Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental

Introducción: En los últimos años, en Colombia hay un crecimiento en la construcción de puentes de grandes luces, en especial tipo viga cajón. Por la importancia de estas estructuras en la infraestructura del país, surge la necesidad de monitorear su integridad estructural, analizar su comportamient...

Full description

Autores:
Viviescas Jaimes, Alvaro
Carrillo, Julián
Vargas Carvajal, Laura Andrea
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12179
Acceso en línea:
https://hdl.handle.net/11323/12179
https://doi.org/10.17981/ingecuc.14.1.2018.05
Palabra clave:
Dynamic characterization
structural health
monitoring
ambient vibrations
box girder bridge
numerical model adjustment.
Caracterización dinámica
salud estructural
monitoreo
vibración ambiental
puente viga cajón
ajuste del modelo numérico
Rights
openAccess
License
INGE CUC - 2018
id RCUC2_574b4c4b4c95d2eb00ecf89bf5d3bd8c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12179
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
dc.title.translated.eng.fl_str_mv Structural health monitoring baseline of Gómez Ortiz bridge using ambient vibration tests
title Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
spellingShingle Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
Dynamic characterization
structural health
monitoring
ambient vibrations
box girder bridge
numerical model adjustment.
Caracterización dinámica
salud estructural
monitoreo
vibración ambiental
puente viga cajón
ajuste del modelo numérico
title_short Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
title_full Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
title_fullStr Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
title_full_unstemmed Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
title_sort Línea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambiental
dc.creator.fl_str_mv Viviescas Jaimes, Alvaro
Carrillo, Julián
Vargas Carvajal, Laura Andrea
dc.contributor.author.spa.fl_str_mv Viviescas Jaimes, Alvaro
Carrillo, Julián
Vargas Carvajal, Laura Andrea
dc.subject.eng.fl_str_mv Dynamic characterization
structural health
monitoring
ambient vibrations
box girder bridge
numerical model adjustment.
topic Dynamic characterization
structural health
monitoring
ambient vibrations
box girder bridge
numerical model adjustment.
Caracterización dinámica
salud estructural
monitoreo
vibración ambiental
puente viga cajón
ajuste del modelo numérico
dc.subject.spa.fl_str_mv Caracterización dinámica
salud estructural
monitoreo
vibración ambiental
puente viga cajón
ajuste del modelo numérico
description Introducción: En los últimos años, en Colombia hay un crecimiento en la construcción de puentes de grandes luces, en especial tipo viga cajón. Por la importancia de estas estructuras en la infraestructura del país, surge la necesidad de monitorear su integridad estructural, analizar su comportamiento a través de su ciclo de vida, detectar cambios causados por posibles daños y establecer planes de mantenimiento. Este monitoreo se puede realizar a través de la caracterización de las propiedades dinámicas de la estructura. Objetivo: Este estudio presenta los resultados de la línea base para el monitoreo de la salud estructural del puente Gómez Ortiz. El artículo presenta y discute los resultados de la caracterización dinámica de la estructura y se describe el proceso de ajuste de un modelo numérico con base en los resultados experimentales. Metodología: La caracterización dinámica se realizó utilizando la técnica experimental con medición de vibraciones ambientales. Para el procesamiento de datos se utilizaron cuatro técnicas diferentes, tales como selección de picos (PP), descomposición en el dominio de la frecuencia (FDD), descomposición en el dominio de la frecuencia mejorada (EFDD) e identificación del sub-espacio estocástico (SSI). Resultados: En el estudio se obtuvo información experimental de las propiedades dinámicas del puente, tales como frecuencias fundamentales, modos de vibración y fracciones de amortiguamiento. Conclusiones: Los resultados demostraron que las cuatro técnicas arrojan resultados similares, excepto para las fracciones de amortiguamiento, confirmando la incertidumbre de las técnicas experimentales para definir este parámetro.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-01-19 00:00:00
2024-04-09T20:14:46Z
dc.date.available.none.fl_str_mv 2018-01-19 00:00:00
2024-04-09T20:14:46Z
dc.date.issued.none.fl_str_mv 2018-01-19
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12179
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.14.1.2018.05
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.14.1.2018.05
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.14.1.2018.05
2382-4700
url https://hdl.handle.net/11323/12179
https://doi.org/10.17981/ingecuc.14.1.2018.05
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv H. Sohn, C. R. Farrar, F. Hemez y J. Czarnecki, “A Review of Structural Health Monitoring Literature 1996 – 2001,” Third World Conf. Struct. Control, no. December, pp. 1–7, 2002.
A. Cury, C. Cremona y J. Dumoulin, “Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment,” Mech. Syst. Signal Process., vol. 33, pp. 13–37, nov. 2012. https://doi.org/10.1016/j.ymssp.2012.07.005
K. A. Kvåle, O. Øiseth y A. Rønnquist, “Operational modal analysis of an end-supported pontoon bridge,” Eng. Struct., vol. 148, pp. 410–423, oct. 2017. https://doi.org/10.1016/j.engstruct.2017.06.069
R. M. Azzara, A. De Falco, M. Girardi y D. Pellegrini, “Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis,” Ann. Geophys., vol. 60, no. 4 VO - 60, 2017.
O. García Domínguez, A. G. Milián, Ayala, R. Reyes Greco y C. Álvarez Guillén, “Modelo estructural y medición de vibraciones dinámicas del puente ‘Fernando Espinosa’,” in XIII Congreso Nacional de Ingeniería Estructural, 2002, no. 55, pp. 849–860.
P. Thomson, J. Marulanda C y J. Marulanda A, “Monitoreo de Salud Estructural,” Ing. y Compet., vol. 2, no. 2, pp. 40–46, 2000.
E. Muñoz, F. Núñez, J. A. Rodríguez, A. Ramos, C. Otálora y P. Universidad, “Vulnerabilidad sísmica y capacidad de carga de un puente en acero basado en confiabilidad estructural. Seismic vulnerability and load carrying capacity studies of a steel bridge based on structural reliability,” Rev. Ing. Construcción, vol. 23, pp. 125–144, 2008.
P. Thomson y J. Marulanda, “Sistema de MSE del Viaducto Pereira-Dos Quebradas,” in IV Semana de la Ingeniería, 2005.
J. Marulanda, P. Thomson, J. M. Caicedo, S. J. Dyke y A. Orozco, “Implementation of a Modal Identification Methodology on the Pereira-Dos Quebradas Cable-Stayed Bridge,” in 16th ASCE Engineering Mechanics Conference, 2003, pp. 1–11.
W. J. Carrillo León, “Estimación de los periodos naturales de vibración de viviendas de baja altura con muros de concreto,” Cienc. e Ing. Neogranadina, vol. 19, pp. 39–54, 2009. https://doi.org/10.18359/rcin.309
J. Carrillo y S. M. Alcocer, “Simplified equation for estimating periods of vibration of concrete wall housing,” Eng. Struct., vol. 52, pp. 446–454, 2013. https://doi.org/10.1016/j.engstruct.2013.03.011
P. Omenzette et al., “Forced and Ambient Vibration Testing of Full Scale Bridges,” Earthq. Comm. Res. Found., no. oct., 2013-2014.
C. P. Lamarche, S. Mousseau, P. Paultre y J. Proulx, “A comparison of Ambient and Forced-Vibration Testing of a Full-Scale Concrete Structure,” in 22nd International Modal Analysis Conference IMA-XXII, 2004.
S. Au, Operational Modal Analysis. Singapore: Springer Nature, 2017. https://doi.org/10.1007/978-981-10-4118-1
I. Gómez Araujo, E. Maldonado Rondón y G. Chio Cho, “Pruebas de Vibración Ambiental en Puentes,” UIS Ing., vol. 9, no. 1, pp. 55–68, 2010.
INGETEC, “Planos ‘As Built’ Puente Guillermo Gómez Ortiz,” Santander, Colombia, 2014.
J. Bien, “Modelling of structure geometry in Bridge Management Systems,” Arch. Civ. Mech. Eng., vol. XI, no. 3, 2011.
M. C. Corredor y C. Castellanos, “Calibración del modelo numérico de puentes viga cajón en concreto, utilizando ensayos de vibración ambiental. Caso de estudio: Nuevo Puente Gómez Ortiz. Bucaramanga,” 2015.
MIDAS Information Technology Co Ltda, “Online manual. Civil Structure Design,” 2015.
C. C. Rangel y J. A. Silva de Carvalho, “Evaluación del impacto de las alteraciones climáticas en un puente de concreto preesforzado,” 2016.
W. Kornkassem, D. A. Foutch y J. H. Long, “Seismic Behaviour of Pile-Supported Bridges,” p. 275, University of Illinois at Urbana-Champaign, 2001.
W. X. Ren, W. Zatar y I. E. Harik, “Ambient vibrationbased seismic evaluation of a continuous girder bridge,” Eng. Struct., vol. 26, no. 5, pp. 631–640, 2004.
L. A. Vargas Carvajal, “Propuesta de plan de monitoreo del comportamiento dinámico para la salud estructural del nuevo puente Gómez Ortiz en la vía Girón-Zapatoca,” Universidad Industrial de Santander, 2016.
A. Dall Asta y L. Dezi, “Prestress Force Effect on Vibration Frequency of Concrete Bridges,” J. Struct. Eng., pp. 458–460, 1996.
E. Hamed y Y. Ã. Frostig, “Natural frequencies of bonded and unbonded prestressed beams – prestress force effects,” J. Sound Vib., vol. 295, pp. 28–39, 2006.
Structural vibration solutions, “ARTeMIS,” Denmark. http://www.svibs.com/index
T. M. Inc, “Matlab,” The MathWorks Inc, Massachusetts, 2011.
M. Döhler, P. Andersen y L. Mevel, “Operational Modal Analysis using a Fast-Stochastic Subspace Identification Method” in Proceedings of the 30th International Modal Analysis Conference (IMAC) Jacksonville, Florida USA, 2012.
R. Brincker y P. Andersen, “Understanding Stochastic Subspace Identification” in Proceedings of the 24th International Modal Analysis Conference (IMAC), St. Louis, Missouri, 2006.
R. Brincker, P. Andersen y N. Jacobsen, “Automated Frequency Domain Decomposition for Operational Modal Analysis,” pp. 1–7. in Proceedings of The 25th International Modal Analysis Conference (IMAC), Orlando, Florida, 2007.
R. Brincker, L. Zhang y P. Andersen, “Modal Identification from Ambient Responses using Frequency Domain Decomposition” in Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, pp.625-630,2000.
I. D. Gómez Araujo, “Caracterización dinámica experimental de puentes de hormigón simplemente apoyados a partir de mediciones de vibración ambiental,” Universidad Industrial de Santander, 2010.
P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” in IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. https://doi.org/10.1109/TAU.1967.1161901
A. J. Felber, “Development of a Hybrid Bridge Evaluation System,” The University of British Columbia, Ph.D. Thesis, University of British Columbia, Canada, 1993
R. Lyons, Understanding digital signal processing. Michigan: Pearson, 2011.
M. Paz, Dinámica estructural: Teoría y Cálculo. Barcelona: Editorial Reverté S.A, 1992.
C. Rainieri y G. Fabbricino, Operational Modal Analysis of Civil Engineering Structures. New York: Springer science + business, 2014.
C. Lanczos, “The Lanczos Method Evolution and Application,” vol. 12, pp. 197–198, 2003.
N. Gastinel, Análisis numérico lineal. Barcelona: Editorial Reverté, S.A, 1975.
R. J. Allemang y D. L. Brown, “A Correlation Coefficient for Modal Vector Analysis,” in Proceedings of the 1st International Modal Analysis Conference. pp. 110-116. Orlando, FL, 1982.
E. C. Chu, Discrete and continuous fourier transforms: analysis, applications and fast algorithms. CRC Press, 2008.
R. Boroschek y F. Hernández, “Corrección de sobreestimación del amortiguamiento en el método de ancho de banda del espectro de potencia,” in Congreso Chileno de Sismología e Ingeniería Antisísmica, 2010.
J. D. Stevenson, “Structural Damping Values as a Function of Dynamic Response Stress and Deformation Levels,” Nucl. Eng. Des., vol. 60, pp. 211–237, 1980. https://doi.org/10.1016/0029-5493(80)90238-1
G. Martínez, P. Roca, J. Caselles, J. Clapes y A. H. Barbat, “Determinación experimental y analítica de las propiedades dinámicas para la Catedral de Mallorca,” in Congreso Nacional de Ingeniería Sísmica, 2007, pp. 1–8.
X. Chen, P. Omenzetter y S. Beskhyroun, “Calibration of the finite element model of a twelve-span prestressed concrete bridge using ambient vibration data,” 7th Eur. Work. Struct. Heal. Monit., EWSHM 2014, pp. 1388–1395, 2014.
C. Farrar et al., “Variability of Modal Parameters Measured on the Alamosa Canyon Bridge,” in Proceedings of the 15th International Modal Analysis Conference., p. 257. 1997.
M. Wahab y G. De Roeck, “Effect of Temperature on Dynamic System Parameters of a Highway Bridge,” Struct. Eng. Int., pp. 266–270.
dc.relation.citationendpage.none.fl_str_mv 65
dc.relation.citationstartpage.none.fl_str_mv 52
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/1686/A.%20Viviescas
https://revistascientificas.cuc.edu.co/ingecuc/article/download/1686/1710
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2018 : (Enero - Junio)
dc.rights.spa.fl_str_mv INGE CUC - 2018
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2018
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
application/pdf
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1686
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c7dd5543-6833-4f03-8d10-94d13ab28eac/download
bitstream.checksum.fl_str_mv 3800675d2ae7855113719288826f79f5
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760767197773824
spelling Viviescas Jaimes, AlvaroCarrillo, JuliánVargas Carvajal, Laura Andrea2018-01-19 00:00:002024-04-09T20:14:46Z2018-01-19 00:00:002024-04-09T20:14:46Z2018-01-190122-6517https://hdl.handle.net/11323/12179https://doi.org/10.17981/ingecuc.14.1.2018.0510.17981/ingecuc.14.1.2018.052382-4700Introducción: En los últimos años, en Colombia hay un crecimiento en la construcción de puentes de grandes luces, en especial tipo viga cajón. Por la importancia de estas estructuras en la infraestructura del país, surge la necesidad de monitorear su integridad estructural, analizar su comportamiento a través de su ciclo de vida, detectar cambios causados por posibles daños y establecer planes de mantenimiento. Este monitoreo se puede realizar a través de la caracterización de las propiedades dinámicas de la estructura. Objetivo: Este estudio presenta los resultados de la línea base para el monitoreo de la salud estructural del puente Gómez Ortiz. El artículo presenta y discute los resultados de la caracterización dinámica de la estructura y se describe el proceso de ajuste de un modelo numérico con base en los resultados experimentales. Metodología: La caracterización dinámica se realizó utilizando la técnica experimental con medición de vibraciones ambientales. Para el procesamiento de datos se utilizaron cuatro técnicas diferentes, tales como selección de picos (PP), descomposición en el dominio de la frecuencia (FDD), descomposición en el dominio de la frecuencia mejorada (EFDD) e identificación del sub-espacio estocástico (SSI). Resultados: En el estudio se obtuvo información experimental de las propiedades dinámicas del puente, tales como frecuencias fundamentales, modos de vibración y fracciones de amortiguamiento. Conclusiones: Los resultados demostraron que las cuatro técnicas arrojan resultados similares, excepto para las fracciones de amortiguamiento, confirmando la incertidumbre de las técnicas experimentales para definir este parámetro.Introduction: The construction of long-span bridges, especially box girder type, has been increasing in recent years in Colombia. Due to the importance that these structures represent for the infrastructure of the country, there is a need to monitor their structural integrity to analyze their behavior throughout their life cycle, detect changes caused by possible damages and establish maintenance plans. This monitoring can be carried out through the characterization of the dynamic properties of the structure. Objective: This study shows the results of the structural health monitoring baseline carried out in the Gómez Ortiz bridge. The dynamic characterization of the structure is performed and discussed, as well as the process of adjusting a numerical model based on the experimental results. Methodology: The dynamic characterization of the structure was carried out using the experimental technique based on ambient vibration tests. Four different techniques were used to post-processing the data obtained in these tests such as Peak Picking (PP), Frequency Domain Decomposition (FDD), Enhanced Frequency Domain Decomposition (EFDD), and the Stochastic Subspace Identification (SSI). Results: Experimental information of the dynamic properties of the bridge was obtained in the study, such as fundamental frequencies, modal shapes, and damping ratios. Conclusions: The results of the study demonstrated that the four techniques show similar results, except for damping ratios, which confirms the uncertainty of the experimental techniques to define this parameter.application/pdfapplication/pdfspaUniversidad de la CostaINGE CUC - 2018https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/1686Dynamic characterizationstructural healthmonitoringambient vibrationsbox girder bridgenumerical model adjustment.Caracterización dinámicasalud estructuralmonitoreovibración ambientalpuente viga cajónajuste del modelo numéricoLínea base para el monitoreo de salud estructural del puente Gómez Ortiz a partir de pruebas de vibración ambientalStructural health monitoring baseline of Gómez Ortiz bridge using ambient vibration testsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucH. Sohn, C. R. Farrar, F. Hemez y J. Czarnecki, “A Review of Structural Health Monitoring Literature 1996 – 2001,” Third World Conf. Struct. Control, no. December, pp. 1–7, 2002.A. Cury, C. Cremona y J. Dumoulin, “Long-term monitoring of a PSC box girder bridge: Operational modal analysis, data normalization and structural modification assessment,” Mech. Syst. Signal Process., vol. 33, pp. 13–37, nov. 2012. https://doi.org/10.1016/j.ymssp.2012.07.005K. A. Kvåle, O. Øiseth y A. Rønnquist, “Operational modal analysis of an end-supported pontoon bridge,” Eng. Struct., vol. 148, pp. 410–423, oct. 2017. https://doi.org/10.1016/j.engstruct.2017.06.069R. M. Azzara, A. De Falco, M. Girardi y D. Pellegrini, “Ambient vibration recording on the Maddalena Bridge in Borgo a Mozzano (Italy): data analysis,” Ann. Geophys., vol. 60, no. 4 VO - 60, 2017.O. García Domínguez, A. G. Milián, Ayala, R. Reyes Greco y C. Álvarez Guillén, “Modelo estructural y medición de vibraciones dinámicas del puente ‘Fernando Espinosa’,” in XIII Congreso Nacional de Ingeniería Estructural, 2002, no. 55, pp. 849–860.P. Thomson, J. Marulanda C y J. Marulanda A, “Monitoreo de Salud Estructural,” Ing. y Compet., vol. 2, no. 2, pp. 40–46, 2000.E. Muñoz, F. Núñez, J. A. Rodríguez, A. Ramos, C. Otálora y P. Universidad, “Vulnerabilidad sísmica y capacidad de carga de un puente en acero basado en confiabilidad estructural. Seismic vulnerability and load carrying capacity studies of a steel bridge based on structural reliability,” Rev. Ing. Construcción, vol. 23, pp. 125–144, 2008.P. Thomson y J. Marulanda, “Sistema de MSE del Viaducto Pereira-Dos Quebradas,” in IV Semana de la Ingeniería, 2005.J. Marulanda, P. Thomson, J. M. Caicedo, S. J. Dyke y A. Orozco, “Implementation of a Modal Identification Methodology on the Pereira-Dos Quebradas Cable-Stayed Bridge,” in 16th ASCE Engineering Mechanics Conference, 2003, pp. 1–11.W. J. Carrillo León, “Estimación de los periodos naturales de vibración de viviendas de baja altura con muros de concreto,” Cienc. e Ing. Neogranadina, vol. 19, pp. 39–54, 2009. https://doi.org/10.18359/rcin.309J. Carrillo y S. M. Alcocer, “Simplified equation for estimating periods of vibration of concrete wall housing,” Eng. Struct., vol. 52, pp. 446–454, 2013. https://doi.org/10.1016/j.engstruct.2013.03.011P. Omenzette et al., “Forced and Ambient Vibration Testing of Full Scale Bridges,” Earthq. Comm. Res. Found., no. oct., 2013-2014.C. P. Lamarche, S. Mousseau, P. Paultre y J. Proulx, “A comparison of Ambient and Forced-Vibration Testing of a Full-Scale Concrete Structure,” in 22nd International Modal Analysis Conference IMA-XXII, 2004.S. Au, Operational Modal Analysis. Singapore: Springer Nature, 2017. https://doi.org/10.1007/978-981-10-4118-1I. Gómez Araujo, E. Maldonado Rondón y G. Chio Cho, “Pruebas de Vibración Ambiental en Puentes,” UIS Ing., vol. 9, no. 1, pp. 55–68, 2010.INGETEC, “Planos ‘As Built’ Puente Guillermo Gómez Ortiz,” Santander, Colombia, 2014.J. Bien, “Modelling of structure geometry in Bridge Management Systems,” Arch. Civ. Mech. Eng., vol. XI, no. 3, 2011.M. C. Corredor y C. Castellanos, “Calibración del modelo numérico de puentes viga cajón en concreto, utilizando ensayos de vibración ambiental. Caso de estudio: Nuevo Puente Gómez Ortiz. Bucaramanga,” 2015.MIDAS Information Technology Co Ltda, “Online manual. Civil Structure Design,” 2015.C. C. Rangel y J. A. Silva de Carvalho, “Evaluación del impacto de las alteraciones climáticas en un puente de concreto preesforzado,” 2016.W. Kornkassem, D. A. Foutch y J. H. Long, “Seismic Behaviour of Pile-Supported Bridges,” p. 275, University of Illinois at Urbana-Champaign, 2001.W. X. Ren, W. Zatar y I. E. Harik, “Ambient vibrationbased seismic evaluation of a continuous girder bridge,” Eng. Struct., vol. 26, no. 5, pp. 631–640, 2004.L. A. Vargas Carvajal, “Propuesta de plan de monitoreo del comportamiento dinámico para la salud estructural del nuevo puente Gómez Ortiz en la vía Girón-Zapatoca,” Universidad Industrial de Santander, 2016.A. Dall Asta y L. Dezi, “Prestress Force Effect on Vibration Frequency of Concrete Bridges,” J. Struct. Eng., pp. 458–460, 1996.E. Hamed y Y. Ã. Frostig, “Natural frequencies of bonded and unbonded prestressed beams – prestress force effects,” J. Sound Vib., vol. 295, pp. 28–39, 2006.Structural vibration solutions, “ARTeMIS,” Denmark. http://www.svibs.com/indexT. M. Inc, “Matlab,” The MathWorks Inc, Massachusetts, 2011.M. Döhler, P. Andersen y L. Mevel, “Operational Modal Analysis using a Fast-Stochastic Subspace Identification Method” in Proceedings of the 30th International Modal Analysis Conference (IMAC) Jacksonville, Florida USA, 2012.R. Brincker y P. Andersen, “Understanding Stochastic Subspace Identification” in Proceedings of the 24th International Modal Analysis Conference (IMAC), St. Louis, Missouri, 2006.R. Brincker, P. Andersen y N. Jacobsen, “Automated Frequency Domain Decomposition for Operational Modal Analysis,” pp. 1–7. in Proceedings of The 25th International Modal Analysis Conference (IMAC), Orlando, Florida, 2007.R. Brincker, L. Zhang y P. Andersen, “Modal Identification from Ambient Responses using Frequency Domain Decomposition” in Proceedings of the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas, pp.625-630,2000.I. D. Gómez Araujo, “Caracterización dinámica experimental de puentes de hormigón simplemente apoyados a partir de mediciones de vibración ambiental,” Universidad Industrial de Santander, 2010.P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms,” in IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. https://doi.org/10.1109/TAU.1967.1161901A. J. Felber, “Development of a Hybrid Bridge Evaluation System,” The University of British Columbia, Ph.D. Thesis, University of British Columbia, Canada, 1993R. Lyons, Understanding digital signal processing. Michigan: Pearson, 2011.M. Paz, Dinámica estructural: Teoría y Cálculo. Barcelona: Editorial Reverté S.A, 1992.C. Rainieri y G. Fabbricino, Operational Modal Analysis of Civil Engineering Structures. New York: Springer science + business, 2014.C. Lanczos, “The Lanczos Method Evolution and Application,” vol. 12, pp. 197–198, 2003.N. Gastinel, Análisis numérico lineal. Barcelona: Editorial Reverté, S.A, 1975.R. J. Allemang y D. L. Brown, “A Correlation Coefficient for Modal Vector Analysis,” in Proceedings of the 1st International Modal Analysis Conference. pp. 110-116. Orlando, FL, 1982.E. C. Chu, Discrete and continuous fourier transforms: analysis, applications and fast algorithms. CRC Press, 2008.R. Boroschek y F. Hernández, “Corrección de sobreestimación del amortiguamiento en el método de ancho de banda del espectro de potencia,” in Congreso Chileno de Sismología e Ingeniería Antisísmica, 2010.J. D. Stevenson, “Structural Damping Values as a Function of Dynamic Response Stress and Deformation Levels,” Nucl. Eng. Des., vol. 60, pp. 211–237, 1980. https://doi.org/10.1016/0029-5493(80)90238-1G. Martínez, P. Roca, J. Caselles, J. Clapes y A. H. Barbat, “Determinación experimental y analítica de las propiedades dinámicas para la Catedral de Mallorca,” in Congreso Nacional de Ingeniería Sísmica, 2007, pp. 1–8.X. Chen, P. Omenzetter y S. Beskhyroun, “Calibration of the finite element model of a twelve-span prestressed concrete bridge using ambient vibration data,” 7th Eur. Work. Struct. Heal. Monit., EWSHM 2014, pp. 1388–1395, 2014.C. Farrar et al., “Variability of Modal Parameters Measured on the Alamosa Canyon Bridge,” in Proceedings of the 15th International Modal Analysis Conference., p. 257. 1997.M. Wahab y G. De Roeck, “Effect of Temperature on Dynamic System Parameters of a Highway Bridge,” Struct. Eng. Int., pp. 266–270.6552114https://revistascientificas.cuc.edu.co/ingecuc/article/download/1686/A.%20Viviescashttps://revistascientificas.cuc.edu.co/ingecuc/article/download/1686/1710Núm. 1 , Año 2018 : (Enero - Junio)PublicationOREORE.xmltext/xml3284https://repositorio.cuc.edu.co/bitstreams/c7dd5543-6833-4f03-8d10-94d13ab28eac/download3800675d2ae7855113719288826f79f5MD5111323/12179oai:repositorio.cuc.edu.co:11323/121792024-09-17 11:03:22.768https://creativecommons.org/licenses/by-nc-sa/4.0/INGE CUC - 2018metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co