Model for predicting academic performance through artificial intelligence
During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem,...
- Autores:
-
Silva, Jesús
Romero, Ligia
solano, darwin
Fernández, Claudia
Pineda, Omar
Rojas, Karina
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7291
- Acceso en línea:
- https://hdl.handle.net/11323/7291
https://repositorio.cuc.edu.co/
- Palabra clave:
- Academic performance
Big data
Neural networks
Learning analytics
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_58ddd9d9d0013f906030a5267264ed4e |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7291 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Model for predicting academic performance through artificial intelligence |
title |
Model for predicting academic performance through artificial intelligence |
spellingShingle |
Model for predicting academic performance through artificial intelligence Academic performance Big data Neural networks Learning analytics |
title_short |
Model for predicting academic performance through artificial intelligence |
title_full |
Model for predicting academic performance through artificial intelligence |
title_fullStr |
Model for predicting academic performance through artificial intelligence |
title_full_unstemmed |
Model for predicting academic performance through artificial intelligence |
title_sort |
Model for predicting academic performance through artificial intelligence |
dc.creator.fl_str_mv |
Silva, Jesús Romero, Ligia solano, darwin Fernández, Claudia Pineda, Omar Rojas, Karina |
dc.contributor.author.spa.fl_str_mv |
Silva, Jesús Romero, Ligia solano, darwin Fernández, Claudia Pineda, Omar Rojas, Karina |
dc.subject.spa.fl_str_mv |
Academic performance Big data Neural networks Learning analytics |
topic |
Academic performance Big data Neural networks Learning analytics |
description |
During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem, with learning-teaching interaction being a transcendental element (Muñoz-Repiso and Gómez-Pablos in Edutec. Revista Electrónica de Tecnología Educativa 52: a291–a291 (2015), [1]. This research describes a predicative model of academic performance using neural network techniques on a real data set. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-12T21:10:43Z |
dc.date.available.none.fl_str_mv |
2020-11-12T21:10:43Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.embargoEnd.none.fl_str_mv |
2021-01-31 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2194-5357 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7291 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2194-5357 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7291 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Muñoz-Repiso AGV, Gómez-Pablos VB (2015) Evaluación de una experiencia de aprendizaje colaborativo con TIC desarrollada en un centro de Educación Primaria. Edutec. Revista Electrónica de Tecnología Educativa 51:a291–a291 Fernández M, Valverde J (2014) Comunidades de práctica: un modelo de modelo de intervención desde el aprendizaje colaborativo en entornos virtuales. Revista Comunicar 42:97–105 Vasquez C, Torres M, Viloria A (2017) Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J Eng Appl Sci 12(11):2963–2965 Torres-Samuel M, Vásquez C, Viloria A, Lis-Gutiérrez JP, Borrero TC, Varela N (2018) Web visibility profiles of Top100 Latin American universities. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12 Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12 Abu A (2016) Educational data mining & students’ performance prediction. Int J Adv Comput Sci Appl (IJACSA), 212–220 Daud A, Radi N, Ayaz R, Lytras M, Abbas F (2017) Predicting student performance using advanced learning analytics. In: Proceedings of the 26th international conference on world wide web companion. WWW ‘17 Companion, Australia, pp 415–421 Viloriaa A, Lezamab OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206 González JC, Ramos S, Hernández S (2017) Modelo Difuso del Rendimiento Académico Bi-explicado. Revista de Sistemas y Gestión Educativa, 55–64 Hamasa H, Indiradevi S, Kizhakkethottam J (2016) Student academic performance prediction model using decision tree and fuzzy genetic algorithm. Procedia Technol, 326–332 Hu Y, Lo C, Shih S (2014) Developing early warning systems to predict students’ online learning performance. Comput Hum Behav, 469–478 Huang S, Fang N (2013) Predicting student academic performance in an engineering dynamics course: a comparison of four types of predictive mathematical models. Comput Educ, 133–145 Il-Hyun J, Yeonjeong P, Jeonghyun K, Jongwoo S (2014) Analysis of online behavior and prediction of learning performance in blended learning environments. Educ Technol Int, 71–88 Rojas P (2017) Learning analytics: a literature review. Educ Educ, 106–128 Schalk P, Wick D, Turner P, Ramsdell M (2011) Predictive assessment of student performance for early strategic guidance. In: Frontiers in education conference (FIE). Rapid City, Estados Unidos de América Usman O, Adenubi A (2013) Artificial neural network (ANN) model for predicting students’ academic performance. J Sci Inf Technol, 23–37 Ye C, Biswas G (2014) Early prediction of student dropout and performance in MOOCs using higher granularity temporal information. J Learn Analytics, 169–172 Zacharis NZ (2016) Predicting student academic performance in blended learning using artificial neural networks. Int J Artif Intell Appl (IJAIA), 17–29 Expósito C (2018). Valores básicos del profesorado. Una aproximación desde el modelo axiológico de Shalom Schwartz. Educación y educadores. 307–325. Universidad de la sabana, Colombia Ferrer J (2017) Labor docente del profesor principiante universitario: reto de la universidad en espacios globalizados. Ponencia presentada en jornadas científicas Dr. José Gregorio Hernández. Universidad Dr. José Gregorio Hernández. Venezuela Fondón I, Madero M, Sarmiento A (2010) Principales problemas de los profesores principiantes en la enseñanza universitaria. En Formación universitaria 3(2):21–28 Fontrodona J (2003) Ciencia y práctica en la acción directiva. Ediciones Rialp, España Gewerc A, Montero L, Lama M (2014) Colaboración y redes sociales en la enseñanza universitaria. Comunicar 42(21):55–63 Gómez L, García C (2014) Las competencias sociales como dinamizadoras de la interacción y el aprendizaje colaborativo. Ediciones hispanoamericanas. Universidad nacional abierta y a distancia, Colombia Gros B (2008) Aprendizaje, conexiones y artefactos de la producción colaborativa de conocimiento. Editorial Cedisa, España Hernández-Sellés N, González-Sanmamedy M, Muñoz-Carril PC (2015) El rol docente en las ecologías de aprendizaje: análisis de una experiencia de aprendizaje colaborativo en entornos virtuales. Profesorado. Revista de Currículum y Formación de Profesorado 19(2):147–163 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090094518&doi=10.1007%2f978-981-15-6876-3_41&partnerID=40&md5=8195fed2ff7082bc4a3977ff9b05616b |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/83120839-e09e-4a16-9760-3a0378536c3b/download https://repositorio.cuc.edu.co/bitstreams/6c7a9d6e-27ab-4bdf-9726-2f4c0df5e063/download https://repositorio.cuc.edu.co/bitstreams/1b06885e-8ed7-4ba0-88e6-12a083f7a410/download https://repositorio.cuc.edu.co/bitstreams/9d4e574d-1fc0-422e-8f9b-ad8895713037/download https://repositorio.cuc.edu.co/bitstreams/4cf742df-2117-436d-a619-db5769115e7e/download |
bitstream.checksum.fl_str_mv |
5fa34b67c6d8c8e8c8cac55da71725bd 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 73ef8bf24fd36dc434e9617614cb30b0 ac034cc65dde433c98fce4ab94251264 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760729570672640 |
spelling |
Silva, JesúsRomero, Ligiasolano, darwinFernández, ClaudiaPineda, OmarRojas, Karina2020-11-12T21:10:43Z2020-11-12T21:10:43Z20202021-01-312194-5357https://hdl.handle.net/11323/7291Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem, with learning-teaching interaction being a transcendental element (Muñoz-Repiso and Gómez-Pablos in Edutec. Revista Electrónica de Tecnología Educativa 52: a291–a291 (2015), [1]. This research describes a predicative model of academic performance using neural network techniques on a real data set.Silva, JesúsRomero, Ligiasolano, darwin-will be generated-orcid-0000-0001-8996-0953-600Fernández, ClaudiaPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Rojas, Karinaapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090094518&doi=10.1007%2f978-981-15-6876-3_41&partnerID=40&md5=8195fed2ff7082bc4a3977ff9b05616bAcademic performanceBig dataNeural networksLearning analyticsModel for predicting academic performance through artificial intelligencePre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionMuñoz-Repiso AGV, Gómez-Pablos VB (2015) Evaluación de una experiencia de aprendizaje colaborativo con TIC desarrollada en un centro de Educación Primaria. Edutec. Revista Electrónica de Tecnología Educativa 51:a291–a291Fernández M, Valverde J (2014) Comunidades de práctica: un modelo de modelo de intervención desde el aprendizaje colaborativo en entornos virtuales. Revista Comunicar 42:97–105Vasquez C, Torres M, Viloria A (2017) Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J Eng Appl Sci 12(11):2963–2965Torres-Samuel M, Vásquez C, Viloria A, Lis-Gutiérrez JP, Borrero TC, Varela N (2018) Web visibility profiles of Top100 Latin American universities. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12Abu A (2016) Educational data mining & students’ performance prediction. Int J Adv Comput Sci Appl (IJACSA), 212–220Daud A, Radi N, Ayaz R, Lytras M, Abbas F (2017) Predicting student performance using advanced learning analytics. In: Proceedings of the 26th international conference on world wide web companion. WWW ‘17 Companion, Australia, pp 415–421Viloriaa A, Lezamab OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206González JC, Ramos S, Hernández S (2017) Modelo Difuso del Rendimiento Académico Bi-explicado. Revista de Sistemas y Gestión Educativa, 55–64Hamasa H, Indiradevi S, Kizhakkethottam J (2016) Student academic performance prediction model using decision tree and fuzzy genetic algorithm. Procedia Technol, 326–332Hu Y, Lo C, Shih S (2014) Developing early warning systems to predict students’ online learning performance. Comput Hum Behav, 469–478Huang S, Fang N (2013) Predicting student academic performance in an engineering dynamics course: a comparison of four types of predictive mathematical models. Comput Educ, 133–145Il-Hyun J, Yeonjeong P, Jeonghyun K, Jongwoo S (2014) Analysis of online behavior and prediction of learning performance in blended learning environments. Educ Technol Int, 71–88Rojas P (2017) Learning analytics: a literature review. Educ Educ, 106–128Schalk P, Wick D, Turner P, Ramsdell M (2011) Predictive assessment of student performance for early strategic guidance. In: Frontiers in education conference (FIE). Rapid City, Estados Unidos de AméricaUsman O, Adenubi A (2013) Artificial neural network (ANN) model for predicting students’ academic performance. J Sci Inf Technol, 23–37Ye C, Biswas G (2014) Early prediction of student dropout and performance in MOOCs using higher granularity temporal information. J Learn Analytics, 169–172Zacharis NZ (2016) Predicting student academic performance in blended learning using artificial neural networks. Int J Artif Intell Appl (IJAIA), 17–29Expósito C (2018). Valores básicos del profesorado. Una aproximación desde el modelo axiológico de Shalom Schwartz. Educación y educadores. 307–325. Universidad de la sabana, ColombiaFerrer J (2017) Labor docente del profesor principiante universitario: reto de la universidad en espacios globalizados. Ponencia presentada en jornadas científicas Dr. José Gregorio Hernández. Universidad Dr. José Gregorio Hernández. VenezuelaFondón I, Madero M, Sarmiento A (2010) Principales problemas de los profesores principiantes en la enseñanza universitaria. En Formación universitaria 3(2):21–28Fontrodona J (2003) Ciencia y práctica en la acción directiva. Ediciones Rialp, EspañaGewerc A, Montero L, Lama M (2014) Colaboración y redes sociales en la enseñanza universitaria. Comunicar 42(21):55–63Gómez L, García C (2014) Las competencias sociales como dinamizadoras de la interacción y el aprendizaje colaborativo. Ediciones hispanoamericanas. Universidad nacional abierta y a distancia, ColombiaGros B (2008) Aprendizaje, conexiones y artefactos de la producción colaborativa de conocimiento. Editorial Cedisa, EspañaHernández-Sellés N, González-Sanmamedy M, Muñoz-Carril PC (2015) El rol docente en las ecologías de aprendizaje: análisis de una experiencia de aprendizaje colaborativo en entornos virtuales. Profesorado. Revista de Currículum y Formación de Profesorado 19(2):147–163PublicationORIGINALMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdfMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdfapplication/pdf106161https://repositorio.cuc.edu.co/bitstreams/83120839-e09e-4a16-9760-3a0378536c3b/download5fa34b67c6d8c8e8c8cac55da71725bdMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/6c7a9d6e-27ab-4bdf-9726-2f4c0df5e063/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1b06885e-8ed7-4ba0-88e6-12a083f7a410/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.jpgMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.jpgimage/jpeg37945https://repositorio.cuc.edu.co/bitstreams/9d4e574d-1fc0-422e-8f9b-ad8895713037/download73ef8bf24fd36dc434e9617614cb30b0MD54TEXTMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.txtMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.txttext/plain899https://repositorio.cuc.edu.co/bitstreams/4cf742df-2117-436d-a619-db5769115e7e/downloadac034cc65dde433c98fce4ab94251264MD5511323/7291oai:repositorio.cuc.edu.co:11323/72912024-09-17 10:51:16.061http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |