Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations
The application of dyes in industrial processes has become a growing preoccupation due to the high quantities of colored effluents generated, which need previous treatment before being discarded in water bodies. A powdered biosorbent was then prepared from pecan pericarp and HCl, in order to treat c...
- Autores:
-
De O. Salomón, Yamil L.
Georgin, Jordana
Dison S.P., Franco
Netto, Matias S.
Grass, Patricia
Piccilli, Daniel G.A.
Oliveira, Marcos L.S
Dotto, Guilherme L.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6322
- Acceso en línea:
- https://hdl.handle.net/11323/6322
https://repositorio.cuc.edu.co/
- Palabra clave:
- Pecan nut pericarp
Methyl violet 2B
Biosorption
Simulated effluent
Fixed bed operation
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_583aed9b0f7a27ce3daba742d6663b30 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6322 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
title |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
spellingShingle |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations Pecan nut pericarp Methyl violet 2B Biosorption Simulated effluent Fixed bed operation |
title_short |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
title_full |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
title_fullStr |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
title_full_unstemmed |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
title_sort |
Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations |
dc.creator.fl_str_mv |
De O. Salomón, Yamil L. Georgin, Jordana Dison S.P., Franco Netto, Matias S. Grass, Patricia Piccilli, Daniel G.A. Oliveira, Marcos L.S Dotto, Guilherme L. |
dc.contributor.author.spa.fl_str_mv |
De O. Salomón, Yamil L. Georgin, Jordana Dison S.P., Franco Netto, Matias S. Grass, Patricia Piccilli, Daniel G.A. Oliveira, Marcos L.S Dotto, Guilherme L. |
dc.subject.spa.fl_str_mv |
Pecan nut pericarp Methyl violet 2B Biosorption Simulated effluent Fixed bed operation |
topic |
Pecan nut pericarp Methyl violet 2B Biosorption Simulated effluent Fixed bed operation |
description |
The application of dyes in industrial processes has become a growing preoccupation due to the high quantities of colored effluents generated, which need previous treatment before being discarded in water bodies. A powdered biosorbent was then prepared from pecan pericarp and HCl, in order to treat colored effluents containing the dye methyl violet 2B (MV2B) using batch and fixed-bed operation modes. The new biosorbent, so-called powdered pecan pericarp (PPP), was characterized by functional groups related to cellulose, lignin, and hemicellulose. In addition, the material was composed of particles with different sizes, amorphous structure, and rugous surface. The best pH for MV2B biosorption on the PPP was 8.5. The kinetic profile was better described by the general order model, being the equilibrium rapidly reached in the first 5 min for different initial concentrations MV2B. The equilibrium curves were better described by the Langmuir model, indicating homogenous biosorption. The maximum biosorption capacity of 642 mg g−1 was reached at 328 K. Biosorption was favorable and endothermic. PPP has removed 94.1% of color in the simulated effluent. The fixed-bed assays revealed that the column packed with PPP could operate during 52.5 h with a height of 25 cm. The Thomas, Bohart-Adams, and Yoon-Nelson models were suitable to describe the dynamic curves. Therefore, PPP can be used as an efficient and fast biosorbent to treat textile effluents containing MV2B dye. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-06-02T16:36:01Z |
dc.date.available.none.fl_str_mv |
2020-06-02T16:36:01Z |
dc.date.issued.none.fl_str_mv |
2020-05-10 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6322 |
dc.identifier.doi.spa.fl_str_mv |
doi.org/10.1016/j.apt.2020.05.004 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6322 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
doi.org/10.1016/j.apt.2020.05.004 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] V.K. Gupta, S. Khamparia, I. Tyagi, D. Jaspal, A. Malyiya, Decolorization of mixture of dyes: a critical review, Global J. Environ. Sci. Manage. 1 (2015) 71– 94. [2] T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate, Water Air Soil Pollut. 218 (2011) 499–515. [3] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004) 322–333. [4] G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension, J. Environ. Manage. 171 (2016) 1–10. [5] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage. 182 (2016) 351–366. [6] A.I. Ohioma, N.O. Luke, O. Amraibure, Studies on the pollution potential of wastewater from textile processing factories in Kaduna, Nigeria, J. Toxicol. Environ. Health Sci. 1 (2009) 34–37. [7] G. L. Dotto, S.K. Sharma, L.A.A. Pinto, Biosorption of organic dyes: research opportunities and challenges. In: Sanjay K. Sharma (Eds.), (Org.). Green Chemistry for Dyes Removal from Wastewater, John Wiley & Sons, Inc., New York, 2015. [8] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017. [9] X. Pang, L. Sellaoui, D.S.P. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101. [10] M. Xu, G. McKay, Removal of heavy metals, lead, cadmium, and zinc, using adsorption processes by cost-effective adsorbents, in: A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017 [11] A.V.B. De Oliveira, T.M. Rizzato, B.C.B. Barros, S.L. Fávaro, W. Caetano, N. Hioka, V.R. Batistela, Physicochemical modifications of sugarcane and cassava agroindustrial wastes for applications as biosorbents, Bioresour. Technol. Rep. 7 (2019) 100294. [12] S. Shakoor, A. Nasar, Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste, Ground. Sust. Develop. 7 (2018) 30–38. [13] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703. [14] M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.M. Shakeel Iqubal, Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies, Bioresour. Technol. Rep. 3 (2018) 127–137. [15] C.D.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F. Caicedo Chaguez, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana), Environ. Sci. Pollut. Res. 21 (2019) 4690–4702. [16] I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq. 230 (2017) 686–695. [17] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65. [18] V. Hernández-Montoya, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, M.A. Montes-Morán, M.A. Pérez-Cruz, Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions, J. Anal. Appl. Pyro. 92 (2011) 143–151. [19] M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, J. Ind. Eng. Chem. 19 (2013) 756–763. [20] M. Suzuki, Adsorption engineering, Kodansha, Tokyo, 1990. [21] S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. 24 (1898) 1–39. [22] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans. IChemE 76 (1998) 332–340. [23] Y. Liu, H. Xu, J.H. Tay, Derivation of a general adsorption isotherm model, J. Environ. Eng. 131 (2005) 1466–1468. [24] M. Avrami, Kinetics of phase change. I: General theory, J. Chem. Phys. 7 (1939) 1103–1112. [25] H. Freundlich, Over the adsorption in solution, Z. Physic. Chem. A. 57 (1906) 358–471. [26] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403. [27] A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures, J. Colloid Interface Sci. 194 (1997) 154–165. [28] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434. [29] G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine, J. Am. Chem. Soc. 42 (1920) 523–544. [30] H.C. Thomas, Heterogeneous Ion Exchange in a Flowing System, J. Am. Chem. Soc. 66 (1944) 1664–1666. [31] Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hygiene Assoc. J. 45 (1984) 509–516. [32] G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Ads. Sci. Technol. 19 (2001) 25–43. [33] K.A. Adegoke, O.S. Bello, Dye sequestration using agricultural wastes as adsorbents, Water Res. Ind. 12 (2015) 8–24. [34] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935. [35] L.Y. Sun, H.B. Lin, H.B. Deng, J.Z. Li, B.H. He, R.C. Sun, Structural changes of bamboo cellulose in formic acid, Bioresour. 3 (2008) 297–315. [36] B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis, J. Energ. Inst. 90 (2017) 825–837. [37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018) 1612–1621. [38] J. Ooi, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S.S. Lim, S. Gan, Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies, Bioresour. Technol. 245 (2017) 656–664. [39] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination 265 (2011) 126–134. [40] J. Georgin, B.S. Marques, J.S. Salla, E.L. Foletto, D. Allasia, G.L. Dotto, Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent, Environ. Sci. Pollut. Res. 25 (2017) 6429–6442. [41] J. Georgin, D.S.P. Franco, F.C. Drumm, P. Grassi, M. Schadeck Netto, D. Allasia, G. L. Dotto, Paddle cactus (Tacinga palmadora) as potential low-cost adsorbent to treat textile effluents containing crystal violet, Chem. Eng. Commun. (2019) 1– 12 (In press). [42] S. Lairini, K.E. Mahtal, Y. Miyah, K. Tanji, S. Guissi, S. Boumchita, F. Zerrouq, The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies, J. Mater. Environ. Sci. 8 (2017) 3252–3261. [43] M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhat, Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study, Res. Efficient Technol. 3 (2017) 71–77. [44] A. Bazzo, M.A. Adebayo, S.L.P. Dias, E.C. Lima, J.C.P. Vaghetti, E.R. Oliveira, A.J.B. Leite, F.A. Pavan, Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions, Des. Water Treat. 57 (2016) 15873–15888. [45] G. Tian, W. Wang, Y. Kang, A. Wang, Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet, J. Environ. Sci. 41 (2016) 33–43. [46] G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet, Carbohydr. Polym. 98 (2013) 358–365. [47] S. Neupane, S.T. Ramesh, R. Gandhimathi, P.V. Nidheesh, Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution, Des. Water Treat. 54 (2014) 2041–2054. [48] F.A. Pavan, E.S. Camacho, E.C. Lima, G.L. Dotto, V.T.A. Branco, S.L.P. Dias, Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase, J. Environ. Chem. Eng. 2 (2014) 230–238. [49] M. Dutta, J.K. Basu, Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon-alumina composite pellet, Int. J. Environ. Sci. Technol. 11 (2014) 87–96. [50] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater. 125 (2005) 211–220. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/135c20ab-dfeb-483d-af21-00c3f5492d11/download https://repositorio.cuc.edu.co/bitstreams/e3da9203-a482-45c0-8473-e5bd409c06ad/download https://repositorio.cuc.edu.co/bitstreams/d0273e6f-50ae-4a5b-bb6d-78c4e9454304/download https://repositorio.cuc.edu.co/bitstreams/76b7855e-0ba3-426b-8963-02dc03e3d4d1/download |
bitstream.checksum.fl_str_mv |
2ac6397eec79de049849051a50d4e340 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 b7b3803e7dec9f4b787f3a7ff16e1ac5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760655777136640 |
spelling |
De O. Salomón, Yamil L.Georgin, JordanaDison S.P., FrancoNetto, Matias S.Grass, PatriciaPiccilli, Daniel G.A.Oliveira, Marcos L.SDotto, Guilherme L.2020-06-02T16:36:01Z2020-06-02T16:36:01Z2020-05-10https://hdl.handle.net/11323/6322doi.org/10.1016/j.apt.2020.05.004Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The application of dyes in industrial processes has become a growing preoccupation due to the high quantities of colored effluents generated, which need previous treatment before being discarded in water bodies. A powdered biosorbent was then prepared from pecan pericarp and HCl, in order to treat colored effluents containing the dye methyl violet 2B (MV2B) using batch and fixed-bed operation modes. The new biosorbent, so-called powdered pecan pericarp (PPP), was characterized by functional groups related to cellulose, lignin, and hemicellulose. In addition, the material was composed of particles with different sizes, amorphous structure, and rugous surface. The best pH for MV2B biosorption on the PPP was 8.5. The kinetic profile was better described by the general order model, being the equilibrium rapidly reached in the first 5 min for different initial concentrations MV2B. The equilibrium curves were better described by the Langmuir model, indicating homogenous biosorption. The maximum biosorption capacity of 642 mg g−1 was reached at 328 K. Biosorption was favorable and endothermic. PPP has removed 94.1% of color in the simulated effluent. The fixed-bed assays revealed that the column packed with PPP could operate during 52.5 h with a height of 25 cm. The Thomas, Bohart-Adams, and Yoon-Nelson models were suitable to describe the dynamic curves. Therefore, PPP can be used as an efficient and fast biosorbent to treat textile effluents containing MV2B dye.De O. Salomón, Yamil L.Georgin, JordanaDison S.P., FrancoNetto, Matias S.Grass, PatriciaPiccilli, Daniel G.A.Oliveira, Marcos L.SDotto, Guilherme L.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pecan nut pericarpMethyl violet 2BBiosorptionSimulated effluentFixed bed operationPowdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] V.K. Gupta, S. Khamparia, I. Tyagi, D. Jaspal, A. Malyiya, Decolorization of mixture of dyes: a critical review, Global J. Environ. Sci. Manage. 1 (2015) 71– 94.[2] T.K. Sen, S. Afroze, H.M. Ang, Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiate, Water Air Soil Pollut. 218 (2011) 499–515.[3] S.J. Allen, G. Mckay, J.F. Porter, Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems, J. Colloid Interface Sci. 280 (2004) 322–333.[4] G.K. Sarma, S. Sen Gupta, K.G. Bhattacharyya, Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension, J. Environ. Manage. 171 (2016) 1–10.[5] C.R. Holkar, A.J. Jadhav, D.V. Pinjari, N.M. Mahamuni, A.B. Pandit, A critical review on textile wastewater treatments: possible approaches, J. Environ. Manage. 182 (2016) 351–366.[6] A.I. Ohioma, N.O. Luke, O. Amraibure, Studies on the pollution potential of wastewater from textile processing factories in Kaduna, Nigeria, J. Toxicol. Environ. Health Sci. 1 (2009) 34–37.[7] G. L. Dotto, S.K. Sharma, L.A.A. Pinto, Biosorption of organic dyes: research opportunities and challenges. In: Sanjay K. Sharma (Eds.), (Org.). Green Chemistry for Dyes Removal from Wastewater, John Wiley & Sons, Inc., New York, 2015.[8] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017.[9] X. Pang, L. Sellaoui, D.S.P. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019) 122101.[10] M. Xu, G. McKay, Removal of heavy metals, lead, cadmium, and zinc, using adsorption processes by cost-effective adsorbents, in: A. Bonilla-Petriciolet, D. I. Mendoza-Castillo, H.E. Reynel-Ávila (Eds.), Adsorption Processes for Water Treatment and Purification, Springer International Publishing, Berlin, 2017[11] A.V.B. De Oliveira, T.M. Rizzato, B.C.B. Barros, S.L. Fávaro, W. Caetano, N. Hioka, V.R. Batistela, Physicochemical modifications of sugarcane and cassava agroindustrial wastes for applications as biosorbents, Bioresour. Technol. Rep. 7 (2019) 100294.[12] S. Shakoor, A. Nasar, Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste, Ground. Sust. Develop. 7 (2018) 30–38.[13] J. Georgin, F.C. Drumm, P. Grassi, D. Franco, D. Allasia, G.L. Dotto, Potential of Araucaria angustifolia bark as adsorbent to remove gentian violet dye from aqueous effluents, Water Sci. Technol. 78 (2018) 1693–1703.[14] M. Danish, T. Ahmad, S. Majeed, M. Ahmad, L. Ziyang, Z. Pin, S.M. Shakeel Iqubal, Use of banana trunk waste as activated carbon in scavenging methylene blue dye: Kinetic, thermodynamic, and isotherm studies, Bioresour. Technol. Rep. 3 (2018) 127–137.[15] C.D.O. Carvalho, D.L. Costa Rodrigues, E.C. Lima, C.S. Umpierres, D.F. Caicedo Chaguez, F.M. Machado, Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jeriva (Syagrus romanzoffiana), Environ. Sci. Pollut. Res. 21 (2019) 4690–4702.[16] I.A. Aguayo-Villarreal, A. Bonilla-Petriciolet, R. Muñiz-Valencia, Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions, J. Mol. Liq. 230 (2017) 686–695.[17] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65.[18] V. Hernández-Montoya, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, M.A. Montes-Morán, M.A. Pérez-Cruz, Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions, J. Anal. Appl. Pyro. 92 (2011) 143–151.[19] M. Ghaedi, F. Karimi, B. Barazesh, R. Sahraei, A. Daneshfar, Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon, J. Ind. Eng. Chem. 19 (2013) 756–763.[20] M. Suzuki, Adsorption engineering, Kodansha, Tokyo, 1990.[21] S. Lagergren, About the theory of so-called adsorption of soluble substances, K. Sven. Vetensk. 24 (1898) 1–39.[22] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans. IChemE 76 (1998) 332–340.[23] Y. Liu, H. Xu, J.H. Tay, Derivation of a general adsorption isotherm model, J. Environ. Eng. 131 (2005) 1466–1468.[24] M. Avrami, Kinetics of phase change. I: General theory, J. Chem. Phys. 7 (1939) 1103–1112.[25] H. Freundlich, Over the adsorption in solution, Z. Physic. Chem. A. 57 (1906) 358–471.[26] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403.[27] A.R. Khan, R. Ataullah, A. Al-Haddad, Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures, J. Colloid Interface Sci. 194 (1997) 154–165.[28] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-piraján, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434.[29] G.S. Bohart, E.Q. Adams, Some aspects of the behavior of charcoal with respect to chlorine, J. Am. Chem. Soc. 42 (1920) 523–544.[30] H.C. Thomas, Heterogeneous Ion Exchange in a Flowing System, J. Am. Chem. Soc. 66 (1944) 1664–1666.[31] Y.H. Yoon, J.H. Nelson, Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life, Am. Ind. Hygiene Assoc. J. 45 (1984) 509–516.[32] G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Ads. Sci. Technol. 19 (2001) 25–43.[33] K.A. Adegoke, O.S. Bello, Dye sequestration using agricultural wastes as adsorbents, Water Res. Ind. 12 (2015) 8–24.[34] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935.[35] L.Y. Sun, H.B. Lin, H.B. Deng, J.Z. Li, B.H. He, R.C. Sun, Structural changes of bamboo cellulose in formic acid, Bioresour. 3 (2008) 297–315.[36] B.B. Uzun, E. Yaman, Pyrolysis kinetics of walnut shell and waste polyolefins using thermogravimetric analysis, J. Energ. Inst. 90 (2017) 825–837.[37] J. Georgin, B.S. Marques, E.C. Peres, D. Allasia, G.L. Dotto, Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa), Water Sci. Technol. 77 (2018) 1612–1621.[38] J. Ooi, L.Y. Lee, B.Y.Z. Hiew, S. Thangalazhy-Gopakumar, S.S. Lim, S. Gan, Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies, Bioresour. Technol. 245 (2017) 656–664.[39] A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination 265 (2011) 126–134.[40] J. Georgin, B.S. Marques, J.S. Salla, E.L. Foletto, D. Allasia, G.L. Dotto, Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent, Environ. Sci. Pollut. Res. 25 (2017) 6429–6442.[41] J. Georgin, D.S.P. Franco, F.C. Drumm, P. Grassi, M. Schadeck Netto, D. Allasia, G. L. Dotto, Paddle cactus (Tacinga palmadora) as potential low-cost adsorbent to treat textile effluents containing crystal violet, Chem. Eng. Commun. (2019) 1– 12 (In press).[42] S. Lairini, K.E. Mahtal, Y. Miyah, K. Tanji, S. Guissi, S. Boumchita, F. Zerrouq, The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies, J. Mater. Environ. Sci. 8 (2017) 3252–3261.[43] M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhat, Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study, Res. Efficient Technol. 3 (2017) 71–77.[44] A. Bazzo, M.A. Adebayo, S.L.P. Dias, E.C. Lima, J.C.P. Vaghetti, E.R. Oliveira, A.J.B. Leite, F.A. Pavan, Avocado seed powder: characterization and its application for crystal violet dye removal from aqueous solutions, Des. Water Treat. 57 (2016) 15873–15888.[45] G. Tian, W. Wang, Y. Kang, A. Wang, Ammonium sulfide-assisted hydrothermal activation of palygorskite for enhanced adsorption of methyl violet, J. Environ. Sci. 41 (2016) 33–43.[46] G.R. Mahdavinia, H. Aghaie, H. Sheykhloie, M.T. Vardini, H. Etemadi, Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet, Carbohydr. Polym. 98 (2013) 358–365.[47] S. Neupane, S.T. Ramesh, R. Gandhimathi, P.V. Nidheesh, Pineapple leaf (Ananas comosus) powder as a biosorbent for the removal of crystal violet from aqueous solution, Des. Water Treat. 54 (2014) 2041–2054.[48] F.A. Pavan, E.S. Camacho, E.C. Lima, G.L. Dotto, V.T.A. Branco, S.L.P. Dias, Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase, J. Environ. Chem. Eng. 2 (2014) 230–238.[49] M. Dutta, J.K. Basu, Fixed-bed column study for the adsorptive removal of acid fuchsin using carbon-alumina composite pellet, Int. J. Environ. Sci. Technol. 11 (2014) 87–96.[50] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater. 125 (2005) 211–220.PublicationORIGINALPowdered biosorbent from pecan pericarp (Carya illinoensis) as an.htmPowdered biosorbent from pecan pericarp (Carya illinoensis) as an.htmtext/html74113https://repositorio.cuc.edu.co/bitstreams/135c20ab-dfeb-483d-af21-00c3f5492d11/download2ac6397eec79de049849051a50d4e340MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/e3da9203-a482-45c0-8473-e5bd409c06ad/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d0273e6f-50ae-4a5b-bb6d-78c4e9454304/download8a4605be74aa9ea9d79846c1fba20a33MD53TEXTPowdered biosorbent from pecan pericarp (Carya illinoensis) as an.htm.txtPowdered biosorbent from pecan pericarp (Carya illinoensis) as an.htm.txttext/plain3911https://repositorio.cuc.edu.co/bitstreams/76b7855e-0ba3-426b-8963-02dc03e3d4d1/downloadb7b3803e7dec9f4b787f3a7ff16e1ac5MD5411323/6322oai:repositorio.cuc.edu.co:11323/63222024-09-16 16:33:38.852http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |