Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the ox...
- Autores:
-
Henn, Alessandra Schneider
Frohlich, Angelica Chaiani
Pedrotti, Matheus Felipe
Hagemann Cauduro, Vitoria
Oliveira Silva, Marcos Leandro
Flores de Moraes, Erico Marlon
Bizzi, Cezar Augusto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9275
- Acceso en línea:
- https://hdl.handle.net/11323/9275
https://doi.org/10.3390/su14010291
https://repositorio.cuc.edu.co/
- Palabra clave:
- Polymer analysis
MW-SS-FF-AAS
Solid sampling
Microwave-induced combustion
Toxic element determination
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_56d3d46a42a6f9f7ad9e04f19352c83d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9275 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
title |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
spellingShingle |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers Polymer analysis MW-SS-FF-AAS Solid sampling Microwave-induced combustion Toxic element determination |
title_short |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
title_full |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
title_fullStr |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
title_full_unstemmed |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
title_sort |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymers |
dc.creator.fl_str_mv |
Henn, Alessandra Schneider Frohlich, Angelica Chaiani Pedrotti, Matheus Felipe Hagemann Cauduro, Vitoria Oliveira Silva, Marcos Leandro Flores de Moraes, Erico Marlon Bizzi, Cezar Augusto |
dc.contributor.author.spa.fl_str_mv |
Henn, Alessandra Schneider Frohlich, Angelica Chaiani Pedrotti, Matheus Felipe Hagemann Cauduro, Vitoria Oliveira Silva, Marcos Leandro Flores de Moraes, Erico Marlon Bizzi, Cezar Augusto |
dc.subject.proposal.eng.fl_str_mv |
Polymer analysis MW-SS-FF-AAS Solid sampling Microwave-induced combustion Toxic element determination |
topic |
Polymer analysis MW-SS-FF-AAS Solid sampling Microwave-induced combustion Toxic element determination |
description |
Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the oxygen flow rate, the flame stoichiometry, the sample mass, among others, were evaluated and optimized. Calibration was performed using only reference solutions, and the limits of quantification were 1.7 and 4.6 µg g−1 for Cd and Pb, respectively. Accuracy was assessed by the analysis of certified reference materials (CRMs), and by comparison with the results obtained by inductively coupled plasma mass spectrometry after microwave-assisted wet digestion. The MW-SS-FF-AAS results for the CRMs showed no statistical difference with the certified values, and good agreement was observed with the results of the digestion method. The MW-SS-FF-AAS method was considered suitable for Cd and Pb determination in food-contact polymers. The concentrations of Cd and Pb in the analyzed samples varied from <1.7 to 628 µg g−1, and from <4.6 to 614 µg g−1, respectively. As sample digestion is not necessary, the use of concentrated acids can be avoided by using the proposed MW-SS-FF-AAS method, greatly reducing waste generation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-28 |
dc.date.accessioned.none.fl_str_mv |
2022-06-21T15:39:41Z |
dc.date.available.none.fl_str_mv |
2022-06-21T15:39:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Henn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9275 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/su14010291 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/su14010291 |
dc.identifier.eissn.spa.fl_str_mv |
2071-1050 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Henn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291 10.3390/su14010291 2071-1050 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9275 https://doi.org/10.3390/su14010291 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainability |
dc.relation.references.spa.fl_str_mv |
1. Barone, C.; Bolzoni, L.; Caruso, G.; Montanari, A.; Parisi, S.; Steinka, I. Food Packaging Hygiene; Springer International Publishing: Cham, Switzerland, 2015; p. 132. 2. Bart, J.C.J. Additives in Polymers: Industrial Analysis and Applications; Wiley: Chichester, UK, 2005. 3. Groh, K.J.; Geueke, B.; Martin, O.; Maffini, M.; Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 2021, 150, 106225. [CrossRef] [PubMed] 4. Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [CrossRef] 5. Perring, L.; Alonso, M.-I.; Andrey, D.; Bourqui, B.; Zbinden, P. An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials. Fresenius’ J. Anal. Chem. 2001, 370, 76–81. [CrossRef] [PubMed] 6. Pereira, J.S.F.; Knorr, C.L.; Pereira, L.S.F.; Moraes, D.P.; Paniz, J.N.G.; Flores, E.M.M.; Knapp, G. Evaluation of sample preparation methods for polymer digestion and trace elements determination by ICPMS and ICPOES. J. Anal. At. Spectrom. 2011, 26, 1849–1857. [CrossRef] 7. Pereira, L.S.F.; Pedrotti, M.F.; Miceli, T.M.; Pereira, J.S.F.; Flores, E.M.M. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry. Talanta 2016, 152, 371–377. [CrossRef] [PubMed] 8. Moraes, D.P.; Pereira, J.S.F.; Diehl, L.O.; Mesko, M.F.; Dressler, V.L.; Paniz, J.N.G.; Knapp, G.; Flores, E.M.M. Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal. Bioanal. Chem. 2010, 397, 563–570. [CrossRef] 9. Ritter, A.; Michel, E.; Schmid, M.; Affolter, S. Interlaboratory test on polymers: Determination of heavy metals in polymer metrices. Polym. Test. 2004, 23, 467–474. [CrossRef] 10. Flores, E.M.M. Microwave-Assisted Sample Preparation for Trace Element Determination; Elsevier: Amsterdam, The Netherlands, 2014. 11. Voss, M.; Nunes, M.A.G.; Corazza, G.; Flores, E.M.M.; Muller, E.I.; Dressler, V.L. A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS. Talanta 2017, 170, 488–495. [CrossRef] 12. Aramendía, M.; Resano, M.; Vanhaecke, F. Electrothermal vaporization–inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples: A critical review. Anal. Chim. Acta 2009, 648, 23–44. [CrossRef] 13. Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; Wiley: Weinheim, UK, 1999. 14. Welz, B. Atomic absorption spectrometry—Pregnant again after 45 years. Spectrochim. Acta Part. B At. Spectrosc. 1999, 54, 2081–2094. [CrossRef] 15. Flores, E.M.M.; Paniz, J.N.G.; Martins, A.F.; Dressler, V.L.; Muller, E.I.; Costa, A.B. Cadmium determination in biological samples by direct solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2002, 57, 2187–2193. [CrossRef] 16. Costa, A.B.; Mattos, J.C.P.; Muller, E.I.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Use of paper capsules for cadmium determination in biological samples by solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 583–588. [CrossRef] 17. Flores, E.M.M.; Saidelles, A.P.F.; Mattos, J.C.P.; Muller, E.I.; Pereira, J.S.F.; Paniz, J.N.G.; Dressler, V.L. Determination of Cd and Pb in medicinal plants using solid sampling flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 129–140. [CrossRef] 18. Flores, E.M.M.; Costa, A.B.; Barin, J.S.; Dressler, V.L.; Paniz, J.N.G.; Martins, A.F. Direct flame solid sampling for atomic absorption spectrometry: Determination of copper in bovine liver. Spectrochim. Acta Part. B At. Spectrosc. 2001, 56, 1875–1882. [CrossRef] 19. Bizzi, C.A.; Paniz, J.N.G.; Rodrigues, L.F.; Dressler, V.L.; Flores, E.M.M. Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke. Microchem. J. 2010, 96, 64–70. [CrossRef] 20. Magalhaes, C.E.C.; Krug, F.J.; Fostier, A.H.; Berndt, H. Direct determination of mercury in sediments by atomic absorption spectrometry. J. Anal. At. Spectrom. 1997, 12, 1231–1234. [CrossRef] 21. Kantor, T.; Fodor, P.; Pungor, E. Determination of traces of lead, cadmium and zinc in copper by an arc-nebulization and flame atomic absorption technique. Anal. Chim. Acta 1978, 102, 15–23. [CrossRef] 22. Barin, J.S.; Bartz, F.R.; Dressier, V.L.; Paniz, J.N.; Flores, E.M.M. Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples. Anal. Chem. 2008, 80, 9369–9374. [CrossRef] 23. Hoehne, L.; Bartz, F.R.; Bizzi, C.A.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Determination of Cd in blood by microwaveinduced combustion coupled to flame furnace atomic absorption spectrometry. J. Braz. Chem. Soc. 2010, 21, 978–984. [CrossRef] 24. Henn, A.S.; Frohlich, A.C.; Pedrotti, M.F.; Duarte, F.A.; Paniz, J.N.G.; Flores, E.M.M.; Bizzi, C.A. Microwave-assisted solid sampling system for Hg determination in polymeric samples using FF-AAS. Microchem. J. 2019, 147, 463–468. [CrossRef] 25. Barin, J.S.; Pereira, J.S.F.; Mello, P.A.; Knorr, C.L.; Moraes, D.P.; Mesko, M.F.; Nóbrega, J.A.; Korn, M.G.A.; Flores, E.M.M. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 2012, 94, 308–314. [CrossRef] [PubMed] 26. Gaspar, A.; Berndt, H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)—A simple method for trace element determination with microsamples in the µg/L concentration range. Spectrochim. Acta Part. B At. Spectrosc. 2000, 55, 587–597. [CrossRef] 27. Gaspar, A.; Berndt, H. Beam Injection Flame Furnace Atomic Absorption Spectrometry: A New Flame Method. Anal. Chem. 2000, 72, 240–246. [CrossRef] [PubMed] 28. Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nobrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 749–753. [CrossRef] 29. Campos, R.C.; Curtius, A.J.; Berndt, H. Combustion and volatilisation of solid samples for direct atomic absorption spectrometry using silica or nickel tube furnace atomisers. J. Anal. At. Spectrom. 1990, 5, 669–673. [CrossRef] 30. Rodrigues, L.F.; Mattos, J.C.P.; Bolzan, R.C.; Flores, E.M.M.; Duarte, F.A. Determination of trace elements in raw material for polyurethane production using direct sampling graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 324–331. [CrossRef] 31. Belarra, M.A.; Crespo, C.; Martínez-Garbayo, M.P.; Castillo, J.R. Direct determination of metals in solid samples by graphitefurnace atomic absorption spectrometry: Does sample mass influence the analytical results? Spectrochim. Acta Part. B At. Spectrosc. 1997, 52, 1855–1860. [CrossRef] |
dc.relation.citationstartpage.spa.fl_str_mv |
291 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI AG |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/14/1/291 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/63ac4aac-ccc4-4b25-b7c6-96f06da711eb/download https://repositorio.cuc.edu.co/bitstreams/d3ff9d53-ebaf-4c0f-8aaf-047756beb4ae/download https://repositorio.cuc.edu.co/bitstreams/c8671628-a4f4-492f-99c2-fd5bf318019f/download https://repositorio.cuc.edu.co/bitstreams/f111e91c-ec9f-4690-81b7-d9fa449c18e8/download |
bitstream.checksum.fl_str_mv |
148a3f5d6d40fd344ab9b72fc0d5ff5a e30e9215131d99561d40d6b0abbe9bad 6929e52b401c89212dbd98e9cea4ebf9 28f3bdc44a113398f971feb95f6a4e1c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166866111037440 |
spelling |
Henn, Alessandra Schneider Frohlich, Angelica ChaianiPedrotti, Matheus FelipeHagemann Cauduro, VitoriaOliveira Silva, Marcos LeandroFlores de Moraes, Erico MarlonBizzi, Cezar Augusto2022-06-21T15:39:41Z2022-06-21T15:39:41Z2021-12-28Henn, Alessandra S., Angelica C. Frohlich, Matheus F. Pedrotti, Vitoria H. Cauduro, Marcos L.S. Oliveira, Erico M.d.M. Flores, and Cezar A. Bizzi. 2022. "Microwave-Assisted Solid Sampling Analysis Coupled to Flame Furnace Atomic Absorption Spectrometry for Cd and Pb Determination in Food-Contact Polymers" Sustainability 14, no. 1: 291. https://doi.org/10.3390/su14010291https://hdl.handle.net/11323/9275https://doi.org/10.3390/su1401029110.3390/su140102912071-1050Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry (MW-SS-FF-AAS) was used for Cd and Pb determination in food-contact polymer samples, with the aim of minimizing reagents and laboratory waste. Operational parameters, such as the FF tube design, the oxygen flow rate, the flame stoichiometry, the sample mass, among others, were evaluated and optimized. Calibration was performed using only reference solutions, and the limits of quantification were 1.7 and 4.6 µg g−1 for Cd and Pb, respectively. Accuracy was assessed by the analysis of certified reference materials (CRMs), and by comparison with the results obtained by inductively coupled plasma mass spectrometry after microwave-assisted wet digestion. The MW-SS-FF-AAS results for the CRMs showed no statistical difference with the certified values, and good agreement was observed with the results of the digestion method. The MW-SS-FF-AAS method was considered suitable for Cd and Pb determination in food-contact polymers. The concentrations of Cd and Pb in the analyzed samples varied from <1.7 to 628 µg g−1, and from <4.6 to 614 µg g−1, respectively. As sample digestion is not necessary, the use of concentrated acids can be avoided by using the proposed MW-SS-FF-AAS method, greatly reducing waste generation. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.12 páginasapplication/pdfengMDPI AGSwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Microwave-assisted solid sampling analysis coupled to flame furnace atomic absorption spectrometry for cd and pb determination in food-contact polymersArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/2071-1050/14/1/291Sustainability1. Barone, C.; Bolzoni, L.; Caruso, G.; Montanari, A.; Parisi, S.; Steinka, I. Food Packaging Hygiene; Springer International Publishing: Cham, Switzerland, 2015; p. 132.2. Bart, J.C.J. Additives in Polymers: Industrial Analysis and Applications; Wiley: Chichester, UK, 2005.3. Groh, K.J.; Geueke, B.; Martin, O.; Maffini, M.; Muncke, J. Overview of intentionally used food contact chemicals and their hazards. Environ. Int. 2021, 150, 106225. [CrossRef] [PubMed]4. Cherif Lahimer, M.; Ayed, N.; Horriche, J.; Belgaied, S. Characterization of plastic packaging additives: Food contact, stability and toxicity. Arab. J. Chem. 2017, 10, S1938–S1954. [CrossRef]5. Perring, L.; Alonso, M.-I.; Andrey, D.; Bourqui, B.; Zbinden, P. An evaluation of analytical techniques for determination of lead, cadmium, chromium, and mercury in food-packaging materials. Fresenius’ J. Anal. Chem. 2001, 370, 76–81. [CrossRef] [PubMed]6. Pereira, J.S.F.; Knorr, C.L.; Pereira, L.S.F.; Moraes, D.P.; Paniz, J.N.G.; Flores, E.M.M.; Knapp, G. Evaluation of sample preparation methods for polymer digestion and trace elements determination by ICPMS and ICPOES. J. Anal. At. Spectrom. 2011, 26, 1849–1857. [CrossRef]7. Pereira, L.S.F.; Pedrotti, M.F.; Miceli, T.M.; Pereira, J.S.F.; Flores, E.M.M. Determination of elemental impurities in poly(vinyl chloride) by inductively coupled plasma optical emission spectrometry. Talanta 2016, 152, 371–377. [CrossRef] [PubMed]8. Moraes, D.P.; Pereira, J.S.F.; Diehl, L.O.; Mesko, M.F.; Dressler, V.L.; Paniz, J.N.G.; Knapp, G.; Flores, E.M.M. Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Anal. Bioanal. Chem. 2010, 397, 563–570. [CrossRef]9. Ritter, A.; Michel, E.; Schmid, M.; Affolter, S. Interlaboratory test on polymers: Determination of heavy metals in polymer metrices. Polym. Test. 2004, 23, 467–474. [CrossRef]10. Flores, E.M.M. Microwave-Assisted Sample Preparation for Trace Element Determination; Elsevier: Amsterdam, The Netherlands, 2014.11. Voss, M.; Nunes, M.A.G.; Corazza, G.; Flores, E.M.M.; Muller, E.I.; Dressler, V.L. A new approach to calibration and determination of selected trace elements in food contact polymers by LA-ICP-MS. Talanta 2017, 170, 488–495. [CrossRef]12. Aramendía, M.; Resano, M.; Vanhaecke, F. Electrothermal vaporization–inductively coupled plasma-mass spectrometry: A versatile tool for tackling challenging samples: A critical review. Anal. Chim. Acta 2009, 648, 23–44. [CrossRef]13. Welz, B.; Sperling, M. Atomic Absorption Spectrometry, 3rd ed.; Wiley: Weinheim, UK, 1999.14. Welz, B. Atomic absorption spectrometry—Pregnant again after 45 years. Spectrochim. Acta Part. B At. Spectrosc. 1999, 54, 2081–2094. [CrossRef]15. Flores, E.M.M.; Paniz, J.N.G.; Martins, A.F.; Dressler, V.L.; Muller, E.I.; Costa, A.B. Cadmium determination in biological samples by direct solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2002, 57, 2187–2193. [CrossRef]16. Costa, A.B.; Mattos, J.C.P.; Muller, E.I.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Use of paper capsules for cadmium determination in biological samples by solid sampling flame atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 583–588. [CrossRef]17. Flores, E.M.M.; Saidelles, A.P.F.; Mattos, J.C.P.; Muller, E.I.; Pereira, J.S.F.; Paniz, J.N.G.; Dressler, V.L. Determination of Cd and Pb in medicinal plants using solid sampling flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 129–140. [CrossRef]18. Flores, E.M.M.; Costa, A.B.; Barin, J.S.; Dressler, V.L.; Paniz, J.N.G.; Martins, A.F. Direct flame solid sampling for atomic absorption spectrometry: Determination of copper in bovine liver. Spectrochim. Acta Part. B At. Spectrosc. 2001, 56, 1875–1882. [CrossRef]19. Bizzi, C.A.; Paniz, J.N.G.; Rodrigues, L.F.; Dressler, V.L.; Flores, E.M.M. Solid sampling coupled to flame furnace atomic absorption spectrometry for Mn and Ni determination in petroleum coke. Microchem. J. 2010, 96, 64–70. [CrossRef]20. Magalhaes, C.E.C.; Krug, F.J.; Fostier, A.H.; Berndt, H. Direct determination of mercury in sediments by atomic absorption spectrometry. J. Anal. At. Spectrom. 1997, 12, 1231–1234. [CrossRef]21. Kantor, T.; Fodor, P.; Pungor, E. Determination of traces of lead, cadmium and zinc in copper by an arc-nebulization and flame atomic absorption technique. Anal. Chim. Acta 1978, 102, 15–23. [CrossRef]22. Barin, J.S.; Bartz, F.R.; Dressier, V.L.; Paniz, J.N.; Flores, E.M.M. Microwave-induced combustion coupled to flame furnace atomic absorption spectrometry for determination of cadmium and lead in botanical samples. Anal. Chem. 2008, 80, 9369–9374. [CrossRef]23. Hoehne, L.; Bartz, F.R.; Bizzi, C.A.; Paniz, J.N.G.; Dressler, V.L.; Flores, E.M.M. Determination of Cd in blood by microwaveinduced combustion coupled to flame furnace atomic absorption spectrometry. J. Braz. Chem. Soc. 2010, 21, 978–984. [CrossRef]24. Henn, A.S.; Frohlich, A.C.; Pedrotti, M.F.; Duarte, F.A.; Paniz, J.N.G.; Flores, E.M.M.; Bizzi, C.A. Microwave-assisted solid sampling system for Hg determination in polymeric samples using FF-AAS. Microchem. J. 2019, 147, 463–468. [CrossRef]25. Barin, J.S.; Pereira, J.S.F.; Mello, P.A.; Knorr, C.L.; Moraes, D.P.; Mesko, M.F.; Nóbrega, J.A.; Korn, M.G.A.; Flores, E.M.M. Focused microwave-induced combustion for digestion of botanical samples and metals determination by ICP OES and ICP-MS. Talanta 2012, 94, 308–314. [CrossRef] [PubMed]26. Gaspar, A.; Berndt, H. Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS)—A simple method for trace element determination with microsamples in the µg/L concentration range. Spectrochim. Acta Part. B At. Spectrosc. 2000, 55, 587–597. [CrossRef]27. Gaspar, A.; Berndt, H. Beam Injection Flame Furnace Atomic Absorption Spectrometry: A New Flame Method. Anal. Chem. 2000, 72, 240–246. [CrossRef] [PubMed]28. Nascentes, C.C.; Kamogawa, M.Y.; Fernandes, K.G.; Arruda, M.A.Z.; Nogueira, A.R.A.; Nobrega, J.A. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry. Spectrochim. Acta Part. B At. Spectrosc. 2005, 60, 749–753. [CrossRef]29. Campos, R.C.; Curtius, A.J.; Berndt, H. Combustion and volatilisation of solid samples for direct atomic absorption spectrometry using silica or nickel tube furnace atomisers. J. Anal. At. Spectrom. 1990, 5, 669–673. [CrossRef]30. Rodrigues, L.F.; Mattos, J.C.P.; Bolzan, R.C.; Flores, E.M.M.; Duarte, F.A. Determination of trace elements in raw material for polyurethane production using direct sampling graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2014, 29, 324–331. [CrossRef]31. Belarra, M.A.; Crespo, C.; Martínez-Garbayo, M.P.; Castillo, J.R. Direct determination of metals in solid samples by graphitefurnace atomic absorption spectrometry: Does sample mass influence the analytical results? Spectrochim. Acta Part. B At. Spectrosc. 1997, 52, 1855–1860. [CrossRef]29114Polymer analysisMW-SS-FF-AASSolid samplingMicrowave-induced combustionToxic element determinationPublicationORIGINALsustainability-14-00291.pdfsustainability-14-00291.pdfapplication/pdf2517552https://repositorio.cuc.edu.co/bitstreams/63ac4aac-ccc4-4b25-b7c6-96f06da711eb/download148a3f5d6d40fd344ab9b72fc0d5ff5aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d3ff9d53-ebaf-4c0f-8aaf-047756beb4ae/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTsustainability-14-00291.pdf.txtsustainability-14-00291.pdf.txttext/plain52641https://repositorio.cuc.edu.co/bitstreams/c8671628-a4f4-492f-99c2-fd5bf318019f/download6929e52b401c89212dbd98e9cea4ebf9MD53THUMBNAILsustainability-14-00291.pdf.jpgsustainability-14-00291.pdf.jpgimage/jpeg16082https://repositorio.cuc.edu.co/bitstreams/f111e91c-ec9f-4690-81b7-d9fa449c18e8/download28f3bdc44a113398f971feb95f6a4e1cMD5411323/9275oai:repositorio.cuc.edu.co:11323/92752024-09-17 14:19:41.589https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |