conference (UPEC), 2015, pp. 1–7.
[6] and A. G. Hocine Ait-Saadi1, Jean-Yves Chouinard2, “A PAPR Reduction for OFDM Signals Based on Self-Adaptive Multipopulation DE algorithm Hocine,” Int. J. Electr. Comput. Eng., 2017.
[7] R. S. Al Abri, E. F. El-Saadany, and Y. M. Atwa, “Optimal Placement and Sizing Method to Improve the Voltage Stability Margin in a Distribution System Using Distributed Generation,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 326–334, Feb. 2013.
[8] H. W. K. M. Amarasekara, L. Meegahapola, A. P. Agalgaonkar, and S. Perera, “Impact of Renewable Power Integration On VQ Stability Margin,” in 2013 Australasian Universities Power Engineering Conference (AUPEC), 2013, pp. 1–6.
[9] R. S. Al Abri, “Voltage Stability Analysis With High Distributed Generation Penetration,” Waterloo, 2012.
[10] L. Wei and Zhang Haiyan, “Allocation of Distributed Generations Based on Improved Particle Swarm Optimization Algorithm,” Int. Conf. Meas. Inf. Control, 2013.
[11] W. S. Ke-yan Liu, Kaiyuan He, “Multiple-Objetive DG Optimal Sizing In Distribution System Using An Improverd PSO Algorith,” IEEE Trans. Automat. Contr., pp. 1–4, 2013.
[12] S. S. Musa, H. ; Adamu, “Enhanced PSO Based Multi-Objective Distributed Generation Placement And Sizing For Power Loss Reduction And Voltage Stability Index Improvement,” IEEE Trans. Automat. Contr., pp. 1–6, 2013.
[13] M. Shekeew, M. Elshahed, and M. Elmarsafawy, “Impact of Optimal Location, Size And Number Of Distributed Generation Units On The Performance Of Radial Distribution Systems,” in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 2016, pp. 1–6.
[14] D. Jia, L. Hu, K. Liu, Y. Liu, X. Meng, and W. Sheng, “Simplified Probabilistic Voltage Stability Evaluation Considering Variable Renewable Distributed Generation In Distribution Systems,” IET Gener. Transm. Distrib., vol. 9, no. 12, pp. 1464–1473, Sep. 2015.
[15] J. Silva et al., “A 75 Bus Bars Model To Evaluate The Steady State Operation Of A Sub-Transmission Electrical Power Grid,” Espacios, 2016.
[16] K. Cabana, “Statistical Analysis of Voltage Sensitivity in Distribution Systems Integrating DG,” IEEE Latin America Transactions. 2016.
[17] Z. Garcia Sánchez, J. A. González Cueto, G. Quintana de Basterra, and J. G. Boza Valerino, “Implementación de Un Estudio De Estabilidad De La Tensión Al Paquete De Programas Psx. 2.87,” Ing. Energética, vol. 34, no. 1, pp. 33–42.
[18] K. Morison, X. Wang, A. Moshref, and A. Edris, “Identification of Voltage Control Areas And Reactive Power Reserve; An Advancement In On-Line Voltage Security Assessment,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–7.
[19] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of Distributed Resources Impact on Power Delivery Systems,” IEEE Trans. Power Deliv., vol. 23, no. 3, pp. 1636–1644, Jul. 2008.
[20] H. Zeineldin, E. El-saadany, and M. A. Salama, “Distributed Generation Micro-Grid Operation: Control and Protection,” in 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006, pp. 105–111.
[21] P. C. Lu Zhang, Wei Tang, Muke Bai, “Analysis of Distributed Generation Influences On The Voltage Limit Violation Probability Of Distribution Line,” Energy Power Eng., vol. 5, pp. 756–762, 2013.
[22] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 360–370, Feb. 2010.
[23] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Distribution System Loss Minimization Using Optimal DG Mix,” in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1–6.
[24] M. H. Albadi and E. F. El-Saadany, “Novel Method For Estimating the CF of Variable Speed Wind Turbines,” in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1–6.
[25] M. H. Albadi and E. F. El-Saadany, “Wind Turbines Capacity Factor Modeling—A Novel Approach,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1637–1638, Aug. 2009.
[26] P. Monzón, Artenstein Michel, and J. Alonso, “Evaluación De La Estabilidad De Tensión En Una Red De Potencia Con Base A Criterios Derivados De La Teoría De La Bifurcación Más Cercana,” Aerosp. Eng. Control Syst. Eng. Electr. Eng., 2014.
[27] A. N. B. Alsammak, “Bifurcation and Voltage Collapse In The Electrical Power Systems,” Al_Rafidain Eng., vol. vol.13, pp. 25–41, 2005.
[28] S. A. Taher and S. A. Afsari, “Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm,” Math. Probl. Eng., vol. 2012, 2012.
[29] M. E. Baran and F. F. Wu, “Network Reconfiguration In Distribution Systems For Loss Reduction And Load Balancing,” IEEE Trans. Power Deliv., vol. 4, no. 2, pp. 1401–1407, Apr. 1989.
[30] P. Phonrattanasak and N. Leeprechanon, “Optimal Location of Fast Charging Station on Residential Distribution Grid - Volume 3 Number 6 (Dec. 2012) - IJIMT,” Int. J. Innov. Manag. Technol., vol. 3, no. 6, pp. 675–681, 2012.
[31] S. Sultana and P. K. Roy, “Multi-Objective Quasi-Oppositional Teaching Learning Based Optimization For Optimal Location Of Distributed Generator In Radial Distribution Systems,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 534–545, 2014.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Electrical and Computer Engineering
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b9c48d41-87d1-4fa3-b653-05939cdd6cc5/download
https://repositorio.cuc.edu.co/bitstreams/83f8bf84-a373-401e-9bbd-c37f0c395603/download
https://repositorio.cuc.edu.co/bitstreams/c86d9b4d-f973-4625-98a1-4cbc460355bb/download
https://repositorio.cuc.edu.co/bitstreams/c75c8f86-ff4b-4cc0-ac63-cb9b8d176d7e/download
https://repositorio.cuc.edu.co/bitstreams/69eb89b1-c26e-402a-ad81-82c0e9b4c819/download
https://repositorio.cuc.edu.co/bitstreams/c93e9508-6d0a-46b9-9e16-4665d062e199/download
bitstream.checksum.fl_str_mv 06a896a3c30c74451c4ff78a69915a02
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
193e8932e38ee81f3941a5fbcb83f9fe
193e8932e38ee81f3941a5fbcb83f9fe
0d9aa9b23669048ef5c830bfbac6bbd5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760850128601088
spelling Cabana, KatherineCandelo, JohnCastillo, RafaelDe-La-Hoz-Franco, Emiro2020-03-10T13:07:20Z2020-03-10T13:07:20Z2019-022088-8708https://hdl.handle.net/11323/6092DOI: 10.11591/ijece.v9i1.pp55-65Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a voltage sensitivity analysis with respect to the real power injected with renewable energies to determine the optimal integration of distributed generation (DG) in distribution systems (DS). The best nodes where the power injections improve voltages magnitudes complying with the constraints are determined. As it is a combinatorial problem, particle swarm optimization (PSO) and simulated annealing (SA) were used to change injections from 10% to 60% of the total power load using solar and wind generators and find the candidate nodes for installing power sources. The method was tested using the 33-node, 69-node and 118-node radial distribution networks. The results showed that the best nodes for injecting real power with renewable energies were selected for the distribution network by using the voltage sensitivity analysis. Algorithms found the best nodes for the three radial distribution networks with similar values in the maximum injection of real power, suggesting that this value maintains for all the power system cases. The injections applied to the different nodes showed that voltage magnitudes increase significantly, especially when exceeding the maximum penetration of DG. The test showed that some nodes support injections up to the limits, but the voltages increase considerably on all nodes.Cabana, KatherineCandelo, JohnCastillo, RafaelDe-La-Hoz-Franco, Emiro-will be generated-orcid-0000-0002-4926-7414-600engInternational Journal of Electrical and Computer EngineeringCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Voltage magnitudesSensitivity analysisDistribution networksDistributed generationMetaheuristic algorithmsVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] P. Suresh Babu and R. Madhan Mohan, “Optimal Performance Enhancement of DG for Loss Reduction using Fuzzy and Harmony Search Algorithm,” in 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), 2015, pp. 1–5.[2] Y. O. Gummadi Srinivasa Rao, “Voltage Profile Improvement of Distribution System using Distributed Generating Units,” Int. J. Electr. Comput. Eng., vol. 3, no. 2088–8708, pp. 337–343, 2013.[3] A. Yadav and L. Srivastava, “Optimal Placement of Distributed Generation: An Overview and Key Issues,” in 2014 International Conference on Power Signals Control and Computations (EPSCICON), 2014, pp. 1–6.[4] M. P.S. and S. Hemamalini, “Optimal Siting of Distributed Generators in a Distribution Network using Artificial Immune System,” Int. J. Electr. Comput. Eng., 2017.[5] A. A. Abou El-Ela, A. M. Azmay, and A. A. Shammah, “Optimal Sitting and Sizing of Distributed Generations In Distribution Networks Using Heuristic Algorithm,” in 2015 50th International Universities Power Engineering Conference (UPEC), 2015, pp. 1–7.[6] and A. G. Hocine Ait-Saadi1, Jean-Yves Chouinard2, “A PAPR Reduction for OFDM Signals Based on Self-Adaptive Multipopulation DE algorithm Hocine,” Int. J. Electr. Comput. Eng., 2017.[7] R. S. Al Abri, E. F. El-Saadany, and Y. M. Atwa, “Optimal Placement and Sizing Method to Improve the Voltage Stability Margin in a Distribution System Using Distributed Generation,” IEEE Trans. Power Syst., vol. 28, no. 1, pp. 326–334, Feb. 2013.[8] H. W. K. M. Amarasekara, L. Meegahapola, A. P. Agalgaonkar, and S. Perera, “Impact of Renewable Power Integration On VQ Stability Margin,” in 2013 Australasian Universities Power Engineering Conference (AUPEC), 2013, pp. 1–6.[9] R. S. Al Abri, “Voltage Stability Analysis With High Distributed Generation Penetration,” Waterloo, 2012.[10] L. Wei and Zhang Haiyan, “Allocation of Distributed Generations Based on Improved Particle Swarm Optimization Algorithm,” Int. Conf. Meas. Inf. Control, 2013.[11] W. S. Ke-yan Liu, Kaiyuan He, “Multiple-Objetive DG Optimal Sizing In Distribution System Using An Improverd PSO Algorith,” IEEE Trans. Automat. Contr., pp. 1–4, 2013.[12] S. S. Musa, H. ; Adamu, “Enhanced PSO Based Multi-Objective Distributed Generation Placement And Sizing For Power Loss Reduction And Voltage Stability Index Improvement,” IEEE Trans. Automat. Contr., pp. 1–6, 2013.[13] M. Shekeew, M. Elshahed, and M. Elmarsafawy, “Impact of Optimal Location, Size And Number Of Distributed Generation Units On The Performance Of Radial Distribution Systems,” in 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 2016, pp. 1–6.[14] D. Jia, L. Hu, K. Liu, Y. Liu, X. Meng, and W. Sheng, “Simplified Probabilistic Voltage Stability Evaluation Considering Variable Renewable Distributed Generation In Distribution Systems,” IET Gener. Transm. Distrib., vol. 9, no. 12, pp. 1464–1473, Sep. 2015.[15] J. Silva et al., “A 75 Bus Bars Model To Evaluate The Steady State Operation Of A Sub-Transmission Electrical Power Grid,” Espacios, 2016.[16] K. Cabana, “Statistical Analysis of Voltage Sensitivity in Distribution Systems Integrating DG,” IEEE Latin America Transactions. 2016.[17] Z. Garcia Sánchez, J. A. González Cueto, G. Quintana de Basterra, and J. G. Boza Valerino, “Implementación de Un Estudio De Estabilidad De La Tensión Al Paquete De Programas Psx. 2.87,” Ing. Energética, vol. 34, no. 1, pp. 33–42.[18] K. Morison, X. Wang, A. Moshref, and A. Edris, “Identification of Voltage Control Areas And Reactive Power Reserve; An Advancement In On-Line Voltage Security Assessment,” in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–7.[19] R. A. Walling, R. Saint, R. C. Dugan, J. Burke, and L. A. Kojovic, “Summary of Distributed Resources Impact on Power Delivery Systems,” IEEE Trans. Power Deliv., vol. 23, no. 3, pp. 1636–1644, Jul. 2008.[20] H. Zeineldin, E. El-saadany, and M. A. Salama, “Distributed Generation Micro-Grid Operation: Control and Protection,” in 2006 Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006, pp. 105–111.[21] P. C. Lu Zhang, Wei Tang, Muke Bai, “Analysis of Distributed Generation Influences On The Voltage Limit Violation Probability Of Distribution Line,” Energy Power Eng., vol. 5, pp. 756–762, 2013.[22] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 360–370, Feb. 2010.[23] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, “Distribution System Loss Minimization Using Optimal DG Mix,” in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1–6.[24] M. H. Albadi and E. F. El-Saadany, “Novel Method For Estimating the CF of Variable Speed Wind Turbines,” in 2009 IEEE Power & Energy Society General Meeting, 2009, pp. 1–6.[25] M. H. Albadi and E. F. El-Saadany, “Wind Turbines Capacity Factor Modeling—A Novel Approach,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1637–1638, Aug. 2009.[26] P. Monzón, Artenstein Michel, and J. Alonso, “Evaluación De La Estabilidad De Tensión En Una Red De Potencia Con Base A Criterios Derivados De La Teoría De La Bifurcación Más Cercana,” Aerosp. Eng. Control Syst. Eng. Electr. Eng., 2014.[27] A. N. B. Alsammak, “Bifurcation and Voltage Collapse In The Electrical Power Systems,” Al_Rafidain Eng., vol. vol.13, pp. 25–41, 2005.[28] S. A. Taher and S. A. Afsari, “Optimal Location and Sizing of UPQC in Distribution Networks Using Differential Evolution Algorithm,” Math. Probl. Eng., vol. 2012, 2012.[29] M. E. Baran and F. F. Wu, “Network Reconfiguration In Distribution Systems For Loss Reduction And Load Balancing,” IEEE Trans. Power Deliv., vol. 4, no. 2, pp. 1401–1407, Apr. 1989.[30] P. Phonrattanasak and N. Leeprechanon, “Optimal Location of Fast Charging Station on Residential Distribution Grid - Volume 3 Number 6 (Dec. 2012) - IJIMT,” Int. J. Innov. Manag. Technol., vol. 3, no. 6, pp. 675–681, 2012.[31] S. Sultana and P. K. Roy, “Multi-Objective Quasi-Oppositional Teaching Learning Based Optimization For Optimal Location Of Distributed Generator In Radial Distribution Systems,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 534–545, 2014.PublicationORIGINALVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdfVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdfapplication/pdf1484992https://repositorio.cuc.edu.co/bitstreams/b9c48d41-87d1-4fa3-b653-05939cdd6cc5/download06a896a3c30c74451c4ff78a69915a02MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/83f8bf84-a373-401e-9bbd-c37f0c395603/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c86d9b4d-f973-4625-98a1-4cbc460355bb/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdf.jpgVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdf.jpgimage/jpeg64747https://repositorio.cuc.edu.co/bitstreams/c75c8f86-ff4b-4cc0-ac63-cb9b8d176d7e/download193e8932e38ee81f3941a5fbcb83f9feMD54THUMBNAILVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdf.jpgVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdf.jpgimage/jpeg64747https://repositorio.cuc.edu.co/bitstreams/69eb89b1-c26e-402a-ad81-82c0e9b4c819/download193e8932e38ee81f3941a5fbcb83f9feMD54TEXTVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdf.txtVoltage sensitivity analysis to determine the optimal integration of distributed generation in distribution systems.pdf.txttext/plain34843https://repositorio.cuc.edu.co/bitstreams/c93e9508-6d0a-46b9-9e16-4665d062e199/download0d9aa9b23669048ef5c830bfbac6bbd5MD5511323/6092oai:repositorio.cuc.edu.co:11323/60922024-09-17 14:10:51.577http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=