Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass
Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but n...
- Autores:
-
Cardenas Escorcia, Yulineth del Carmen
Valencia Ochoa, Guillermo Eliecer
Duarte Forero, Jorge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1469
- Acceso en línea:
- https://hdl.handle.net/11323/1469
https://repositorio.cuc.edu.co/
- Palabra clave:
- Biomass
Internal combustion engines
Natural gas
Ignition
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_579b05d7702dd2d7ed2135e07f96cf0c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1469 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
title |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
spellingShingle |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass Biomass Internal combustion engines Natural gas Ignition |
title_short |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
title_full |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
title_fullStr |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
title_full_unstemmed |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
title_sort |
Characterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomass |
dc.creator.fl_str_mv |
Cardenas Escorcia, Yulineth del Carmen Valencia Ochoa, Guillermo Eliecer Duarte Forero, Jorge |
dc.contributor.author.spa.fl_str_mv |
Cardenas Escorcia, Yulineth del Carmen Valencia Ochoa, Guillermo Eliecer Duarte Forero, Jorge |
dc.subject.eng.fl_str_mv |
Biomass Internal combustion engines Natural gas Ignition |
topic |
Biomass Internal combustion engines Natural gas Ignition |
description |
Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the engine |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-20T19:23:56Z |
dc.date.available.none.fl_str_mv |
2018-11-20T19:23:56Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-88-95608- 62-4 |
dc.identifier.issn.spa.fl_str_mv |
2283-9216 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1469 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-88-95608- 62-4 2283-9216 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1469 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Amador, G., Forero, J. D., Rincon, A., Fontalvo, A., Bula, A., Padilla, R. V., & Orozco, W., 2017, Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. Journal of Energy Resources Technology. https://doi.org/10.1115/1.4036044 197 Amran U.I., Ahmad A., Othman M.R., 2017, Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus, Chemical Engineering Transactions, 56, 1681-1686 DOI:10.3303/CET1756281 Azimov, U., Tomita, E., Kawahara, N., & Harada, Y., 2011, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy, 36(18), 11985–11996. Bika, A. S., Franklin, L., & Kittelson, D. B., 2012, Homogeneous charge compression ignition engine operating on synthesis gas. International Journal of Hydrogen Energy, 37(11), 9402–9411. Boivin, P., Jiménez, C., Sánchez, A. L., & Williams, F. A., 2011, A four-step reduced mechanism for syngas combustion. Combustion and Flame, 158(6), 1059–1063. Boivin, P., Sánchez, A. L., & Williams, F. A., 2017, Analytical prediction of syngas induction times. Combustion and Flame, 176, 489–499. de Faria, M. M. N., Bueno, J. P. V. M., Ayad, S. M. M. E., & Belchior, C. R. P., 2017, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Padilla, R. V., Sanjuan, M., & Quiroga, A. G., 2014, Autoignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137–147. Duarte, J., 2016, Aportación al estudio y modelado Termodinámico en Motores de Combustión Interna. Doctoral Thesis. Universidad del Norte, Colombia. Gersen, S., Darmeveil, H., & Levinsky, H., 2012, The effects of CO addition on the autoignition of H 2, CH 4 and CH 4/H 2 fuels at high pressure in an RCM. Combustion and Flame, 159(12), 3472–3475. Ihme, M., 2012, On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combustion and Flame, 159(4), 1592–1604. Malenshek, M., & Olsen, D. B., 2009, Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650- 656. Mittal, G., Sung, C.-J., & Yetter, R. A., 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 38(8), 516–529. Pal, P., Mansfield, A. B., Arias, P. G., Wooldridge, M. S., & Im, H. G., 2015, A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 19(5), 587–601. Przybyla, G., Szlek, A., Haggith, D., & Sobiesiak, A., 2016, Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy, 116, 1464–1478. Yu, Y., Vanhove, G., Griffiths, J. F., De Ferrières, S., & Pauwels, J.-F., 2013, Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy & Fuels, 27(7), 3988–3996. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Italian Association of Chemical Engineering - AIDIC |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a1648061-5dd2-49b8-b374-b2eac1680996/download https://repositorio.cuc.edu.co/bitstreams/ed660589-9253-4704-a434-c9be25705826/download https://repositorio.cuc.edu.co/bitstreams/8cf786f8-80dd-4bc2-8c68-740d7593aa10/download https://repositorio.cuc.edu.co/bitstreams/2443fbf0-2db8-4abe-b0bd-f58e6ecea7e4/download |
bitstream.checksum.fl_str_mv |
4c0e00999eca94a1edd6a0723c656656 8a4605be74aa9ea9d79846c1fba20a33 44d099ebdc501ae734e97e999d29ca98 d0c00539f06bd824a6cd63674ca624d6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760689730027520 |
spelling |
Cardenas Escorcia, Yulineth del CarmenValencia Ochoa, Guillermo EliecerDuarte Forero, Jorge2018-11-20T19:23:56Z2018-11-20T19:23:56Z2018978-88-95608- 62-42283-9216https://hdl.handle.net/11323/1469Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Studies have been carried out on the phenomenon of auto-ignition in liquid fuels and natural gas, but research on the application of gaseous fuels obtained from biomass is limited. Existing investigations about autoignition mainly focused on the combustion kinetics to determine the delay time, but not on the prediction of the set of parameters that encourage the presence of the phenomenon. In the present research, a thermodynamic model is developed for the prediction of the auto-ignition in Spark Ignition Internal Combustion Engine operated with gaseous fuels, which are obtained from the process of gasification of biomass. The formulated model can handle variable compositions of gaseous fuels and to optimize the main operational parameters of the engine, to verify its influence on the phenomenon under study. Results show the application of this type of alternative fuels in commercial engines that operated with natural gas, varying engine operational parameters while maximizing the power output of the engineCardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600Valencia Ochoa, Guillermo Eliecer-badc27cf-8d52-48c7-8cc8-5ffbe0292696-0Duarte Forero, Jorge-21db3c40-168d-4dae-bfa8-976228ba8323-0engItalian Association of Chemical Engineering - AIDICAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomassInternal combustion enginesNatural gasIgnitionCharacterization of auto-Ignition phenomena in spark ignition internal combustion engine using gaseous fuels obtained from biomassArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAmador, G., Forero, J. D., Rincon, A., Fontalvo, A., Bula, A., Padilla, R. V., & Orozco, W., 2017, Characteristics of Auto-Ignition in Internal Combustion Engines Operated With Gaseous Fuels of Variable Methane Number. Journal of Energy Resources Technology. https://doi.org/10.1115/1.4036044 197 Amran U.I., Ahmad A., Othman M.R., 2017, Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus, Chemical Engineering Transactions, 56, 1681-1686 DOI:10.3303/CET1756281 Azimov, U., Tomita, E., Kawahara, N., & Harada, Y., 2011, Effect of syngas composition on combustion and exhaust emission characteristics in a pilot-ignited dual-fuel engine operated in PREMIER combustion mode. International Journal of Hydrogen Energy, 36(18), 11985–11996. Bika, A. S., Franklin, L., & Kittelson, D. B., 2012, Homogeneous charge compression ignition engine operating on synthesis gas. International Journal of Hydrogen Energy, 37(11), 9402–9411. Boivin, P., Jiménez, C., Sánchez, A. L., & Williams, F. A., 2011, A four-step reduced mechanism for syngas combustion. Combustion and Flame, 158(6), 1059–1063. Boivin, P., Sánchez, A. L., & Williams, F. A., 2017, Analytical prediction of syngas induction times. Combustion and Flame, 176, 489–499. de Faria, M. M. N., Bueno, J. P. V. M., Ayad, S. M. M. E., & Belchior, C. R. P., 2017, Thermodynamic simulation model for predicting the performance of spark ignition engines using biogas as fuel. Energy Conversion and Management, 149, 1096–1108. Duarte, J., Amador, G., Garcia, J., Fontalvo, A., Padilla, R. V., Sanjuan, M., & Quiroga, A. G., 2014, Autoignition control in turbocharged internal combustion engines operating with gaseous fuels. Energy, 71, 137–147. Duarte, J., 2016, Aportación al estudio y modelado Termodinámico en Motores de Combustión Interna. Doctoral Thesis. Universidad del Norte, Colombia. Gersen, S., Darmeveil, H., & Levinsky, H., 2012, The effects of CO addition on the autoignition of H 2, CH 4 and CH 4/H 2 fuels at high pressure in an RCM. Combustion and Flame, 159(12), 3472–3475. Ihme, M., 2012, On the role of turbulence and compositional fluctuations in rapid compression machines: Autoignition of syngas mixtures. Combustion and Flame, 159(4), 1592–1604. Malenshek, M., & Olsen, D. B., 2009, Methane number testing of alternative gaseous fuels. Fuel, 88(4), 650- 656. Mittal, G., Sung, C.-J., & Yetter, R. A., 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine. International Journal of Chemical Kinetics, 38(8), 516–529. Pal, P., Mansfield, A. B., Arias, P. G., Wooldridge, M. S., & Im, H. G., 2015, A computational study of syngas auto-ignition characteristics at high-pressure and low-temperature conditions with thermal inhomogeneities. Combustion Theory and Modelling, 19(5), 587–601. Przybyla, G., Szlek, A., Haggith, D., & Sobiesiak, A., 2016, Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas. Energy, 116, 1464–1478. Yu, Y., Vanhove, G., Griffiths, J. F., De Ferrières, S., & Pauwels, J.-F., 2013, Influence of EGR and syngas components on the autoignition of natural gas in a rapid compression machine: A detailed experimental study. Energy & Fuels, 27(7), 3988–3996.PublicationORIGINALCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdfCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdfapplication/pdf835311https://repositorio.cuc.edu.co/bitstreams/a1648061-5dd2-49b8-b374-b2eac1680996/download4c0e00999eca94a1edd6a0723c656656MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ed660589-9253-4704-a434-c9be25705826/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.jpgCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.jpgimage/jpeg73977https://repositorio.cuc.edu.co/bitstreams/8cf786f8-80dd-4bc2-8c68-740d7593aa10/download44d099ebdc501ae734e97e999d29ca98MD54TEXTCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.txtCharacterization of Auto-Ignition Phenomena in Spark Ignition.pdf.txttext/plain19969https://repositorio.cuc.edu.co/bitstreams/2443fbf0-2db8-4abe-b0bd-f58e6ecea7e4/downloadd0c00539f06bd824a6cd63674ca624d6MD5511323/1469oai:repositorio.cuc.edu.co:11323/14692024-09-17 10:12:51.002open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |