Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel
Introducción: El rendimiento académico se considera como el grado de conocimiento que un estudiante puede demostrar en un área temática determinada comparado con el esperado en sus pares. Puede ser utilizado por las instituciones de educación superior como un indicador para gestionar políticas de ca...
- Autores:
-
Gutiérrez-Monsalve, Jaime A.
López-Velásquez, John F.
Castillo Grisales , Julián Andrés
Segura-Cardona, Angela M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/11406
- Acceso en línea:
- https://hdl.handle.net/11323/11406
https://doi.org/10.17981/cultedusoc.15.1.2024.4663
- Palabra clave:
- Rendimiento académico; factores sociodemográficos; factores institucionales; factores contextuales; calidad de la educación; análisis multinivel
Academic performance; sociodemographic factors; institutional factors; contextual factors; quality of education; multilevel analysis
- Rights
- openAccess
- License
- CULTURA EDUCACIÓN Y SOCIEDAD - 2024
id |
RCUC2_5894079742de09bd07affe64ac1ce237 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/11406 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
dc.title.translated.eng.fl_str_mv |
Factors related to academic performance in higher education: a multilevel approach |
title |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
spellingShingle |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel Rendimiento académico; factores sociodemográficos; factores institucionales; factores contextuales; calidad de la educación; análisis multinivel Academic performance; sociodemographic factors; institutional factors; contextual factors; quality of education; multilevel analysis |
title_short |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
title_full |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
title_fullStr |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
title_full_unstemmed |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
title_sort |
Factores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivel |
dc.creator.fl_str_mv |
Gutiérrez-Monsalve, Jaime A. López-Velásquez, John F. Castillo Grisales , Julián Andrés Segura-Cardona, Angela M. |
dc.contributor.author.spa.fl_str_mv |
Gutiérrez-Monsalve, Jaime A. López-Velásquez, John F. Castillo Grisales , Julián Andrés Segura-Cardona, Angela M. |
dc.subject.spa.fl_str_mv |
Rendimiento académico; factores sociodemográficos; factores institucionales; factores contextuales; calidad de la educación; análisis multinivel |
topic |
Rendimiento académico; factores sociodemográficos; factores institucionales; factores contextuales; calidad de la educación; análisis multinivel Academic performance; sociodemographic factors; institutional factors; contextual factors; quality of education; multilevel analysis |
dc.subject.eng.fl_str_mv |
Academic performance; sociodemographic factors; institutional factors; contextual factors; quality of education; multilevel analysis |
description |
Introducción: El rendimiento académico se considera como el grado de conocimiento que un estudiante puede demostrar en un área temática determinada comparado con el esperado en sus pares. Puede ser utilizado por las instituciones de educación superior como un indicador para gestionar políticas de calidad académica. Objetivo: Determinar los factores institucionales-pedagógicos, sociodemográficos y contextuales predictores del rendimiento académico en una universidad colombiana. Metodología: Se utilizó un análisis multinivel con estudiantes anidados en 14 programas académicos de pregrado para explicar el Rendimiento Académico semestral –RA– de la cohorte de inicio 2014-1 configurando 3437 individuos. Resultados: A nivel individual, ser hombre y contar con subsidio o beca aumenta de manera significativa el RA en esta universidad. Contrariamente a mayor edad y a más número de asignaturas matriculadas se disminuye el RA. Desde el punto de vista contextual, a nivel de programa percepciones positivas respecto a la pedagogía, la gestión académica, la identidad institucional, la didáctica y la gestión de los profesores promovieron significativamente el aumento del RA en los estudiantes. Conclusiones: El RA universitario debe ser explicado tanto a partir de variables individuales como contextuales. La inclusión de las variables contextuales relacionadas con la pedagogía, la gestión académica, la identidad institucional y la calificación de los profesores en los 14 programas de pregrado lograron aumentar de manera significativa la varianza explicada del RA comparado con el uso único de variables del nivel individual. Este estudio es innovador ya que la mayoría de los reportes relacionados con el RA universitario solo considera variables del nivel individual, dejando de lado el contexto en el que se desenvuelve el estudiante universitario. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-12-04 00:00:00 2024-04-09T19:56:05Z |
dc.date.available.none.fl_str_mv |
2023-12-04 00:00:00 2024-04-09T19:56:05Z |
dc.date.issued.none.fl_str_mv |
2023-12-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2145-9258 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/11406 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/cultedusoc.15.1.2024.4663 |
dc.identifier.doi.none.fl_str_mv |
10.17981/cultedusoc.15.1.2024.4663 |
dc.identifier.eissn.none.fl_str_mv |
2389-7724 |
identifier_str_mv |
2145-9258 10.17981/cultedusoc.15.1.2024.4663 2389-7724 |
url |
https://hdl.handle.net/11323/11406 https://doi.org/10.17981/cultedusoc.15.1.2024.4663 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Cultura Educación Sociedad |
dc.relation.references.spa.fl_str_mv |
Abu Saa, A., Al-Emran, M. & Shaalan, K. (2019). Factors affecting students’ performance in higher education: a systematic review of predictive data mining techniques. Technology, Knowledge and Learning, 24(4), 567–598. https://doi.org/10.1007/s10758-019-09408-7 Aina, C., Baici, E., Casalone, G. & Pastore, F. (2022). The determinants of university dropout: A review of the socio-economic literature. Socio-Economic Planning Sciences, 7, 31723–31737. https://doi.org/10.1016/j.seps.2021.101102 Aitkin, H. & Longford, N. (1986). Statisticalmodelling issues in school effectivenessstudies (with discussion). Journal of the Royal StatisticalSolciety, Series B, 149(1), 1–4. https://doi.org/10.2307/2981882 Bean, J. P. & Vesper, N. (1990). Quantitative approaches to grounding theory in data: Using LISREL to develop a local model and theory of student attrition. Annual Meeting of the American Educational Research Association. Bills, D. B., Di Stasio, V. & Gërxhani, K. (2017). The demand side of hiring: Employers in the labor market. Annual Review of Sociology, 43, 291–310. https://doi.org/10.1146/annurev-soc-081715-074255 Brandt, N. D., Lechner, C. M., Tetzner, J. & Rammstedt, B. (2020). Personality, cognitive ability, and academic performance: Differential associations across school subjects and school tracks. Journal of Personality, 88(2), 249–265. https://doi.org/10.1111/jopy.12482 Castaño, E., Gallón, S., Gómez, K. y Vásquez, J. (2006). Análisis de los factores asociados a la deserción y graduación estudiantil universitaria. Lecturas de Economia, (65), 11–35. https://doi.org/10.17533/udea.le.n65a2639 Chan, C. K. Y. & Lee, K. K. W. (2021). Reflection literacy: A multilevel perspective on the challenges of using reflections in higher education through a comprehensive literature review. Educational Research Review, 32, 1–18. https://doi.org/10.1016/j.edurev.2020.100376 Core Team, R. (2014). R: A language and environment for statistical computing [Versión 0.16]. R Foundation for Statistical Computing. http://www.R-project.org/ De la Rosa, B. (1978). Notas para una sociología de la función docente. Bordón. Revista de Pedagogía, 224, 285–306. https://recyt.fecyt.es/index.php/BORDON/index Dias, J. (2007). Acreditación de la educación superior en América Latina y el Caribe. En VV.AA., Informe: La educación superior en el mundo 2007: Acreditación para la garantía de la calidad: ¿Qué está en juego? [pp. 282–295]. Mundi Prensa Libros. http://hdl.handle.net/2099/7538 Ding, Y., Laux, J., Salyers, K. & Kozelka, S. (2017). Personality and Graduate Academic Performance Among Counselor Education and School Psychology Students. School Psychology Forum, 11(3), 105–122. https://www.nasponline.org/publications/periodicals/spf/volume-11/volume-11-issue-3-(fall-2017)/personality-and-graduate-academic-performance-among-counselor-education-and-school-psychology-students DiPrete, T. A. & Buchmann, C. (2013). The rise of women: The growing gender gap in education and what it means for American schools. Russell Sage Foundation. DiPrete, T. A. & Jennings, J. L. (2012). Social and behavioral skills and the gender gap in early educational achievement. Social Science Research, 41(1), 1–15. https://doi.org/10.1016/j.ssresearch.2011.09.001 Edel, R. (2003). El rendimiento académico: concepto, investigación y desarrollo. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 1(2), 1–16. https://doi.org/10.15366/reice2003.1.2.007 Estévez, I., Rodríguez-Llorente, C., Piñeiro, I., González-Suárez, R. & Valle, A. (2021). School engagement, academic achievement, and self-regulated learning. Sustainability, 13(6), 1–15. https://doi.org/10.3390/su13063011 Ferrão, M. & Almeida, L. (2019). Differential effect of university entrance score on first-year students’ academic performance in Portugal. Assessment & Evaluation in Higher Education, 44(4), 610–622. https://doi.org/10.1080/02602938.2018.1525602 Friesel, A. (2010, 14-16 April). Retaining electronic engineering students by project-and team-work from the first semester [Conference]. IEEE EDUCON 2010 Conference, Madrid, Spain. https://doi.org/10.1109/EDUCON.2010.5492372 Gómez, C. (2018). Objetivos de Desarrollo Sostenible (ODS): una revisión crítica. Papeles de Relaciones Ecosociales y Cambio Global, 140, 107–118. https://www.cvongd.org/ficheros/documentos/ods_revision_critica_carlos_gomez_gil.pdf Gutiérrez-Monsalve, J. A., Garzón, J., Gonzalez-Gómez, D. & Segura-Cardona, A. M. (2023). Factors related to academic performance among engineering students: a descriptive correlational research study. DYNA, 90(227), 35–44. http://dx.doi.org/10.15446/dyna.v90n227.107150 Gutiérrez-Monsalve, J. A., Garzón, J. y Segura-Cardona, A. M. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formación Universitaria, 14(1), 13–24. http://dx.doi.org/10.4067/S0718-50062021000100013 Iregui, A. M., Melo, L. y Ramos, J. (2007). Análisis de eficiencia de la educación en Colombia. Revista de Economía del Rosario, 10(1), 21–41. https://revistas.urosario.edu.co/index.php/economia/article/view/1113 Johnson, S. M., Kraft, M. A. & Papay, J. P. (2012). How context matters in high-need schools: The effects of teachers’ working conditions on their professional satisfaction and their students’ achievement. Teachers College Record, 114(10), 1–39. https://doi.org/10.1177/016146811211401004 Kronberger, N. & Horwath, I. (2013). The Ironic Costs of Performing Well: Grades Differentially Predict Male and Female Dropout From Engineering. Basic and Applied Social Psychology, 35(6), 534–546. https://doi.org/10.1080/01973533.2013.840629 Kumar, S., Agarwal, M. & Agarwal, N. (2021). Defining and measuring academic performance of Hei students-a critical review. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 3091–3105. https://turcomat.org/index.php/turkbilmat/article/view/6952 Lam, K. K. L. & Zhou, M. (2019). Examining the relationship between grit and academic achievement within K-12 and higher education: A systematic review. Psychology in the Schools, 56(10), 1654–1686. https://doi.org/10.1002/pits.22302 Latiesa, M. (1992). La deserción universitaria: Desarrollo de la escolaridad en la enseñanza superior: éxitos y fracasos [Vol. 124]. CIS. Lin, L. & Zhang, X. (2020). How to Apply Statistical Software in Doing Multilevel Modeling: A Comparative Study Perspective. Journal of Physics: Conference Series, 1631(1), 1–7. https://doi.org/10.1088/1742-6596/1631/1/012159 López-Pernas, S., Gordillo, A., Barra, E. & Quemada, J. (2019). Examining the use of an educational escape room for teaching programming in a higher education setting. IEEE Access, 7, 31723–31737. http://dx.doi.org/10.1109/ACCESS.2019.2902976 Lord, S. M., Long, R. A., Layton, R. A., Orr, M. K., Ohland, M. W. & Brawner, C. E. (2022, 08-11 October). Academic Outcomes of International Students in Chemical, Civil, Electrical, Industrial, and Mechanical Engineering in the USA [Conference]. 2022 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden. https://doi.org/10.1109/FIE56618.2022.9962437 Martinez, F. & Chaparro, A. A. (2017). Data-mining techniques in detecting factors linked to academic achievement. School Effectiveness and School Improvement, 28(1), 39–55. https://doi.org/10.1080/09243453.2016.1235591 McPherson, S. (2019). Part-time clinical nursing faculty needs: An integrated review. Journal of Nursing Education, 58(4), 201–206. https://doi.org/10.3928/01484834-20190321-03 Moreira, G., Passeri, S., Velho, P. E., Ferraresi, F., Appenzeller, S. & Amaral, E. (2019). The academic performance of scholarship students during medical school. Revista Brasileira de Educação Médica, 43(3), 163–169. http://dx.doi.org/10.1590/1981-52712015v43n3rb20180180 Mthimunye, K. & Daniels, F. M. (2019). Predictors of academic performance, success and retention amongst undergraduate nursing students: A systematic review. South African Journal of Higher Education, 33(1), 200–220. http://dx.doi.org/10.20853/33-1-2631 Muñoz, L., Huamán, L. y Vilchez, O. (2023). Sistematización de estrategias de acompañamiento y monitoreo del desempeño académico de estudiantes universitarios de primer año. Spirat, 1(1), 27–38. https://doi.org/10.20453/spirat.v1i1.4322 ONU. (2015). La Agenda para el Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/development-agenda/ ONU. FAO. (2019). El estado de la seguridad alimentaria y la nutrición en el mundo 2019: Protegerse frente a la desaceleración y el debilitamiento de la economía. FAO; FIDA; OMS; PMA; UNICEF. https://doi.org/10.4060/CA5162ES Oseguera, L. & Rhee, B. S. (2009). The influence of institutional retention climates on student persistence to degree completion: A multilevel approach. Research in Higher Education, 50(6), 546–569. https://doi.org/10.1007/s11162-009-9134-y Page, M., Bueno, M. J., Calleja, J. A., Cerdán, J., Echeverría, M. J., García, C., Gaviria, J. L., Gómez, C., Jiménez, S. C., López, B., Martín-Javato, L., Mínguez, A., Sánchez, A. y Trillo, C. (1990). Hacia un modelo causal del rendimiento académico. Cide. Palomino, J. M., Cáceres, M. del P., Aznar, I. & Lara, F. (2023). Evaluation of pedagogical leadership through the Vanderbilt Assessment of Leadership in Education (VAL-ED). Adaptation to the context of Higher Education in Spain. Cogent Social Sciences, 9(2), 1–17. http://dx.doi.org/10.1080/23311886.2023.2243720 Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., Wuertz, D., Christidis, A. A., Martin, R. D., Zhou, Z. & Shea, J. M. (2014). PerformanceAnalytics: Econometric tools for performance and risk analysis. https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A. & Yousufi, S. Q. (2023). Factors affecting students’ learning performance through collaborative learning and engagement. Interactive Learning Environments, 31(4), 2371–2391. https://doi.org/10.1080/10494820.2021.1884886 Ramírez, C. (2014). Factores asociados al desempeño académico según nivel de formación pregrado y género de los estudiantes de educación superior Colombia. Revista Colombiana de Educación, (66), 203–224. https://doi.org/10.17227/01203916.66rce201.222 Reino de España. MICIN. (2018). Las Cifras de la Educación en España : Estadísticas e Indicadores. Subdirección General de Estadística y Estudios del Ministerio de Educación y Formación Profesional. https://cpage.mpr.gob.es/producto/las-cifras-de-la-educacion-en-espana-estadisticas-e-indicadores-15/ República de Colombia. MEN. (2022). SPADIES - Sistema para la Prevención de la Deserción de la Educación Superior. https://www.mineducacion.gov.co/sistemasdeinformacion/1735/w3-article-363411.html?_noredirect= República de Colombia. MEN. (s.f.). SNIES. https://snies.mineducacion.gov.co/portal/ Rodrigo-Cano, D., Picó, M. J. & Dimuro, G. (2019). Los Objetivos de Desarrollo Sostenible como marco para la acción y la intervención social y ambiental. RETOS. Revista de Ciencias de La Administración y Economía, 9(17), 25–36. https://doi.org/10.17163/ret.n17.2019.02 Rosin, H. (2012). The end of men: And the rise of women. Penguin. Şahin, M. & Aybek, E. (2019). Jamovi: an easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670–692. http://dx.doi.org/10.21449/ijate.661803 Seibt, R. & Kreuzfeld, S. (2021). Influence of work-related and personal characteristics on the burnout risk among full-and part-time teachers. International Journal of Environmental Research and Public Health, 18(4), 1–17. https://doi.org/10.3390/ijerph18041535 Singh, S. & Ryhal, P. C. (2021). The Influence of Teachers’ Emotional Intelligence on Academic Performance With Mediating Effect of Job Satisfaction. Journal of Education, 203(3), 499–507. https://doi.org/10.1177/00220574211032314 Smith, D. G. (2020). Diversity’s promise for higher education: Making it work. JHU Press. Snyder, T. D., De Brey, C. & Dillow, S. A. (2019). Digest of Education Statistics 2017 [NCES 2018-070, 53rd Ed.]. Instituto of Education Sciences; National Center for Education Statistics. https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2018070 Souza-Martins, D. y Figueroa-Ángel, M. X. (2023). Factores psicológicos de los estudiantes universitarios y calidad de vida: Una revisión sistemática prepandemia. Interdisciplinaria, 40(1), 24–41. https://doi.org/10.16888/interd.2023.40.1.2 Spady, W. G. (1970). Dropouts from higher education: An interdisciplinary review and synthesis. Interchange, 1(1), 64–85. https://doi.org/10.1007/BF02214313 Sulaiman, A. & Mohezar, S. (2006). Student Success Factors: Identifying Key Predictors. Journal of Education for Business, 81(6), 328–333. https://doi.org/10.3200/JOEB.81.6.328-333 Sulaiman, M. (2016). Effects of Academic and Nonacademic Factors on Undergraduate Electronic Engineering Program Retention [Thesis Dissertations, Walden University]. Scholarworks. https://scholarworks.waldenu.edu/dissertations/ Szklo, M. y Nieto, F. J. (2003). Epidemiología intermedia: conceptos y aplicaciones. Díaz de Santos. Tyre, P. (2008). The trouble with boys: A surprising report card on our sons, their problems at school, and what parents and educators must do. Harmony. Walpole, R., Myers, R. & Myers, S. (1999). Probabilidad y estadística para ingenieros [6 Ed.]. Pearson Educación. Williams, J. M., Bryan, J., Morrison, S. & Scott, T. R. (2017). Protective factors and processes contributing to the academic success of students living in poverty: Implications for counselors. Journal of Multicultural Counseling and Development, 45(3), 183–200. https://doi.org/10.1002/jmcd.12073 Wong, W. H. & Chapman, E. (2023). Student satisfaction and interaction in higher education. Higher Education, 85(5), 957–978. https://doi.org/10.1007/s10734-022-00874-0 Zimmerman, B. J., Bandura, A. & Martinez-Pons, M. (1992). Self-motivation for academic attainment: The role of self-efficacy beliefs and personal goal setting. American Educational Research Journal, 29(3), 663–676. https://doi.org/10.3102/00028312029003663 |
dc.relation.citationendpage.none.fl_str_mv |
e03414663 |
dc.relation.citationstartpage.none.fl_str_mv |
e03414663 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
15 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5318 https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5319 https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5320 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2024 : Cultura Educación y Sociedad |
dc.rights.spa.fl_str_mv |
CULTURA EDUCACIÓN Y SOCIEDAD - 2024 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CULTURA EDUCACIÓN Y SOCIEDAD - 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html text/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/view/4663 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/44fd59da-1dfd-429a-a43a-e8e0e7613c32/download |
bitstream.checksum.fl_str_mv |
a382f9c3cc8c67606d7f9cf9de83fe72 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166896554344448 |
spelling |
Gutiérrez-Monsalve, Jaime A.López-Velásquez, John F.Castillo Grisales , Julián AndrésSegura-Cardona, Angela M.2023-12-04 00:00:002024-04-09T19:56:05Z2023-12-04 00:00:002024-04-09T19:56:05Z2023-12-042145-9258https://hdl.handle.net/11323/11406https://doi.org/10.17981/cultedusoc.15.1.2024.466310.17981/cultedusoc.15.1.2024.46632389-7724Introducción: El rendimiento académico se considera como el grado de conocimiento que un estudiante puede demostrar en un área temática determinada comparado con el esperado en sus pares. Puede ser utilizado por las instituciones de educación superior como un indicador para gestionar políticas de calidad académica. Objetivo: Determinar los factores institucionales-pedagógicos, sociodemográficos y contextuales predictores del rendimiento académico en una universidad colombiana. Metodología: Se utilizó un análisis multinivel con estudiantes anidados en 14 programas académicos de pregrado para explicar el Rendimiento Académico semestral –RA– de la cohorte de inicio 2014-1 configurando 3437 individuos. Resultados: A nivel individual, ser hombre y contar con subsidio o beca aumenta de manera significativa el RA en esta universidad. Contrariamente a mayor edad y a más número de asignaturas matriculadas se disminuye el RA. Desde el punto de vista contextual, a nivel de programa percepciones positivas respecto a la pedagogía, la gestión académica, la identidad institucional, la didáctica y la gestión de los profesores promovieron significativamente el aumento del RA en los estudiantes. Conclusiones: El RA universitario debe ser explicado tanto a partir de variables individuales como contextuales. La inclusión de las variables contextuales relacionadas con la pedagogía, la gestión académica, la identidad institucional y la calificación de los profesores en los 14 programas de pregrado lograron aumentar de manera significativa la varianza explicada del RA comparado con el uso único de variables del nivel individual. Este estudio es innovador ya que la mayoría de los reportes relacionados con el RA universitario solo considera variables del nivel individual, dejando de lado el contexto en el que se desenvuelve el estudiante universitario.Introduction: Academic performance can be addressed as the degree of knowledge a student can demonstrate in a given subject area compared to that expected of his or her peers. Higher education institutions can use it as an indicator to manage academic quality policies. Objective: Determine the institutional-pedagogical, sociodemographic, and contextual factors that predict academic performance in a Colombian university. Methodology: A multilevel approach was used with students nested in 14 undergraduate academic programs to explain the semester Academic Performance –AP– of the 2014-1 cohort configuring 3437 individuals. Results: At an individual level, being a man and having a subsidy or scholarship increases the AP at this university. Contrary to the older the age and the greater the number of subjects enrolled, the AP decreases. From the contextual point of view, at the program level, positive perceptions regarding pedagogy, academic management, institutional identity, didactics, and teacher management significantly promoted the increase in AP in students. Conclusions: The university AP must be explained from individual and contextual variables. The inclusion of contextual variables related to pedagogy, academic management, institutional identity, and teacher qualification in the 14 undergraduate programs managed to significantly increase the explained variance of the AP compared to the sole use of individual-level variables. This study is innovative since most reports related to university AP only consider individual-level variables, leaving aside the context in which the university student lives.application/pdftext/htmltext/xmlspaUniversidad de la CostaCULTURA EDUCACIÓN Y SOCIEDAD - 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/view/4663Rendimiento académico; factores sociodemográficos; factores institucionales; factores contextuales; calidad de la educación; análisis multinivelAcademic performance; sociodemographic factors; institutional factors; contextual factors; quality of education; multilevel analysisFactores institucionales-pedagógicos, sociodemográficos y contextuales relacionados con el rendimiento académico universitario: un análisis multinivelFactors related to academic performance in higher education: a multilevel approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Cultura Educación SociedadAbu Saa, A., Al-Emran, M. & Shaalan, K. (2019). Factors affecting students’ performance in higher education: a systematic review of predictive data mining techniques. Technology, Knowledge and Learning, 24(4), 567–598. https://doi.org/10.1007/s10758-019-09408-7 Aina, C., Baici, E., Casalone, G. & Pastore, F. (2022). The determinants of university dropout: A review of the socio-economic literature. Socio-Economic Planning Sciences, 7, 31723–31737. https://doi.org/10.1016/j.seps.2021.101102 Aitkin, H. & Longford, N. (1986). Statisticalmodelling issues in school effectivenessstudies (with discussion). Journal of the Royal StatisticalSolciety, Series B, 149(1), 1–4. https://doi.org/10.2307/2981882 Bean, J. P. & Vesper, N. (1990). Quantitative approaches to grounding theory in data: Using LISREL to develop a local model and theory of student attrition. Annual Meeting of the American Educational Research Association. Bills, D. B., Di Stasio, V. & Gërxhani, K. (2017). The demand side of hiring: Employers in the labor market. Annual Review of Sociology, 43, 291–310. https://doi.org/10.1146/annurev-soc-081715-074255 Brandt, N. D., Lechner, C. M., Tetzner, J. & Rammstedt, B. (2020). Personality, cognitive ability, and academic performance: Differential associations across school subjects and school tracks. Journal of Personality, 88(2), 249–265. https://doi.org/10.1111/jopy.12482 Castaño, E., Gallón, S., Gómez, K. y Vásquez, J. (2006). Análisis de los factores asociados a la deserción y graduación estudiantil universitaria. Lecturas de Economia, (65), 11–35. https://doi.org/10.17533/udea.le.n65a2639 Chan, C. K. Y. & Lee, K. K. W. (2021). Reflection literacy: A multilevel perspective on the challenges of using reflections in higher education through a comprehensive literature review. Educational Research Review, 32, 1–18. https://doi.org/10.1016/j.edurev.2020.100376 Core Team, R. (2014). R: A language and environment for statistical computing [Versión 0.16]. R Foundation for Statistical Computing. http://www.R-project.org/ De la Rosa, B. (1978). Notas para una sociología de la función docente. Bordón. Revista de Pedagogía, 224, 285–306. https://recyt.fecyt.es/index.php/BORDON/index Dias, J. (2007). Acreditación de la educación superior en América Latina y el Caribe. En VV.AA., Informe: La educación superior en el mundo 2007: Acreditación para la garantía de la calidad: ¿Qué está en juego? [pp. 282–295]. Mundi Prensa Libros. http://hdl.handle.net/2099/7538 Ding, Y., Laux, J., Salyers, K. & Kozelka, S. (2017). Personality and Graduate Academic Performance Among Counselor Education and School Psychology Students. School Psychology Forum, 11(3), 105–122. https://www.nasponline.org/publications/periodicals/spf/volume-11/volume-11-issue-3-(fall-2017)/personality-and-graduate-academic-performance-among-counselor-education-and-school-psychology-students DiPrete, T. A. & Buchmann, C. (2013). The rise of women: The growing gender gap in education and what it means for American schools. Russell Sage Foundation. DiPrete, T. A. & Jennings, J. L. (2012). Social and behavioral skills and the gender gap in early educational achievement. Social Science Research, 41(1), 1–15. https://doi.org/10.1016/j.ssresearch.2011.09.001 Edel, R. (2003). El rendimiento académico: concepto, investigación y desarrollo. REICE. Revista Iberoamericana sobre Calidad, Eficacia y Cambio en Educación, 1(2), 1–16. https://doi.org/10.15366/reice2003.1.2.007 Estévez, I., Rodríguez-Llorente, C., Piñeiro, I., González-Suárez, R. & Valle, A. (2021). School engagement, academic achievement, and self-regulated learning. Sustainability, 13(6), 1–15. https://doi.org/10.3390/su13063011 Ferrão, M. & Almeida, L. (2019). Differential effect of university entrance score on first-year students’ academic performance in Portugal. Assessment & Evaluation in Higher Education, 44(4), 610–622. https://doi.org/10.1080/02602938.2018.1525602 Friesel, A. (2010, 14-16 April). Retaining electronic engineering students by project-and team-work from the first semester [Conference]. IEEE EDUCON 2010 Conference, Madrid, Spain. https://doi.org/10.1109/EDUCON.2010.5492372 Gómez, C. (2018). Objetivos de Desarrollo Sostenible (ODS): una revisión crítica. Papeles de Relaciones Ecosociales y Cambio Global, 140, 107–118. https://www.cvongd.org/ficheros/documentos/ods_revision_critica_carlos_gomez_gil.pdf Gutiérrez-Monsalve, J. A., Garzón, J., Gonzalez-Gómez, D. & Segura-Cardona, A. M. (2023). Factors related to academic performance among engineering students: a descriptive correlational research study. DYNA, 90(227), 35–44. http://dx.doi.org/10.15446/dyna.v90n227.107150 Gutiérrez-Monsalve, J. A., Garzón, J. y Segura-Cardona, A. M. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formación Universitaria, 14(1), 13–24. http://dx.doi.org/10.4067/S0718-50062021000100013 Iregui, A. M., Melo, L. y Ramos, J. (2007). Análisis de eficiencia de la educación en Colombia. Revista de Economía del Rosario, 10(1), 21–41. https://revistas.urosario.edu.co/index.php/economia/article/view/1113 Johnson, S. M., Kraft, M. A. & Papay, J. P. (2012). How context matters in high-need schools: The effects of teachers’ working conditions on their professional satisfaction and their students’ achievement. Teachers College Record, 114(10), 1–39. https://doi.org/10.1177/016146811211401004 Kronberger, N. & Horwath, I. (2013). The Ironic Costs of Performing Well: Grades Differentially Predict Male and Female Dropout From Engineering. Basic and Applied Social Psychology, 35(6), 534–546. https://doi.org/10.1080/01973533.2013.840629 Kumar, S., Agarwal, M. & Agarwal, N. (2021). Defining and measuring academic performance of Hei students-a critical review. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 3091–3105. https://turcomat.org/index.php/turkbilmat/article/view/6952 Lam, K. K. L. & Zhou, M. (2019). Examining the relationship between grit and academic achievement within K-12 and higher education: A systematic review. Psychology in the Schools, 56(10), 1654–1686. https://doi.org/10.1002/pits.22302 Latiesa, M. (1992). La deserción universitaria: Desarrollo de la escolaridad en la enseñanza superior: éxitos y fracasos [Vol. 124]. CIS. Lin, L. & Zhang, X. (2020). How to Apply Statistical Software in Doing Multilevel Modeling: A Comparative Study Perspective. Journal of Physics: Conference Series, 1631(1), 1–7. https://doi.org/10.1088/1742-6596/1631/1/012159 López-Pernas, S., Gordillo, A., Barra, E. & Quemada, J. (2019). Examining the use of an educational escape room for teaching programming in a higher education setting. IEEE Access, 7, 31723–31737. http://dx.doi.org/10.1109/ACCESS.2019.2902976 Lord, S. M., Long, R. A., Layton, R. A., Orr, M. K., Ohland, M. W. & Brawner, C. E. (2022, 08-11 October). Academic Outcomes of International Students in Chemical, Civil, Electrical, Industrial, and Mechanical Engineering in the USA [Conference]. 2022 IEEE Frontiers in Education Conference (FIE), Uppsala, Sweden. https://doi.org/10.1109/FIE56618.2022.9962437 Martinez, F. & Chaparro, A. A. (2017). Data-mining techniques in detecting factors linked to academic achievement. School Effectiveness and School Improvement, 28(1), 39–55. https://doi.org/10.1080/09243453.2016.1235591 McPherson, S. (2019). Part-time clinical nursing faculty needs: An integrated review. Journal of Nursing Education, 58(4), 201–206. https://doi.org/10.3928/01484834-20190321-03 Moreira, G., Passeri, S., Velho, P. E., Ferraresi, F., Appenzeller, S. & Amaral, E. (2019). The academic performance of scholarship students during medical school. Revista Brasileira de Educação Médica, 43(3), 163–169. http://dx.doi.org/10.1590/1981-52712015v43n3rb20180180 Mthimunye, K. & Daniels, F. M. (2019). Predictors of academic performance, success and retention amongst undergraduate nursing students: A systematic review. South African Journal of Higher Education, 33(1), 200–220. http://dx.doi.org/10.20853/33-1-2631 Muñoz, L., Huamán, L. y Vilchez, O. (2023). Sistematización de estrategias de acompañamiento y monitoreo del desempeño académico de estudiantes universitarios de primer año. Spirat, 1(1), 27–38. https://doi.org/10.20453/spirat.v1i1.4322 ONU. (2015). La Agenda para el Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/development-agenda/ ONU. FAO. (2019). El estado de la seguridad alimentaria y la nutrición en el mundo 2019: Protegerse frente a la desaceleración y el debilitamiento de la economía. FAO; FIDA; OMS; PMA; UNICEF. https://doi.org/10.4060/CA5162ES Oseguera, L. & Rhee, B. S. (2009). The influence of institutional retention climates on student persistence to degree completion: A multilevel approach. Research in Higher Education, 50(6), 546–569. https://doi.org/10.1007/s11162-009-9134-y Page, M., Bueno, M. J., Calleja, J. A., Cerdán, J., Echeverría, M. J., García, C., Gaviria, J. L., Gómez, C., Jiménez, S. C., López, B., Martín-Javato, L., Mínguez, A., Sánchez, A. y Trillo, C. (1990). Hacia un modelo causal del rendimiento académico. Cide. Palomino, J. M., Cáceres, M. del P., Aznar, I. & Lara, F. (2023). Evaluation of pedagogical leadership through the Vanderbilt Assessment of Leadership in Education (VAL-ED). Adaptation to the context of Higher Education in Spain. Cogent Social Sciences, 9(2), 1–17. http://dx.doi.org/10.1080/23311886.2023.2243720 Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., Wuertz, D., Christidis, A. A., Martin, R. D., Zhou, Z. & Shea, J. M. (2014). PerformanceAnalytics: Econometric tools for performance and risk analysis. https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A. & Yousufi, S. Q. (2023). Factors affecting students’ learning performance through collaborative learning and engagement. Interactive Learning Environments, 31(4), 2371–2391. https://doi.org/10.1080/10494820.2021.1884886 Ramírez, C. (2014). Factores asociados al desempeño académico según nivel de formación pregrado y género de los estudiantes de educación superior Colombia. Revista Colombiana de Educación, (66), 203–224. https://doi.org/10.17227/01203916.66rce201.222 Reino de España. MICIN. (2018). Las Cifras de la Educación en España : Estadísticas e Indicadores. Subdirección General de Estadística y Estudios del Ministerio de Educación y Formación Profesional. https://cpage.mpr.gob.es/producto/las-cifras-de-la-educacion-en-espana-estadisticas-e-indicadores-15/ República de Colombia. MEN. (2022). SPADIES - Sistema para la Prevención de la Deserción de la Educación Superior. https://www.mineducacion.gov.co/sistemasdeinformacion/1735/w3-article-363411.html?_noredirect= República de Colombia. MEN. (s.f.). SNIES. https://snies.mineducacion.gov.co/portal/ Rodrigo-Cano, D., Picó, M. J. & Dimuro, G. (2019). Los Objetivos de Desarrollo Sostenible como marco para la acción y la intervención social y ambiental. RETOS. Revista de Ciencias de La Administración y Economía, 9(17), 25–36. https://doi.org/10.17163/ret.n17.2019.02 Rosin, H. (2012). The end of men: And the rise of women. Penguin. Şahin, M. & Aybek, E. (2019). Jamovi: an easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670–692. http://dx.doi.org/10.21449/ijate.661803 Seibt, R. & Kreuzfeld, S. (2021). Influence of work-related and personal characteristics on the burnout risk among full-and part-time teachers. International Journal of Environmental Research and Public Health, 18(4), 1–17. https://doi.org/10.3390/ijerph18041535 Singh, S. & Ryhal, P. C. (2021). The Influence of Teachers’ Emotional Intelligence on Academic Performance With Mediating Effect of Job Satisfaction. Journal of Education, 203(3), 499–507. https://doi.org/10.1177/00220574211032314 Smith, D. G. (2020). Diversity’s promise for higher education: Making it work. JHU Press. Snyder, T. D., De Brey, C. & Dillow, S. A. (2019). Digest of Education Statistics 2017 [NCES 2018-070, 53rd Ed.]. Instituto of Education Sciences; National Center for Education Statistics. https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2018070 Souza-Martins, D. y Figueroa-Ángel, M. X. (2023). Factores psicológicos de los estudiantes universitarios y calidad de vida: Una revisión sistemática prepandemia. Interdisciplinaria, 40(1), 24–41. https://doi.org/10.16888/interd.2023.40.1.2 Spady, W. G. (1970). Dropouts from higher education: An interdisciplinary review and synthesis. Interchange, 1(1), 64–85. https://doi.org/10.1007/BF02214313 Sulaiman, A. & Mohezar, S. (2006). Student Success Factors: Identifying Key Predictors. Journal of Education for Business, 81(6), 328–333. https://doi.org/10.3200/JOEB.81.6.328-333 Sulaiman, M. (2016). Effects of Academic and Nonacademic Factors on Undergraduate Electronic Engineering Program Retention [Thesis Dissertations, Walden University]. Scholarworks. https://scholarworks.waldenu.edu/dissertations/ Szklo, M. y Nieto, F. J. (2003). Epidemiología intermedia: conceptos y aplicaciones. Díaz de Santos. Tyre, P. (2008). The trouble with boys: A surprising report card on our sons, their problems at school, and what parents and educators must do. Harmony. Walpole, R., Myers, R. & Myers, S. (1999). Probabilidad y estadística para ingenieros [6 Ed.]. Pearson Educación. Williams, J. M., Bryan, J., Morrison, S. & Scott, T. R. (2017). Protective factors and processes contributing to the academic success of students living in poverty: Implications for counselors. Journal of Multicultural Counseling and Development, 45(3), 183–200. https://doi.org/10.1002/jmcd.12073 Wong, W. H. & Chapman, E. (2023). Student satisfaction and interaction in higher education. Higher Education, 85(5), 957–978. https://doi.org/10.1007/s10734-022-00874-0 Zimmerman, B. J., Bandura, A. & Martinez-Pons, M. (1992). Self-motivation for academic attainment: The role of self-efficacy beliefs and personal goal setting. American Educational Research Journal, 29(3), 663–676. https://doi.org/10.3102/00028312029003663e03414663e03414663115https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5318https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5319https://revistascientificas.cuc.edu.co/culturaeducacionysociedad/article/download/4663/5320Núm. 1 , Año 2024 : Cultura Educación y SociedadPublicationOREORE.xmltext/xml2919https://repositorio.cuc.edu.co/bitstreams/44fd59da-1dfd-429a-a43a-e8e0e7613c32/downloada382f9c3cc8c67606d7f9cf9de83fe72MD5111323/11406oai:repositorio.cuc.edu.co:11323/114062024-09-17 14:23:22.086https://creativecommons.org/licenses/by-nc-nd/4.0/CULTURA EDUCACIÓN Y SOCIEDAD - 2024metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |