Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass

Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but n...

Full description

Autores:
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
Duarte Forero, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1469
Acceso en línea:
https://hdl.handle.net/11323/1469
https://repositorio.cuc.edu.co/
Palabra clave:
Biomass
Internal combustion engines
Natural gas
Ignition
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_579b05d7702dd2d7ed2135e07f96cf0c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1469
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
title Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
spellingShingle Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
Biomass
Internal combustion engines
Natural gas
Ignition
title_short Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
title_full Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
title_fullStr Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
title_full_unstemmed Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
title_sort Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
dc.creator.fl_str_mv Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
Duarte Forero, Jorge
dc.contributor.author.spa.fl_str_mv Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
Duarte Forero, Jorge
dc.subject.eng.fl_str_mv Biomass
Internal combustion engines
Natural gas
Ignition
topic Biomass
Internal combustion engines
Natural gas
Ignition
description Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the engine
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-20T19:23:56Z
dc.date.available.none.fl_str_mv 2018-11-20T19:23:56Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-88-95608- 62-4
dc.identifier.issn.spa.fl_str_mv 2283-9216
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1469
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-88-95608- 62-4
2283-9216
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1469
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Amador, G., Forero, J. D., Rincon, A., Fontalvo, A., Bula, A., Padilla, R. V., & Orozco, W., 2017, Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. Journal of Energy Resources Technology. https://doi.org/10.1115/1.4036044 197 Amran U.I., Ahmad A., Othman M.R., 2017, Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus, Chemical Engineering Transactions, 56, 1681-1686 DOI:10.3303/CET1756281 Azimov, U., Tomita, E., Kawahara, N., & Harada, Y., 2011, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy, 36(18), 11985–11996. Bika, A. S., Franklin, L., & Kittelson, D. B., 2012, Homogeneous charge compression ignition engine operating on synthesis gas. International Journal of Hydrogen Energy, 37(11), 9402–9411. Boivin, P., Jiménez, C., Sánchez, A. L., & Williams, F. A., 2011, A four-step reduced mechanism for syngas combustion. Combustion and Flame, 158(6), 1059–1063. Boivin, P., Sánchez, A. L., & Williams, F. A., 2017, Analytical prediction of syngas induction times. Combustion and Flame, 176, 489–499. de Faria, M. M. N., Bueno, J. P. V. M., Ayad, S. M. M. E., & Belchior, C. R. P., 2017, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Padilla, R. V., Sanjuan, M., & Quiroga, A. G., 2014, Autoignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137–147. Duarte, J., 2016, Aportación al estudio y modelado Termodinámico en Motores de Combustión Interna. Doctoral Thesis. Universidad del Norte, Colombia. Gersen, S., Darmeveil, H., & Levinsky, H., 2012, The effects of CO addition on the autoignition of H 2, CH 4 and CH 4/H 2 fuels at high pressure in an RCM. Combustion and Flame, 159(12), 3472–3475. Ihme, M., 2012, On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combustion and Flame, 159(4), 1592–1604. Malenshek, M., & Olsen, D. B., 2009, Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650- 656. Mittal, G., Sung, C.-J., & Yetter, R. A., 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 38(8), 516–529. Pal, P., Mansfield, A. B., Arias, P. G., Wooldridge, M. S., & Im, H. G., 2015, A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 19(5), 587–601. Przybyla, G., Szlek, A., Haggith, D., & Sobiesiak, A., 2016, Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy, 116, 1464–1478. Yu, Y., Vanhove, G., Griffiths, J. F., De Ferrières, S., & Pauwels, J.-F., 2013, Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy & Fuels, 27(7), 3988–3996.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Italian Association of Chemical Engineering - AIDIC
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a1648061-5dd2-49b8-b374-b2eac1680996/download
https://repositorio.cuc.edu.co/bitstreams/ed660589-9253-4704-a434-c9be25705826/download
https://repositorio.cuc.edu.co/bitstreams/8cf786f8-80dd-4bc2-8c68-740d7593aa10/download
https://repositorio.cuc.edu.co/bitstreams/2443fbf0-2db8-4abe-b0bd-f58e6ecea7e4/download
bitstream.checksum.fl_str_mv 4c0e00999eca94a1edd6a0723c656656
8a4605be74aa9ea9d79846c1fba20a33
44d099ebdc501ae734e97e999d29ca98
d0c00539f06bd824a6cd63674ca624d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760689730027520
spelling Cardenas Escorcia, Yulineth del CarmenValencia Ochoa, Guillermo EliecerDuarte Forero, Jorge2018-11-20T19:23:56Z2018-11-20T19:23:56Z2018978-88-95608- 62-42283-9216https://hdl.handle.net/11323/1469Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the engineCardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0Duarte Forero, Jorge-21db3c40-168d-4dae-bfa8-976228ba8323-0engItalian Association of Chemical Engineering - AIDICAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomassInternal combustion enginesNatural gasIgnitionCharacterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomassArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAmador, G., Forero, J. D., Rincon, A., Fontalvo, A., Bula, A., Padilla, R. V., & Orozco, W., 2017, Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. Journal of Energy Resources Technology. https://doi.org/10.1115/1.4036044 197 Amran U.I., Ahmad A., Othman M.R., 2017, Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus, Chemical Engineering Transactions, 56, 1681-1686 DOI:10.3303/CET1756281 Azimov, U., Tomita, E., Kawahara, N., & Harada, Y., 2011, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy, 36(18), 11985–11996. Bika, A. S., Franklin, L., & Kittelson, D. B., 2012, Homogeneous charge compression ignition engine operating on synthesis gas. International Journal of Hydrogen Energy, 37(11), 9402–9411. Boivin, P., Jiménez, C., Sánchez, A. L., & Williams, F. A., 2011, A four-step reduced mechanism for syngas combustion. Combustion and Flame, 158(6), 1059–1063. Boivin, P., Sánchez, A. L., & Williams, F. A., 2017, Analytical prediction of syngas induction times. Combustion and Flame, 176, 489–499. de Faria, M. M. N., Bueno, J. P. V. M., Ayad, S. M. M. E., & Belchior, C. R. P., 2017, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Padilla, R. V., Sanjuan, M., & Quiroga, A. G., 2014, Autoignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137–147. Duarte, J., 2016, Aportación al estudio y modelado Termodinámico en Motores de Combustión Interna. Doctoral Thesis. Universidad del Norte, Colombia. Gersen, S., Darmeveil, H., & Levinsky, H., 2012, The effects of CO addition on the autoignition of H 2, CH 4 and CH 4/H 2 fuels at high pressure in an RCM. Combustion and Flame, 159(12), 3472–3475. Ihme, M., 2012, On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combustion and Flame, 159(4), 1592–1604. Malenshek, M., & Olsen, D. B., 2009, Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650- 656. Mittal, G., Sung, C.-J., & Yetter, R. A., 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 38(8), 516–529. Pal, P., Mansfield, A. B., Arias, P. G., Wooldridge, M. S., & Im, H. G., 2015, A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 19(5), 587–601. Przybyla, G., Szlek, A., Haggith, D., & Sobiesiak, A., 2016, Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy, 116, 1464–1478. Yu, Y., Vanhove, G., Griffiths, J. F., De Ferrières, S., & Pauwels, J.-F., 2013, Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy & Fuels, 27(7), 3988–3996.PublicationORIGINALCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdfCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdfapplication/pdf835311https://repositorio.cuc.edu.co/bitstreams/a1648061-5dd2-49b8-b374-b2eac1680996/download4c0e00999eca94a1edd6a0723c656656MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ed660589-9253-4704-a434-c9be25705826/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.jpgCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.jpgimage/jpeg73977https://repositorio.cuc.edu.co/bitstreams/8cf786f8-80dd-4bc2-8c68-740d7593aa10/download44d099ebdc501ae734e97e999d29ca98MD54TEXTCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.txtCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.txttext/plain19969https://repositorio.cuc.edu.co/bitstreams/2443fbf0-2db8-4abe-b0bd-f58e6ecea7e4/downloadd0c00539f06bd824a6cd63674ca624d6MD5511323/1469oai:repositorio.cuc.edu.co:11323/14692024-09-17 10:12:51.002open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=