Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers

Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the ox...

Full description

Autores:
Henn, Alessandra Schneider
Frohlich, Angelica Chaiani
Pedrotti, Matheus Felipe
Hagemann Cauduro, Vitoria
Oliveira Silva, Marcos Leandro
Flores de Moraes, Erico Marlon
Bizzi, Cezar Augusto
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9275
Acceso en línea:
https://hdl.handle.net/11323/9275
https://doi.org/10.3390/su14010291
https://repositorio.cuc.edu.co/
Palabra clave:
Polymer analysis
MW-SS-FF-AAS
Solid sampling
Microwave-induced combustion
Toxic element determination
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_56d3d46a42a6f9f7ad9e04f19352c83d
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9275
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
title Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
spellingShingle Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
Polymer analysis
MW-SS-FF-AAS
Solid sampling
Microwave-induced combustion
Toxic element determination
title_short Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
title_full Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
title_fullStr Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
title_full_unstemmed Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
title_sort Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
dc.creator.fl_str_mv Henn, Alessandra Schneider
Frohlich, Angelica Chaiani
Pedrotti, Matheus Felipe
Hagemann Cauduro, Vitoria
Oliveira Silva, Marcos Leandro
Flores de Moraes, Erico Marlon
Bizzi, Cezar Augusto
dc.contributor.author.spa.fl_str_mv Henn, Alessandra Schneider
Frohlich, Angelica Chaiani
Pedrotti, Matheus Felipe
Hagemann Cauduro, Vitoria
Oliveira Silva, Marcos Leandro
Flores de Moraes, Erico Marlon
Bizzi, Cezar Augusto
dc.subject.proposal.eng.fl_str_mv Polymer analysis
MW-SS-FF-AAS
Solid sampling
Microwave-induced combustion
Toxic element determination
topic Polymer analysis
MW-SS-FF-AAS
Solid sampling
Microwave-induced combustion
Toxic element determination
description Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the oxygen flow rate, the flame stoichiometry, the sample mass, among others, were evaluated and optimized. Calibration was performed using only reference solutions, and the limits of quantification were 1.7 and 4.6 µg g−1 for Cd and Pb, respectively. Accuracy was assessed by the analysis of certified reference materials (CRMs), and by comparison with the results obtained by inductively coupled plasma mass spectrometry after microwave-assisted wet digestion. The MW-SS-FF-AAS results for the CRMs showed no statistical difference with the certified values, and good agreement was observed with the results of the digestion method. The MW-SS-FF-AAS method was considered suitable for Cd and Pb determination in food-contact polymers. The concentrations of Cd and Pb in the analyzed samples varied from <1.7 to 628 µg g−1, and from <4.6 to 614 µg g−1, respectively. As sample digestion is not necessary, the use of concentrated acids can be avoided by using the proposed MW-SS-FF-AAS method, greatly reducing waste generation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-28
dc.date.accessioned.none.fl_str_mv 2022-06-21T15:39:41Z
dc.date.available.none.fl_str_mv 2022-06-21T15:39:41Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Henn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9275
dc.identifier.url.spa.fl_str_mv https://doi.org/10.3390/su14010291
dc.identifier.doi.spa.fl_str_mv 10.3390/su14010291
dc.identifier.eissn.spa.fl_str_mv 2071-1050
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Henn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291
10.3390/su14010291
2071-1050
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9275
https://doi.org/10.3390/su14010291
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainability
dc.relation.references.spa.fl_str_mv 1. Barone, C.; Bolzoni, L.; Caruso, G.; Montanari, A.; Parisi, S.; Steinka, I. Food Packaging Hygiene; Springer International Publishing: Cham, Switzerland, 2015; p. 132.
2. Bart, J.C.J. Additives in Polymers: Industrial Analysis and Applications; Wiley: Chichester, UK, 2005.
3. Groh, K.J.; Geueke, B.; Martin, O.; Maffini, M.; Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 2021, 150, 106225. [CrossRef] [PubMed]
4. Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [CrossRef]
5. Perring, L.; Alonso, M.-I.; Andrey, D.; Bourqui, B.; Zbinden, P. An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials. Fresenius’ J. Anal. Chem. 2001, 370, 76–81. [CrossRef] [PubMed]
6. Pereira, J.S.F.; Knorr, C.L.; Pereira, L.S.F.; Moraes, D.P.; Paniz, J.N.G.; Flores, E.M.M.; Knapp, G. Evaluation of sample preparation methods for polymer digestion and trace elements determination by ICPMS and ICPOES. J. Anal. At. Spectrom. 2011, 26, 1849–1857. [CrossRef]
7. Pereira, L.S.F.; Pedrotti, M.F.; Miceli, T.M.; Pereira, J.S.F.; Flores, E.M.M. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry. Talanta 2016, 152, 371–377. [CrossRef] [PubMed]
8. Moraes, D.P.; Pereira, J.S.F.; Diehl, L.O.; Mesko, M.F.; Dressler, V.L.; Paniz, J.N.G.; Knapp, G.; Flores, E.M.M. Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal. Bioanal. Chem. 2010, 397, 563–570. [CrossRef]
9. Ritter, A.; Michel, E.; Schmid, M.; Affolter, S. Interlaboratory test on polymers: Determination of heavy metals in polymer metrices. Polym. Test. 2004, 23, 467–474. [CrossRef]
10. Flores, E.M.M. Microwave-Assisted Sample Preparation for Trace Element Determination; Elsevier: Amsterdam, The Netherlands, 2014.
11. Voss, M.; Nunes, M.A.G.; Corazza, G.; Flores, E.M.M.; Muller, E.I.; Dressler, V.L. A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS. Talanta 2017, 170, 488–495. [CrossRef]
12. Aramendía, M.; Resano, M.; Vanhaecke, F. Electrothermal vaporization–inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples: A critical review. Anal. Chim. Acta 2009, 648, 23–44. [CrossRef]
13. Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; Wiley: Weinheim, UK, 1999.
14. Welz, B. Atomic absorption spectrometry—Pregnant again after 45 years. Spectrochim. Acta Part. B At. Spectrosc. 1999, 54, 2081–2094. [CrossRef]
15. Flores, E.M.M.; Paniz, J.N.G.; Martins, A.F.; Dressler, V.L.; Muller, E.I.; Costa, A.B. Cadmium determination in biological samples by direct solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2002, 57, 2187–2193. [CrossRef]
16. Costa, A.B.; Mattos, J.C.P.; Muller, E.I.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Use of paper capsules for cadmium determination in biological samples by solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 583–588. [CrossRef]
17. Flores, E.M.M.; Saidelles, A.P.F.; Mattos, J.C.P.; Muller, E.I.; Pereira, J.S.F.; Paniz, J.N.G.; Dressler, V.L. Determination of Cd and Pb in medicinal plants using solid sampling flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 129–140. [CrossRef]
18. Flores, E.M.M.; Costa, A.B.; Barin, J.S.; Dressler, V.L.; Paniz, J.N.G.; Martins, A.F. Direct flame solid sampling for atomic absorption spectrometry: Determination of copper in bovine liver. Spectrochim. Acta Part. B At. Spectrosc. 2001, 56, 1875–1882. [CrossRef]
19. Bizzi, C.A.; Paniz, J.N.G.; Rodrigues, L.F.; Dressler, V.L.; Flores, E.M.M. Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke. Microchem. J. 2010, 96, 64–70. [CrossRef]
20. Magalhaes, C.E.C.; Krug, F.J.; Fostier, A.H.; Berndt, H. Direct determination of mercury in sediments by atomic absorption spectrometry. J. Anal. At. Spectrom. 1997, 12, 1231–1234. [CrossRef]
21. Kantor, T.; Fodor, P.; Pungor, E. Determination of traces of lead, cadmium and zinc in copper by an arc-nebulization and flame atomic absorption technique. Anal. Chim. Acta 1978, 102, 15–23. [CrossRef]
22. Barin, J.S.; Bartz, F.R.; Dressier, V.L.; Paniz, J.N.; Flores, E.M.M. Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples. Anal. Chem. 2008, 80, 9369–9374. [CrossRef]
23. Hoehne, L.; Bartz, F.R.; Bizzi, C.A.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Determination of Cd in blood by microwaveinduced combustion coupled to flame furnace atomic absorption spectrometry. J. Braz. Chem. Soc. 2010, 21, 978–984. [CrossRef]
24. Henn, A.S.; Frohlich, A.C.; Pedrotti, M.F.; Duarte, F.A.; Paniz, J.N.G.; Flores, E.M.M.; Bizzi, C.A. Microwave-assisted solid sampling system for Hg determination in polymeric samples using FF-AAS. Microchem. J. 2019, 147, 463–468. [CrossRef]
25. Barin, J.S.; Pereira, J.S.F.; Mello, P.A.; Knorr, C.L.; Moraes, D.P.; Mesko, M.F.; Nóbrega, J.A.; Korn, M.G.A.; Flores, E.M.M. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 2012, 94, 308–314. [CrossRef] [PubMed]
26. Gaspar, A.; Berndt, H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)—A simple method for trace element determination with microsamples in the µg/L concentration range. Spectrochim. Acta Part. B At. Spectrosc. 2000, 55, 587–597. [CrossRef]
27. Gaspar, A.; Berndt, H. Beam Injection Flame Furnace Atomic Absorption Spectrometry: A New Flame Method. Anal. Chem. 2000, 72, 240–246. [CrossRef] [PubMed]
28. Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nobrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 749–753. [CrossRef]
29. Campos, R.C.; Curtius, A.J.; Berndt, H. Combustion and volatilisation of solid samples for direct atomic absorption spectrometry using silica or nickel tube furnace atomisers. J. Anal. At. Spectrom. 1990, 5, 669–673. [CrossRef]
30. Rodrigues, L.F.; Mattos, J.C.P.; Bolzan, R.C.; Flores, E.M.M.; Duarte, F.A. Determination of trace elements in raw material for polyurethane production using direct sampling graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 324–331. [CrossRef]
31. Belarra, M.A.; Crespo, C.; Martínez-Garbayo, M.P.; Castillo, J.R. Direct determination of metals in solid samples by graphitefurnace atomic absorption spectrometry: Does sample mass influence the analytical results? Spectrochim. Acta Part. B At. Spectrosc. 1997, 52, 1855–1860. [CrossRef]
dc.relation.citationstartpage.spa.fl_str_mv 291
dc.relation.citationvolume.spa.fl_str_mv 14
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
dc.publisher.place.spa.fl_str_mv Switzerland
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.mdpi.com/2071-1050/14/1/291
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/9275/1/sustainability-14-00291.pdf
https://repositorio.cuc.edu.co/bitstream/11323/9275/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/9275/3/sustainability-14-00291.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/9275/4/sustainability-14-00291.pdf.jpg
bitstream.checksum.fl_str_mv 148a3f5d6d40fd344ab9b72fc0d5ff5a
e30e9215131d99561d40d6b0abbe9bad
6929e52b401c89212dbd98e9cea4ebf9
28f3bdc44a113398f971feb95f6a4e1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400236467453952
spelling Henn, Alessandra Schneider 5f346da69cd1b65a0b999b08e7dfc72d600Frohlich, Angelica Chaiani77528b87163133c4f78ee8a0fb1ebcfePedrotti, Matheus Felipe977be030fd9e97e7ba3ea961f9c40437600Hagemann Cauduro, Vitoriaca48199aa1901cb68fd8ea6e476255e1600Oliveira Silva, Marcos Leandrobb3b8158904f9d3aa8f6cb8b2660478a600Flores de Moraes, Erico Marlon7b8fa82823ec625df064560d00fbb5f7Bizzi, Cezar Augusto4d160806442bf3b21c46a054d8719bc32022-06-21T15:39:41Z2022-06-21T15:39:41Z2021-12-28Henn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291https://hdl.handle.net/11323/9275https://doi.org/10.3390/su1401029110.3390/su140102912071-1050Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the oxygen flow rate, the flame stoichiometry, the sample mass, among others, were evaluated and optimized. Calibration was performed using only reference solutions, and the limits of quantification were 1.7 and 4.6 µg g−1 for Cd and Pb, respectively. Accuracy was assessed by the analysis of certified reference materials (CRMs), and by comparison with the results obtained by inductively coupled plasma mass spectrometry after microwave-assisted wet digestion. The MW-SS-FF-AAS results for the CRMs showed no statistical difference with the certified values, and good agreement was observed with the results of the digestion method. The MW-SS-FF-AAS method was considered suitable for Cd and Pb determination in food-contact polymers. The concentrations of Cd and Pb in the analyzed samples varied from <1.7 to 628 µg g−1, and from <4.6 to 614 µg g−1, respectively. As sample digestion is not necessary, the use of concentrated acids can be avoided by using the proposed MW-SS-FF-AAS method, greatly reducing waste generation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.12 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymersArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/2071-1050/14/1/291Sustainability1. Barone, C.; Bolzoni, L.; Caruso, G.; Montanari, A.; Parisi, S.; Steinka, I. Food Packaging Hygiene; Springer International Publishing: Cham, Switzerland, 2015; p. 132.2. Bart, J.C.J. Additives in Polymers: Industrial Analysis and Applications; Wiley: Chichester, UK, 2005.3. Groh, K.J.; Geueke, B.; Martin, O.; Maffini, M.; Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 2021, 150, 106225. [CrossRef] [PubMed]4. Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [CrossRef]5. Perring, L.; Alonso, M.-I.; Andrey, D.; Bourqui, B.; Zbinden, P. An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials. Fresenius’ J. Anal. Chem. 2001, 370, 76–81. [CrossRef] [PubMed]6. Pereira, J.S.F.; Knorr, C.L.; Pereira, L.S.F.; Moraes, D.P.; Paniz, J.N.G.; Flores, E.M.M.; Knapp, G. Evaluation of sample preparation methods for polymer digestion and trace elements determination by ICPMS and ICPOES. J. Anal. At. Spectrom. 2011, 26, 1849–1857. [CrossRef]7. Pereira, L.S.F.; Pedrotti, M.F.; Miceli, T.M.; Pereira, J.S.F.; Flores, E.M.M. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry. Talanta 2016, 152, 371–377. [CrossRef] [PubMed]8. Moraes, D.P.; Pereira, J.S.F.; Diehl, L.O.; Mesko, M.F.; Dressler, V.L.; Paniz, J.N.G.; Knapp, G.; Flores, E.M.M. Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal. Bioanal. Chem. 2010, 397, 563–570. [CrossRef]9. Ritter, A.; Michel, E.; Schmid, M.; Affolter, S. Interlaboratory test on polymers: Determination of heavy metals in polymer metrices. Polym. Test. 2004, 23, 467–474. [CrossRef]10. Flores, E.M.M. Microwave-Assisted Sample Preparation for Trace Element Determination; Elsevier: Amsterdam, The Netherlands, 2014.11. Voss, M.; Nunes, M.A.G.; Corazza, G.; Flores, E.M.M.; Muller, E.I.; Dressler, V.L. A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS. Talanta 2017, 170, 488–495. [CrossRef]12. Aramendía, M.; Resano, M.; Vanhaecke, F. Electrothermal vaporization–inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples: A critical review. Anal. Chim. Acta 2009, 648, 23–44. [CrossRef]13. Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; Wiley: Weinheim, UK, 1999.14. Welz, B. Atomic absorption spectrometry—Pregnant again after 45 years. Spectrochim. Acta Part. B At. Spectrosc. 1999, 54, 2081–2094. [CrossRef]15. Flores, E.M.M.; Paniz, J.N.G.; Martins, A.F.; Dressler, V.L.; Muller, E.I.; Costa, A.B. Cadmium determination in biological samples by direct solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2002, 57, 2187–2193. [CrossRef]16. Costa, A.B.; Mattos, J.C.P.; Muller, E.I.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Use of paper capsules for cadmium determination in biological samples by solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 583–588. [CrossRef]17. Flores, E.M.M.; Saidelles, A.P.F.; Mattos, J.C.P.; Muller, E.I.; Pereira, J.S.F.; Paniz, J.N.G.; Dressler, V.L. Determination of Cd and Pb in medicinal plants using solid sampling flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 129–140. [CrossRef]18. Flores, E.M.M.; Costa, A.B.; Barin, J.S.; Dressler, V.L.; Paniz, J.N.G.; Martins, A.F. Direct flame solid sampling for atomic absorption spectrometry: Determination of copper in bovine liver. Spectrochim. Acta Part. B At. Spectrosc. 2001, 56, 1875–1882. [CrossRef]19. Bizzi, C.A.; Paniz, J.N.G.; Rodrigues, L.F.; Dressler, V.L.; Flores, E.M.M. Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke. Microchem. J. 2010, 96, 64–70. [CrossRef]20. Magalhaes, C.E.C.; Krug, F.J.; Fostier, A.H.; Berndt, H. Direct determination of mercury in sediments by atomic absorption spectrometry. J. Anal. At. Spectrom. 1997, 12, 1231–1234. [CrossRef]21. Kantor, T.; Fodor, P.; Pungor, E. Determination of traces of lead, cadmium and zinc in copper by an arc-nebulization and flame atomic absorption technique. Anal. Chim. Acta 1978, 102, 15–23. [CrossRef]22. Barin, J.S.; Bartz, F.R.; Dressier, V.L.; Paniz, J.N.; Flores, E.M.M. Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples. Anal. Chem. 2008, 80, 9369–9374. [CrossRef]23. Hoehne, L.; Bartz, F.R.; Bizzi, C.A.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Determination of Cd in blood by microwaveinduced combustion coupled to flame furnace atomic absorption spectrometry. J. Braz. Chem. Soc. 2010, 21, 978–984. [CrossRef]24. Henn, A.S.; Frohlich, A.C.; Pedrotti, M.F.; Duarte, F.A.; Paniz, J.N.G.; Flores, E.M.M.; Bizzi, C.A. Microwave-assisted solid sampling system for Hg determination in polymeric samples using FF-AAS. Microchem. J. 2019, 147, 463–468. [CrossRef]25. Barin, J.S.; Pereira, J.S.F.; Mello, P.A.; Knorr, C.L.; Moraes, D.P.; Mesko, M.F.; Nóbrega, J.A.; Korn, M.G.A.; Flores, E.M.M. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 2012, 94, 308–314. [CrossRef] [PubMed]26. Gaspar, A.; Berndt, H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)—A simple method for trace element determination with microsamples in the µg/L concentration range. Spectrochim. Acta Part. B At. Spectrosc. 2000, 55, 587–597. [CrossRef]27. Gaspar, A.; Berndt, H. Beam Injection Flame Furnace Atomic Absorption Spectrometry: A New Flame Method. Anal. Chem. 2000, 72, 240–246. [CrossRef] [PubMed]28. Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nobrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 749–753. [CrossRef]29. Campos, R.C.; Curtius, A.J.; Berndt, H. Combustion and volatilisation of solid samples for direct atomic absorption spectrometry using silica or nickel tube furnace atomisers. J. Anal. At. Spectrom. 1990, 5, 669–673. [CrossRef]30. Rodrigues, L.F.; Mattos, J.C.P.; Bolzan, R.C.; Flores, E.M.M.; Duarte, F.A. Determination of trace elements in raw material for polyurethane production using direct sampling graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 324–331. [CrossRef]31. Belarra, M.A.; Crespo, C.; Martínez-Garbayo, M.P.; Castillo, J.R. Direct determination of metals in solid samples by graphitefurnace atomic absorption spectrometry: Does sample mass influence the analytical results? Spectrochim. Acta Part. B At. Spectrosc. 1997, 52, 1855–1860. [CrossRef]29114Polymer analysisMW-SS-FF-AASSolid samplingMicrowave-induced combustionToxic element determinationORIGINALsustainability-14-00291.pdfsustainability-14-00291.pdfapplication/pdf2517552https://repositorio.cuc.edu.co/bitstream/11323/9275/1/sustainability-14-00291.pdf148a3f5d6d40fd344ab9b72fc0d5ff5aMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/9275/2/license.txte30e9215131d99561d40d6b0abbe9badMD52open accessTEXTsustainability-14-00291.pdf.txtsustainability-14-00291.pdf.txttext/plain52641https://repositorio.cuc.edu.co/bitstream/11323/9275/3/sustainability-14-00291.pdf.txt6929e52b401c89212dbd98e9cea4ebf9MD53open accessTHUMBNAILsustainability-14-00291.pdf.jpgsustainability-14-00291.pdf.jpgimage/jpeg16082https://repositorio.cuc.edu.co/bitstream/11323/9275/4/sustainability-14-00291.pdf.jpg28f3bdc44a113398f971feb95f6a4e1cMD54open access11323/9275oai:repositorio.cuc.edu.co:11323/92752023-12-14 17:13:50.357An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==