Model for predicting academic performance through artificial intelligence

During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem,...

Full description

Autores:
Silva, Jesús
Romero, Ligia
solano, darwin
Fernández, Claudia
Pineda, Omar
Rojas, Karina
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7291
Acceso en línea:
https://hdl.handle.net/11323/7291
https://repositorio.cuc.edu.co/
Palabra clave:
Academic performance
Big data
Neural networks
Learning analytics
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_58ddd9d9d0013f906030a5267264ed4e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7291
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Model for predicting academic performance through artificial intelligence
title Model for predicting academic performance through artificial intelligence
spellingShingle Model for predicting academic performance through artificial intelligence
Academic performance
Big data
Neural networks
Learning analytics
title_short Model for predicting academic performance through artificial intelligence
title_full Model for predicting academic performance through artificial intelligence
title_fullStr Model for predicting academic performance through artificial intelligence
title_full_unstemmed Model for predicting academic performance through artificial intelligence
title_sort Model for predicting academic performance through artificial intelligence
dc.creator.fl_str_mv Silva, Jesús
Romero, Ligia
solano, darwin
Fernández, Claudia
Pineda, Omar
Rojas, Karina
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Romero, Ligia
solano, darwin
Fernández, Claudia
Pineda, Omar
Rojas, Karina
dc.subject.spa.fl_str_mv Academic performance
Big data
Neural networks
Learning analytics
topic Academic performance
Big data
Neural networks
Learning analytics
description During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem, with learning-teaching interaction being a transcendental element (Muñoz-Repiso and Gómez-Pablos in Edutec. Revista Electrónica de Tecnología Educativa 52: a291–a291 (2015), [1]. This research describes a predicative model of academic performance using neural network techniques on a real data set.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-12T21:10:43Z
dc.date.available.none.fl_str_mv 2020-11-12T21:10:43Z
dc.date.issued.none.fl_str_mv 2020
dc.date.embargoEnd.none.fl_str_mv 2021-01-31
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2194-5357
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7291
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2194-5357
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7291
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Muñoz-Repiso AGV, Gómez-Pablos VB (2015) Evaluación de una experiencia de aprendizaje colaborativo con TIC desarrollada en un centro de Educación Primaria. Edutec. Revista Electrónica de Tecnología Educativa 51:a291–a291
Fernández M, Valverde J (2014) Comunidades de práctica: un modelo de modelo de intervención desde el aprendizaje colaborativo en entornos virtuales. Revista Comunicar 42:97–105
Vasquez C, Torres M, Viloria A (2017) Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J Eng Appl Sci 12(11):2963–2965
Torres-Samuel M, Vásquez C, Viloria A, Lis-Gutiérrez JP, Borrero TC, Varela N (2018) Web visibility profiles of Top100 Latin American universities. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12
Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12
Abu A (2016) Educational data mining & students’ performance prediction. Int J Adv Comput Sci Appl (IJACSA), 212–220
Daud A, Radi N, Ayaz R, Lytras M, Abbas F (2017) Predicting student performance using advanced learning analytics. In: Proceedings of the 26th international conference on world wide web companion. WWW ‘17 Companion, Australia, pp 415–421
Viloriaa A, Lezamab OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206
González JC, Ramos S, Hernández S (2017) Modelo Difuso del Rendimiento Académico Bi-explicado. Revista de Sistemas y Gestión Educativa, 55–64
Hamasa H, Indiradevi S, Kizhakkethottam J (2016) Student academic performance prediction model using decision tree and fuzzy genetic algorithm. Procedia Technol, 326–332
Hu Y, Lo C, Shih S (2014) Developing early warning systems to predict students’ online learning performance. Comput Hum Behav, 469–478
Huang S, Fang N (2013) Predicting student academic performance in an engineering dynamics course: a comparison of four types of predictive mathematical models. Comput Educ, 133–145
Il-Hyun J, Yeonjeong P, Jeonghyun K, Jongwoo S (2014) Analysis of online behavior and prediction of learning performance in blended learning environments. Educ Technol Int, 71–88
Rojas P (2017) Learning analytics: a literature review. Educ Educ, 106–128
Schalk P, Wick D, Turner P, Ramsdell M (2011) Predictive assessment of student performance for early strategic guidance. In: Frontiers in education conference (FIE). Rapid City, Estados Unidos de América
Usman O, Adenubi A (2013) Artificial neural network (ANN) model for predicting students’ academic performance. J Sci Inf Technol, 23–37
Ye C, Biswas G (2014) Early prediction of student dropout and performance in MOOCs using higher granularity temporal information. J Learn Analytics, 169–172
Zacharis NZ (2016) Predicting student academic performance in blended learning using artificial neural networks. Int J Artif Intell Appl (IJAIA), 17–29
Expósito C (2018). Valores básicos del profesorado. Una aproximación desde el modelo axiológico de Shalom Schwartz. Educación y educadores. 307–325. Universidad de la sabana, Colombia
Ferrer J (2017) Labor docente del profesor principiante universitario: reto de la universidad en espacios globalizados. Ponencia presentada en jornadas científicas Dr. José Gregorio Hernández. Universidad Dr. José Gregorio Hernández. Venezuela
Fondón I, Madero M, Sarmiento A (2010) Principales problemas de los profesores principiantes en la enseñanza universitaria. En Formación universitaria 3(2):21–28
Fontrodona J (2003) Ciencia y práctica en la acción directiva. Ediciones Rialp, España
Gewerc A, Montero L, Lama M (2014) Colaboración y redes sociales en la enseñanza universitaria. Comunicar 42(21):55–63
Gómez L, García C (2014) Las competencias sociales como dinamizadoras de la interacción y el aprendizaje colaborativo. Ediciones hispanoamericanas. Universidad nacional abierta y a distancia, Colombia
Gros B (2008) Aprendizaje, conexiones y artefactos de la producción colaborativa de conocimiento. Editorial Cedisa, España
Hernández-Sellés N, González-Sanmamedy M, Muñoz-Carril PC (2015) El rol docente en las ecologías de aprendizaje: análisis de una experiencia de aprendizaje colaborativo en entornos virtuales. Profesorado. Revista de Currículum y Formación de Profesorado 19(2):147–163
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090094518&doi=10.1007%2f978-981-15-6876-3_41&partnerID=40&md5=8195fed2ff7082bc4a3977ff9b05616b
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/83120839-e09e-4a16-9760-3a0378536c3b/download
https://repositorio.cuc.edu.co/bitstreams/6c7a9d6e-27ab-4bdf-9726-2f4c0df5e063/download
https://repositorio.cuc.edu.co/bitstreams/1b06885e-8ed7-4ba0-88e6-12a083f7a410/download
https://repositorio.cuc.edu.co/bitstreams/9d4e574d-1fc0-422e-8f9b-ad8895713037/download
https://repositorio.cuc.edu.co/bitstreams/4cf742df-2117-436d-a619-db5769115e7e/download
bitstream.checksum.fl_str_mv 5fa34b67c6d8c8e8c8cac55da71725bd
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
73ef8bf24fd36dc434e9617614cb30b0
ac034cc65dde433c98fce4ab94251264
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760729570672640
spelling Silva, JesúsRomero, Ligiasolano, darwinFernández, ClaudiaPineda, OmarRojas, Karina2020-11-12T21:10:43Z2020-11-12T21:10:43Z20202021-01-312194-5357https://hdl.handle.net/11323/7291Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/During the transit of students in the acquisition of competencies that allow them a good future development of their profession, they face the constant challenge of overcoming academic subjects. According to the learning theory, the probability of success of his studies is a multifactorial problem, with learning-teaching interaction being a transcendental element (Muñoz-Repiso and Gómez-Pablos in Edutec. Revista Electrónica de Tecnología Educativa 52: a291–a291 (2015), [1]. This research describes a predicative model of academic performance using neural network techniques on a real data set.Silva, JesúsRomero, Ligiasolano, darwin-will be generated-orcid-0000-0001-8996-0953-600Fernández, ClaudiaPineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Rojas, Karinaapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85090094518&doi=10.1007%2f978-981-15-6876-3_41&partnerID=40&md5=8195fed2ff7082bc4a3977ff9b05616bAcademic performanceBig dataNeural networksLearning analyticsModel for predicting academic performance through artificial intelligencePre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionMuñoz-Repiso AGV, Gómez-Pablos VB (2015) Evaluación de una experiencia de aprendizaje colaborativo con TIC desarrollada en un centro de Educación Primaria. Edutec. Revista Electrónica de Tecnología Educativa 51:a291–a291Fernández M, Valverde J (2014) Comunidades de práctica: un modelo de modelo de intervención desde el aprendizaje colaborativo en entornos virtuales. Revista Comunicar 42:97–105Vasquez C, Torres M, Viloria A (2017) Public policies in science and technology in Latin American countries with universities in the top 100 of web ranking. J Eng Appl Sci 12(11):2963–2965Torres-Samuel M, Vásquez C, Viloria A, Lis-Gutiérrez JP, Borrero TC, Varela N (2018) Web visibility profiles of Top100 Latin American universities. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12Viloria A, Lis-Gutiérrez JP, Gaitán-Angulo M, Godoy ARM, Moreno GC, Kamatkar SJ (2018) Methodology for the design of a student pattern recognition tool to facilitate the teaching—learning process through knowledge data discovery (big data). In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, pp 1–12Abu A (2016) Educational data mining & students’ performance prediction. Int J Adv Comput Sci Appl (IJACSA), 212–220Daud A, Radi N, Ayaz R, Lytras M, Abbas F (2017) Predicting student performance using advanced learning analytics. In: Proceedings of the 26th international conference on world wide web companion. WWW ‘17 Companion, Australia, pp 415–421Viloriaa A, Lezamab OBP (2019) Improvements for determining the number of clusters in k-means for innovation databases in SMEs. Procedia Comput Sci 151:1201–1206González JC, Ramos S, Hernández S (2017) Modelo Difuso del Rendimiento Académico Bi-explicado. Revista de Sistemas y Gestión Educativa, 55–64Hamasa H, Indiradevi S, Kizhakkethottam J (2016) Student academic performance prediction model using decision tree and fuzzy genetic algorithm. Procedia Technol, 326–332Hu Y, Lo C, Shih S (2014) Developing early warning systems to predict students’ online learning performance. Comput Hum Behav, 469–478Huang S, Fang N (2013) Predicting student academic performance in an engineering dynamics course: a comparison of four types of predictive mathematical models. Comput Educ, 133–145Il-Hyun J, Yeonjeong P, Jeonghyun K, Jongwoo S (2014) Analysis of online behavior and prediction of learning performance in blended learning environments. Educ Technol Int, 71–88Rojas P (2017) Learning analytics: a literature review. Educ Educ, 106–128Schalk P, Wick D, Turner P, Ramsdell M (2011) Predictive assessment of student performance for early strategic guidance. In: Frontiers in education conference (FIE). Rapid City, Estados Unidos de AméricaUsman O, Adenubi A (2013) Artificial neural network (ANN) model for predicting students’ academic performance. J Sci Inf Technol, 23–37Ye C, Biswas G (2014) Early prediction of student dropout and performance in MOOCs using higher granularity temporal information. J Learn Analytics, 169–172Zacharis NZ (2016) Predicting student academic performance in blended learning using artificial neural networks. Int J Artif Intell Appl (IJAIA), 17–29Expósito C (2018). Valores básicos del profesorado. Una aproximación desde el modelo axiológico de Shalom Schwartz. Educación y educadores. 307–325. Universidad de la sabana, ColombiaFerrer J (2017) Labor docente del profesor principiante universitario: reto de la universidad en espacios globalizados. Ponencia presentada en jornadas científicas Dr. José Gregorio Hernández. Universidad Dr. José Gregorio Hernández. VenezuelaFondón I, Madero M, Sarmiento A (2010) Principales problemas de los profesores principiantes en la enseñanza universitaria. En Formación universitaria 3(2):21–28Fontrodona J (2003) Ciencia y práctica en la acción directiva. Ediciones Rialp, EspañaGewerc A, Montero L, Lama M (2014) Colaboración y redes sociales en la enseñanza universitaria. Comunicar 42(21):55–63Gómez L, García C (2014) Las competencias sociales como dinamizadoras de la interacción y el aprendizaje colaborativo. Ediciones hispanoamericanas. Universidad nacional abierta y a distancia, ColombiaGros B (2008) Aprendizaje, conexiones y artefactos de la producción colaborativa de conocimiento. Editorial Cedisa, EspañaHernández-Sellés N, González-Sanmamedy M, Muñoz-Carril PC (2015) El rol docente en las ecologías de aprendizaje: análisis de una experiencia de aprendizaje colaborativo en entornos virtuales. Profesorado. Revista de Currículum y Formación de Profesorado 19(2):147–163PublicationORIGINALMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdfMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdfapplication/pdf106161https://repositorio.cuc.edu.co/bitstreams/83120839-e09e-4a16-9760-3a0378536c3b/download5fa34b67c6d8c8e8c8cac55da71725bdMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/6c7a9d6e-27ab-4bdf-9726-2f4c0df5e063/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1b06885e-8ed7-4ba0-88e6-12a083f7a410/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.jpgMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.jpgimage/jpeg37945https://repositorio.cuc.edu.co/bitstreams/9d4e574d-1fc0-422e-8f9b-ad8895713037/download73ef8bf24fd36dc434e9617614cb30b0MD54TEXTMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.txtMODEL FOR PREDICTING ACADEMIC PERFORMANCE THROUGH ARTIFICIAL INTELLIGENCE.pdf.txttext/plain899https://repositorio.cuc.edu.co/bitstreams/4cf742df-2117-436d-a619-db5769115e7e/downloadac034cc65dde433c98fce4ab94251264MD5511323/7291oai:repositorio.cuc.edu.co:11323/72912024-09-17 10:51:16.061http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==