A review of history, production and storage of hydrogen

The need to reduce fossil fuel consumption has created opportunities for alternative fuels, including the migration of hydrogen as an unconventional alternative fuel. This alternative has more significant environmental and energy benefits due to the acquisition of raw materials and the integration o...

Full description

Autores:
Grimaldo Guerrero, John William
De la Hoz Barcelo, Juan
Rivera Pacheco, Daniel
RAMOS BARRERA, LUIS FERNANDO
Martinez-Palacio, Ubaldo
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8991
Acceso en línea:
https://hdl.handle.net/11323/8991
https://repositorio.cuc.edu.co/
Palabra clave:
Renewable energy
Hydrogen production
Hydrogen storage
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_5685443e60c104a9c18e1254befbc5ef
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8991
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A review of history, production and storage of hydrogen
title A review of history, production and storage of hydrogen
spellingShingle A review of history, production and storage of hydrogen
Renewable energy
Hydrogen production
Hydrogen storage
title_short A review of history, production and storage of hydrogen
title_full A review of history, production and storage of hydrogen
title_fullStr A review of history, production and storage of hydrogen
title_full_unstemmed A review of history, production and storage of hydrogen
title_sort A review of history, production and storage of hydrogen
dc.creator.fl_str_mv Grimaldo Guerrero, John William
De la Hoz Barcelo, Juan
Rivera Pacheco, Daniel
RAMOS BARRERA, LUIS FERNANDO
Martinez-Palacio, Ubaldo
dc.contributor.author.spa.fl_str_mv Grimaldo Guerrero, John William
De la Hoz Barcelo, Juan
Rivera Pacheco, Daniel
RAMOS BARRERA, LUIS FERNANDO
Martinez-Palacio, Ubaldo
dc.subject.spa.fl_str_mv Renewable energy
Hydrogen production
Hydrogen storage
topic Renewable energy
Hydrogen production
Hydrogen storage
description The need to reduce fossil fuel consumption has created opportunities for alternative fuels, including the migration of hydrogen as an unconventional alternative fuel. This alternative has more significant environmental and energy benefits due to the acquisition of raw materials and the integration of renewable energy sources. The research presents a review of historical evolution, a bibliometric analysis, and the processes used to produce and store this molecule. The POx and pyrolysis processes have the highest amount of research. At the same time, electrolysis is the process that has had the most significant growth, and research indicates that they allow greater sustainability due to the integration of renewable energies. Research trends indicate studies for integrating renewable energy resources and materials to improve chemical properties to increase capacity storage and decrease the risks due to high volatility.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-21T15:00:34Z
dc.date.available.none.fl_str_mv 2022-01-21T15:00:34Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1791-2377
1791-9320
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8991
dc.identifier.doi.spa.fl_str_mv doi:10.25103/jestr.145.14
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1791-2377
1791-9320
doi:10.25103/jestr.145.14
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8991
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. J. Osorio Tovar, J. W. Grimaldo Guerrero, P. Pacheco Torres, and L. Chaparro Badillo, “Chemical failure analysis of artificial lift system in petroleum industry: A review,” J. Eng. Appl. Sci., vol. 13, no. 19, 2018, doi: 10.3923/jeasci.2018.8010.8015.
2. J. W. Grimaldo-Guerrero and Y. F. Contreras-Rueda, “Offshore oil exploitation in the Caribbean Sea: Challenges for Colombia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 844, p. 012015, Jun. 2020, doi: 10.1088/1757-899X/844/1/012015.
3. R. Shahnazi and Z. Dehghan Shabani, “Do renewable energy production spillovers matter in the EU?,” Renew. Energy, vol. 150, pp. 786–796, May 2020, doi: 10.1016/j.renene.2019.12.123.
4. J. Huang, W. Li, L. Guo, X. Hu, and J. W. Hall, “Renewable energy and household economy in rural China,” Renew. Energy, Apr. 2020, doi: 10.1016/j.renene.2020.03.151.
5. A. Navon, P. Kulbekov, S. Dolev, G. Yehuda, and Y. Levron, “Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations,” Energy Policy, vol. 140, pp. 111–412, May 2020, doi:10.1016/j.enpol.2020.111412.
6. K. Nigim, J. McQueen, and M. Persohn-Costa, “Operational modes of hydrogen energy storage in a micro grid system,” in 2015 IEEE Electrical Power and Energy Conference: Smarter Resilient Power Systems, EPEC 2015, 2016, pp. 473–477, doi:10.1109/EPEC.2015.7379997.
7. I. Vinoth Kanna, K. Subramani, and A. Devaraj, “Experimental investigation on constant-speed diesel engine fueled with biofuel mixtures under the effect of fuel injection,” J. Comput. Appl. Res. Mech. Eng., vol. 9, no. 2, pp. 225–233, Dec. 2020, doi: 10.22061/jcarme.2018.3421.1387.
8. M. Weiss, K. C. Cloos, and E. Helmers, “Energy efficiency trade ‑ offs in small to large electric vehicles,” Environ. Sci. Eur., vol. 32, no. 46, 2020, doi: 10.1186/s12302-020-00307-8.
9. J. Lee, C. Park, J. Bae, Y. Kim, S. Lee, and C. Kim, “Comparison between gasoline direct injection and compressed natural gas port fuel injection under maximum load condition,” Energy, vol. 197, Apr. 2020, doi: 10.1016/j.energy.2020.117173.
10. M. N. Anwar et al., “CO2 utilization: Turning greenhouse gas into fuels and valuable products,” J. Environ. Manage., vol. 260, Apr. 2020, doi: 10.1016/j.jenvman.2019.110059.
11. M. Ali, R. Sultana, S. Tahir, I. A. Watson, and M. Saleem, “Prospects of microalgal biodiesel production in Pakistan – A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 1588–1596, Dec. 2017, doi:10.1016/j.rser.2017.08.062.
12. T. Pregger et al., “Future fuels-Analyses of the future prospects of renewable synthetic fuels,” Energies, vol. 13, no. 1, Dec. 2019, doi:10.3390/en13010138.
13. R. Pinsky, P. Sabharwall, J. Hartvigsen, and J. O’Brien, “Comparative review of hydrogen production technologies for nuclear hybrid energy systems,” Progress in Nuclear Energy, vol. 123. Elsevier Ltd, May-2020, doi: 10.1016/j.pnucene.2020.103317.
14. D. E. Bechtold, “Otras aplicaciones de hidrógeno y sus futuros escenarios,” Centro Nacional de hidrógeno. pp. 1–22, 2011.
15. I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications,” Renew. Sustain. Energy Rev., vol. 13, no. 6–7, pp. 1513–1522, 2009, doi: 10.1016/j.rser.2008.09.028.
16. A. H. Al-Badi, H. Yousef, O. Alaamri, M. Alabdusalam, Y. Alshidi, and N. Alharthy, “Performance of a stand-alone renewable energy system based on hydrogen energy storage,” in ISCCSP 2014 - 2014 6th International Symposium on Communications, Control and Signal Processing, Proceedings, 2014, pp. 356–359, doi:10.1109/ISCCSP.2014.6877887.
17. I. Staffell et al., “The role of hydrogen and fuel cells in the global energy system,” Energy Environ. Sci., vol. 12, no. 2, pp. 463–491,2019, doi: 10.1039/C8EE01157E.
18. Y. Zhao et al., “A high-performance membrane electrode assembly for polymer electrolyte membrane fuel cell with poly(arylene ether sulfone) nanofibers as effective membrane reinforcements,” J. Power Sources, vol. 444, Dec. 2019, doi: 10.1016/j.jpowsour.2019.227250.
19. J. I. Linares Hurtado and B. Y. Moratilla Soria, El hidrógeno y la energía, Universida. Asociación Nacional de Ingenieros del ICAI, 2007.
20. G. D. Berry and S. M. Aceves, “La Economía del Hidrógeno como Solución al Problema de la Estabilización del Clima Mundial*,” Acta Univ., vol. 16, no. 1, pp. 5–14, 2006.
21. H. Song, G. Meynet, Z. Li, W. Peng, R. Zhang, and Q. Zhan, “The Structure and Evolution of Massive Rotating Single and Binary Population III Stars,” Astrophys. J., vol. 892, no. 1, p. 41, Mar. 2020, doi: 10.3847/1538-4357/ab7993.
22. P. Asensio, “Hidrógeno y pila de combustible,” 2007.
23. M. Aguer Hortal and A. L. Miranda Barreras, El hidrógeno: Fundamento de un futuro equilibrado. Ediciones Díaz de Santos, 2007.
24. L. Gutiérrez Jodra, “El hidrogéno, el combustible del futuro,” Cienc.Exact.Fís.Nat. (Esp), vol. 99, no. 1, pp. 49–67, 2005.
25. A. C. Morales Ramos, M. Pérez Figueroa, J. R. Pérez Gallardo, and S. De León Almaraz, “Energías renovables y el hidrógeno: un par prometedor en la transición energética de México,” Investig. y Cienc. la Univ. Autónoma Aguascalientes, vol. 25, pp. 92–101, 2017.
26. L. Pérez Moreno, “Producción de hidrógeno mediante reacciones de reformado en reactor de lecho fluidizado de dos zonas,” Universidad de zaragoza, 2012.
27. Ministerio de Educación Politica Social y Deporte, Fuentes de energia para el futuro, SECRETARÍA. España: MEPSYD, 2008.
28. J. Barco-Burgos, U. Eicker, N. Saldaña-Robles, A. L. SaldañaRobles, and V. Alcántar-Camarena, “Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure,” Fuel, vol. 276, Sep. 2020, doi:10.1016/j.fuel.2020.117910.
29. S. Li et al., “Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework,” Appl. Catal. B Environ., vol. 272, p. 118989, Sep. 2020, doi:10.1016/j.apcatb.2020.118989.
30. A. Pino Priego, “Aprovechamiento de recursos energéticos renovables no integrables en la red eléctrica. El caso de la producción de hidrógeno.,” Universidad de Sevilla, Sevilla, 2009.
31. C. M. Ayala Martínez and C. C. Grandett Campo, “Estado del Arte Sobre La Obtención De Hidrógeno Molecular a partir De Algas Verdes,” Cartagena, 2012.
32. I. Asimov, A short history of chemistry. Greenwood Press, 1979. 33. J. Larminie and A. Dicks, Fuel Cell Systems Explained , vol. 2. UK: J. Wiley, 2003.
34. W. Agila Gálvez, “Detección y control del estado de una pila PEM para funcionamiento óptimo: Arquitectura de agentes de percepción y control,” Leganés, 2013.
35. R. Sanz Villuendas, “Estudio tecnológico sobre el vector hidrógeno y sus aplicaciones en el siglo XXI,” Universidad Zaragoza, 2010.
36. A. Garcia-barrientos, Fuentes de Energías Alternas : Teoría y Práctica, no. August 2014. 2016.
37. E. I. Zoulias and N. Lymberopoulos, Hydrogen-based Autonomous Power Systems. London: Springer London, 2008.
38. J. A. Ruiz Díaz and P. Ramos Castellanos, Cambio climático, ¿un desafío a nuestro alcance? Ediciones Universidad de Salamanca, 2009.
39. N. R. Council, Review of the Research Program of the FreedomCAR and Fuel Partnership. National Academies Press, 2008.
40. Van Hool NV, “3EMOTION | Hydrogen,” Oct-2018. .
41. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A. G. Olabi, “Advances in stationary and portable fuel cell applications,” Int. J. Hydrogen Energy, vol. 41, no. 37, pp. 16509–16522, Oct. 2016, doi: 10.1016/j.ijhydene.2016.02.057.
42. BBC News Mundo, “Así funciona el tren de hidrógeno que inició operaciones en Alemania, el primero en entrar en servicio comercial en el mundo - BBC News Mundo,” Sep-2018. .
43. Presidencia de la República de Uruguay, “Proyecto para utilizar hidrógeno como energía de avanzada en Uruguay recibe el respaldo del BID,” Uruguay Presidencia, Dec-2019. .
44. Energy Information Administration EE. UU. (EIA), “Use of hydrogen,” U.S Energy Information Administration, Jan-2020. .
45. D. N. Luta and A. K. Raji, “Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation,” Int. J. Hydrogen Energy, vol. 43, no. 20, pp. 9535–9548, May 2018, doi: 10.1016/j.ijhydene.2018.04.032.
46. Y. Zhao, V. McDonell, and S. Samuelsen, “Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen,” Int. J. Hydrogen Energy, vol. 45, no. 19, pp. 11368–11379, Apr. 2020, doi:10.1016/j.ijhydene.2020.02.071.
47. T. D. Rapson et al., “Engineering a solid-state metalloprotein hydrogen evolution catalyst,” Sci. Rep., vol. 10, no. 1, pp. 1–9, Feb. 2020, doi: 10.1038/s41598-020-60730-y.
48. L. Wang, “Novel highly active Ni–Re super-alloy nanowire type catalysts for CO-free hydrogen generation from steam methane reforming,” Bull. Mater. Sci., vol. 43, no. 1, p. 93, Dec. 2020, doi: 10.1007/s12034-020-2070-3.
49. L. Mastropasqua, I. Pecenati, A. Giostri, and S. Campanari, “Solar hydrogen production: Techno-economic analysis of a parabolic dishsupported high-temperature electrolysis system,” Appl. Energy, vol. 261, p. 114392, Mar. 2020, doi: 10.1016/j.apenergy.2019.114392.
50. J. M. Rodríguez Cuesta, “Electrolisis a alta temperatura,” Universidad de Sevilla, Sevilla, 2016.
51. J. Huang et al., “Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure,” Waste Manag., vol. 103, pp. 61–66, Feb. 2020, doi: 10.1016/j.wasman.2019.12.015.
52. X. H. Li, D. W. Liang, Y. X. Bai, Y. T. Fan, and H. W. Hou, “Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement,” Int. J. Hydrogen Energy, vol. 39, no. 17, pp. 8977–8982, Jun. 2014, doi: 10.1016/j.ijhydene.2014.03.065.
53. J. M. Thomas, P. P. Edwards, P. J. Dobson, and G. P. Owen, “Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells,” Journal of Energy Chemistry, vol. 51. Elsevier B.V., pp. 405–415, Dec-2020, doi:10.1016/j.jechem.2020.03.087.
54. F. Wang et al., “A comprehensive review on high-temperature fuel cells with carbon capture,” Appl. Energy, vol. 275, p. 115342, Oct. 2020, doi: 10.1016/j.apenergy.2020.115342.
55. H. Zhang, W. Kong, F. Dong, H. Xu, B. Chen, and M. Ni, “Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells,” Energy Convers. Manag., vol. 148, pp. 1382–1390, Sep. 2017, doi:10.1016/j.enconman.2017.06.089.
56. C.-Y. Hsieh, P. Pei, Q. Bai, A. Su, F.-B. Weng, and C.-Y. Lee, “Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts,” Energy, vol. 214, p. 118941, Jan. 2021, doi: 10.1016/j.energy.2020.118941.
57. S. Giddey, S. P. S. Badwal, A. Kulkarni, and C. Munnings, “A comprehensive review of direct carbon fuel cell technology,” Progress in Energy and Combustion Science, vol. 38, no. 3. Pergamon, pp. 360–399, 01-Jun-2012, doi:10.1016/j.pecs.2012.01.003.
58. K. Kordesch et al., “Alkaline fuel cells applications,” J. Power Sources, vol. 86, no. 1, pp. 162–165, Mar. 2000, doi: 10.1016/S0378-7753(99)00429-2.
59. J. L. Tan et al., “Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell,” Appl. Catal. A Gen., vol. 531, pp. 29–35, Feb. 2017, doi: 10.1016/j.apcata.2016.11.034.
60. J. Asensio et al., “Pilas de combustible de Membrana polimérica,” Afinidad Rev. química teórica y Apl., vol. 68, no. 554, pp. 246–258, 2011.
61. H. Peng, Q. Li, M. Hu, L. Xiao, J. Lu, and L. Zhuang, “Alkaline polymer electrolyte fuel cells stably working at 80 °C,” J. Power Sources, vol. 390, pp. 165–167, Jun. 2018, doi:10.1016/j.jpowsour.2018.04.047.
62. S. Takahashi, T. Mashio, N. Horibe, K. Akizuki, and A. Ohma, “Analysis of the Microstructure Formation Process and Its Influence on the Performance of Polymer Electrolyte Fuel-Cell Catalyst Layers,” ChemElectroChem, vol. 2, no. 10, pp. 1560–1567, Oct. 2015, doi: 10.1002/celc.201500131.
63. X. Chen, Y. Wang, L. Cai, and Y. Zhou, “Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system,” J. Power Sources, vol. 294, pp. 430–436, Jun. 2015, doi: 10.1016/j.jpowsour.2015.06.085.
64. E. Açıkkalp, L. Chen, and M. H. Ahmadi, “Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell-thermoelectric generator hybrid systems,” Energy Reports, vol. 6, pp. 10– 16, Nov. 2020, doi: 10.1016/j.egyr.2019.11.108.
65. B. Ghorbani, M. Mehrpooya, and S. A. Mousavi, “Hybrid molten carbonate fuel cell power plant and multiple-effect desalination system,” J. Clean. Prod., vol. 220, pp. 1039–1051, May 2019, doi: 10.1016/j.jclepro.2019.02.215.
66. O. Tokio, “Energy carriers and conversion systems.,” 2009.
67. S. Koomson and C. G. Lee, “Lifetime expectancy of molten carbonate fuel cells: Part II. Cell life simulation using bench and coin-type cells,” Int. J. Hydrogen Energy, Aug. 2020, doi: 10.1016/j.ijhydene.2020.07.217.
68. T. Wejrzanowski et al., “Metallic foam supported electrodes for molten carbonate fuel cells,” Mater. Des., vol. 193, p. 108864, Aug. 2020, doi: 10.1016/j.matdes.2020.108864.
69. L. Kouchachvili and M. Ikura, “Performance of direct carbon fuel cell,” Int. J. Hydrogen Energy, vol. 36, no. 16, pp. 10263–10268, Aug. 2011, doi: 10.1016/j.ijhydene.2010.10.036.
70. L. Xing, X. Bai, Y. Gao, and Z. Cao, “Improving clean electrical power generation: A theoretical modelling analysis of a molten sodium hydroxide direct carbon fuel cell with low pollution,” J. Clean. Prod., p. 124623, Oct. 2020, doi:10.1016/j.jclepro.2020.124623.
71. I. Filahi, M. Hasnaoui, A. Amahmid, A. El Mansouri, M. Alouah, and Y. Dahani, “Multiple-relaxation-time Lattice-Boltzmann simulation of direct carbon fuel cell,” in Materials Today: Proceedings, 2020, vol. 27, pp. 3157–3160, doi:10.1016/j.matpr.2020.03.831.
72. H. J. Kim et al., “Ru/Samaria-doped ceria gradient cermet anode for direct-methane solid oxide fuel cell,” Appl. Surf. Sci., vol. 538, p. 148105, Feb. 2021, doi: 10.1016/j.apsusc.2020.148105.
73. R. J. Braun, S. Kameswaran, J. Yamanis, and E. Sun, “Highly efficient IGFC hybrid power systems employing bottoming organic rankine cycles with optional carbon capture,” J. Eng. Gas Turbines Power, vol. 134, no. 2, Feb. 2012, doi: 10.1115/1.4004374.
74. M. Ma, X. Yang, J. Qiao, W. Sun, Z. Wang, and K. Sun, “Progress and challenges of carbon-fueled solid oxide fuel cells anode,” Journal of Energy Chemistry, vol. 56. Elsevier B.V., pp. 209–222, May-2021, doi: 10.1016/j.jechem.2020.08.013.
75. C. M. Kalamaras, A. M. Efstathiou, Y. Al-Assaf, and A. Poullikkas, “Hydrogen Production Technologies: Current State and Future Developments,” Conf. Pap. Energy, vol. 2013, 2013, doi: 10.1155/2013/690627.
76. “Hydrogen Production: Natural Gas Reforming-Department of Energy,” Energy Efficiency & Renewable Energy. .
77. G. W. Crabtree, Mildred S. Dresselhaus, and Michelle V. Buchanan., “The Hydrogen Energy,” Phys. Today, vol. 57, pp. 39–44, 2004.
78. B. Anzelmo, J. Wilcox, and S. Liguori, “Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions,” J. Memb. Sci., vol. 568, pp. 113–120, Dec. 2018, doi:10.1016/j.memsci.2018.09.054.
79. S. Park, J. Yoo, S. J. Han, J. H. Song, E. J. Lee, and I. K. Song, “Steam reforming of liquefied natural gas (LNG) for hydrogen production over nickel–boron–alumina xerogel catalyst,” Int. J. Hydrogen Energy, vol. 42, no. 22, pp. 15096–15106, Jun. 2017, doi:10.1016/j.ijhydene.2017.04.282.
80. K. Y. Koo, H. J. Eom, S. C. Kwon, U. H. Jung, and W. L. Yoon, “Ru-coated metal monolith catalyst prepared by novel coating method for hydrogen production via natural gas steam reforming,” Catal. Today, vol. 293–294, pp. 129–135, Sep. 2017, doi:10.1016/j.cattod.2016.11.016.
81. V. V Petrunin, I. V Marov, and N. G. Kodochigov, “Hydrogen energy and large scale hydrogen production with nuclear power plants based on high-temperature reactors,” J. Phys. Conf. Ser., vol. 1683, p. 042031, 2020, doi: 10.1088/1742-6596/1683/4/042031.
82. L. Kaiwen, Y. Bin, and Z. Tao, “Economic analysis of hydrogen production from steam reforming process: A literature review,” Energy Sources, Part B: Economics, Planning and Policy, vol. 13, no. 2. Taylor and Francis Inc., pp. 109–115, Feb-2018, doi:10.1080/15567249.2017.1387619.
83. E. Shagdar, B. G. Lougou, Y. Shuai, E. Ganbold, O. P. Chinonso, and H. Tan, “Process analysis of solar steam reforming of methane for producing low-carbon hydrogen,” RSC Adv., vol. 10, no. 21, pp. 12582–12597, Mar. 2020, doi: 10.1039/c9ra09835f.
84. A. Iulianelli and A. Basile, “Development of membrane reactor technology for H2 production in reforming process for lowtemperature fuel cells,” in Current Trends and Future Developments on (Bio-) Membranes, Elsevier, 2020, pp. 287–305.
85. M. Klug, “Pirólisis, un proceso para derretir biomasa,” Rev. Quim. PUCP , vol. 26, pp. 27–40, 2012.
86. A. Demirbas and G. Arin, “An Overview of Biomass Pyrolysis,” Energy Sources, vol. 24, no. 5, pp. 471–482, May 2002, doi:10.1080/00908310252889979.
87. K. Rajendran, R. Lin, D. M. Wall, and J. D. Murphy, “Influential Aspects in Waste Management Practices,” in Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, 2019, pp. 65–78.
88. H. Yang, R. Yan, H. Chen, D. H. Lee, D. T. Liang, and C. Zheng, “Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases,” Fuel Process. Technol., vol. 87, no. 10, pp. 935–942, Oct. 2006, doi: 10.1016/j.fuproc.2006.07.001.
89. A. C. Martínez Villalba and L. D. Bohórquez León, “Evaluación de la eficiencia de biochar producido a partir de pirólisis lenta de bagazo de caña como medio filtrante para retención de fenoles en matriz acuosa,” Universidad de La Salle, Bogotá, 2017.
90. X. Wang, W. Lv, L. Guo, M. Zhai, P. Dong, and G. Qi, “Energy and exergy analysis of rice husk high-temperature pyrolysis,” Int. J. Hydrogen Energy, vol. 41, no. 46, pp. 21121–21130, Dec. 2016, doi: 10.1016/j.ijhydene.2016.09.155.
91. A. Tahmasebi, K. Maliutina, T. Matamba, J. H. Kim, C. H. Jeon, and J. Yu, “Pressurized entrained-flow pyrolysis of lignite for enhanced production of hydrogen-rich gas and chemical raw materials,” J. Anal. Appl. Pyrolysis, vol. 145, p. 104741, Jan. 2020, doi:10.1016/j.jaap.2019.104741.
92. S. Niu et al., “Investigation into the yields and characteristics of products from lignite low-temperature pyrolysis under CO 2 and N 2 atmospheres,” J. Anal. Appl. Pyrolysis, vol. 138, pp. 161–169, Mar. 2019, doi: 10.1016/j.jaap.2018.12.020.
93. C. ping Ye, H. jun Huang, X. hong Li, W. ying Li, and J. Feng, “The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes,” Fuel, vol. 207, pp. 85–92, Nov. 2017, doi:10.1016/j.fuel.2017.06.062.
94. B. P. BP, “BP Statistical Review of World Energy 2019,” 2019.
95. H. D. Setiabudi, M. A. A. Aziz, S. Abdullah, L. P. Teh, and R. Jusoh, “Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review,” Int. J. Hydrogen Energy, Nov. 2019, doi: 10.1016/j.ijhydene.2019.10.141.
96. K. Bizkarra, J. M. Bermudez, P. Arcelus-Arrillaga, V. L. Barrio, J. F. Cambra, and M. Millan, “Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming,” Int. J. Hydrogen Energy, vol. 43, no. 26, pp. 11706–11718, Jun. 2018, doi: 10.1016/j.ijhydene.2018.03.049.
97. X. Dai, C. Wu, H. Li, and Y. Chen, “The fast pyrolysis of biomass in CFB reactor,” Energy and Fuels, vol. 14, no. 3, pp. 552–557, May 2000, doi: 10.1021/ef9901645.
98. R. Yan, H. Yang, T. Chin, D. T. Liang, H. Chen, and C. Zheng, “Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes,” Combust. Flame, vol. 142, no. 1– 2, pp. 24–32, Jul. 2005, doi: 10.1016/j.combustflame.2005.02.005.
99. R. Pitchai and K. Klier, “Partial Oxidation of Methane,” Catal. Rev., vol. 28, no. 1, pp. 13–88, Feb. 1986, doi:10.1080/03602458608068085.
100.G. Pantaleo, V. La Parola, F. Deganello, R. K. Singha, R. Bal, and A. M. Venezia, “Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects,” Appl. Catal. B Environ., vol. 189, pp. 233–241, Jul. 2016, doi:10.1016/j.apcatb.2016.02.064.
101.L. Li, S. He, Y. Song, J. Zhao, W. Ji, and C. T. Au, “Fine-tunable Ni@porous silica core-shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas,” J. Catal., vol. 288, pp. 54–64, Apr. 2012, doi:10.1016/j.jcat.2012.01.004.
102.J. V. Gimeno, “Oxidación parcial de metano sobre catalizadores NiAl 2 O 4 /CeO 2,” Universidad del País Vasco, 2016.
103.R. Ma, B. Xu, and X. Zhang, “Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—A review,” Catalysis Today, vol. 338. Elsevier B.V., pp. 18–30, Nov-2019, doi: 10.1016/j.cattod.2019.06.025.
104.I. Dincer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” Int. J. Hydrogen Energy, vol. 40, no. 34, pp. 11094–11111, Aug. 2015, doi: 10.1016/j.ijhydene.2014.12.035.
105.J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Cuihua Xuebao/Chinese J. Catal., vol. 39, no. 3, pp. 390–394, Mar. 2018, doi: 10.1016/S1872-2067(17)62949-8.
106.Y. Wu et al., “Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures,” Chem. Eng. J., vol. 411, p. 128538, May 2021, doi:10.1016/j.cej.2021.128538.
107.I. Vincent and D. Bessarabov, “Low cost hydrogen production by anion exchange membrane electrolysis: A review,” Renew. Sustain. Energy Rev., vol. 81, pp. 1690–1704, 2017, doi: 10.1016/j.rser.2017.05.258.
108.F. Safari and I. Dincer, “A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production,” Energy Convers. Manag., vol. 205, p. 112182, 2019, doi: 10.1016/j.enconman.2019.112182.
109.Y. Kim, E. Cho, and C. Hyun Ko, “Preparation of Ni-based eggshell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming,” Int. J. Hydrogen Energy, vol. 44, no. 11, pp. 5314–5323, Feb. 2019, doi: 10.1016/j.ijhydene.2018.08.100.
110.P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, Jan. 2017, doi: 10.1016/j.rser.2016.09.044.
111.P. T. Williams, “Hydrogen and Carbon Nanotubes from PyrolysisCatalysis of Waste Plastics: A Review,” Waste and Biomass Valorization, vol. 12, no. 1, pp. 1–28, Jan. 2021, doi:10.1007/s12649-020-01054-w.
112.S. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 442–454, Dec. 2019, doi: 10.1016/j.mset.2019.03.002.
113.M. Liao et al., “Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al 2 O 3 catalyst,” Appl. Energy, vol. 252, p. 113435, Oct. 2019, doi:10.1016/j.apenergy.2019.113435.
114.M. Liao et al., “Efficient hydrogen production from partial oxidation of propane over SiC doped Ni/Al2O3 catalyst,” in Energy Procedia, 2019, vol. 158, pp. 1772–1779, doi:10.1016/j.egypro.2019.01.419.
115.A. Yilanci, I. Dincer, and H. K. Ozturk, “A review on solarhydrogen/fuel cell hybrid energy systems for stationary applications,” Prog. Energy Combust. Sci., vol. 35, no. 3, pp. 231–244, Jun. 2009, doi: 10.1016/j.pecs.2008.07.004
116.J. Wang, “Barriers of scaling-up fuel cells: Cost, durability and reliability,” Energy, vol. 80, pp. 509–521, Feb. 2015, doi: 10.1016/j.energy.2014.12.007.
117.K. L. Salcedo Rodriguez and F. A. PEREZ Ph D, “Hydrogen and palladium properties and ther role in alternative energetic sources development,” Sci. Tech., vol. 15, pp. 343–346, 2009.
118.A. Causapé Rodriguez, “Las tecnologías de almacenamiento de hidrógeno en vehículos y su proyección de futuro,” An. mecánica y Electr., pp. 20–23, 2006.
119.A. Mardani and H. Karimi Motaalegh Mahalegi, “Hydrogen enrichment of methane and syngas for MILD combustion,” Int. J. Hydrogen Energy, vol. 44, no. 18, pp. 9423–9437, Apr. 2019, doi: 10.1016/j.ijhydene.2019.02.072.
120.K. Jurewicz, E. Frackowiak, and F. Béguin, “Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials,” Appl. Phys. A, vol. 78, no. 7, pp. 981–987, Apr. 2004, doi: 10.1007/s00339-003-2418-8.
121.D. A. Crowl and Y. Do Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind., vol. 20, no. 2, pp. 158–164, Mar. 2007, doi: 10.1016/j.jlp.2007.02.002.
122.L. Yin and Y. Ju, “Process optimization and analysis of a novel hydrogen liquefaction cycle,” Int. J. Refrig., vol. 110, pp. 219–230, Feb. 2020, doi: 10.1016/j.ijrefrig.2019.11.004.
123.S. Seyam, I. Dincer, and M. Agelin-Chaab, “Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system,” J. Clean. Prod., vol. 243, p. 118562, Jan. 2020, doi: 10.1016/j.jclepro.2019.118562.
124.C. Yilmaz and O. Kaska, “Performance analysis and optimization of a hydrogen liquefaction system assisted by geothermal absorption precooling refrigeration cycle,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20203–20213, Nov. 2018, doi: 10.1016/j.ijhydene.2018.08.019.
125.M. Mendoza Juárez, “Síntesis Evolutiva del Proceso de Licuefacción de Hidrocarburos,” Universidad de las Américas Puebla, Puebla, 2004.
126.C. M. White, R. R. Steeper, and A. E. Lutz, “The hydrogen-fueled internal combustion engine: a technical review,” Int. J. Hydrogen Energy, vol. 31, no. 10, pp. 1292–1305, Aug. 2006, doi: 10.1016/j.ijhydene.2005.12.001.
127.R. Moradi and K. M. Groth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” International Journal of Hydrogen Energy, vol. 44, no. 23. Elsevier Ltd, pp. 12254–12269, May-2019, doi:10.1016/j.ijhydene.2019.03.041.
128.S. Niaz, T. Manzoor, and A. H. Pandith, “Hydrogen storage: Materials, methods and perspectives,” Renewable and Sustainable Energy Reviews, vol. 50. Elsevier Ltd, pp. 457–469, May-2015, doi: 10.1016/j.rser.2015.05.011.
129.M. D. J. Marín A., “Remoción de As en solución empleando biomasas no vivas de maleza acuática,” Universidad Autónoma del estado de México, Toluca, 2010.
130.F. Granados Correa, “Sorción de radioisótopos en sólidos inorgánicos,” Universidad Autónoma Metropolitana iztapalapa, Ciudad de Mexico, 2004.
131.F. Zhang, P. Zhao, M. Niu, and J. Maddy, “The survey of key technologies in hydrogen energy storage,” Int. J. Hydrogen Energy, vol. 41, no. 33, pp. 14535–14552, Sep. 2016, doi:10.1016/j.ijhydene.2016.05.293.
132.K. Müller and W. Arlt, “Status and Development in Hydrogen Transport and Storage for Energy Applications,” Energy Technol., vol. 1, no. 9, pp. 501–511, Sep. 2013, doi: 10.1002/ente.201300055.
133.U. Sahaym and M. G. Norton, “Advances in the application of nanotechnology in enabling a ‘hydrogen economy,’” J. Mater. Sci., vol. 43, no. 16, pp. 5395–5429, Aug. 2008, doi: 10.1007/s10853- 008-2749-0.
134.Y. Jia, C. Sun, S. Shen, J. Zou, S. S. Mao, and X. Yao, “Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage,” Renew. Sustain. Energy Rev., vol. 44, pp. 289–303, Apr. 2015, doi:10.1016/j.rser.2014.12.032.
135.B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1121–1140, Jun. 2007, doi: 10.1016/j.ijhydene.2006.11.022.
136.M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, “Hydrogen storage using physisorption – materials demands,” Appl. Phys. A Mater. Sci. Process., vol. 72, no. 5, pp. 619–623, May 2001, doi: 10.1007/s003390100847.
137.J. Ogden, A. M. Jaffe, D. Scheitrum, Z. McDonald, and M. Miller, “Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature,” Energy Policy, vol. 115, pp. 317–329, Apr. 2018, doi: 10.1016/j.enpol.2017.12.049.
138.H. Barthelemy, M. Weber, and F. Barbier, “Hydrogen storage: Recent improvements and industrial perspectives,” Int. J. Hydrogen Energy, vol. 42, no. 11, pp. 7254–7262, Mar. 2017, doi:10.1016/j.ijhydene.2016.03.178.
139.F. Colom, S and Weber, M and Barbier, “Storhy: A European development of composite vessels for 70MPa Hydrogen storage,” in World Hydrogen Energy Conference, 2008.
140.C. J. Webb, “A review of catalyst-enhanced magnesium hydride as a hydrogen storage material,” J. Phys. Chem. Solids, vol. 84, no. 1, pp. 96–106, Sep. 2015, doi: 10.1016/j.jpcs.2014.06.014.
141.A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, “On hydrogen and hydrogen energy strategies I : Current status and needs,” Renewable and Sustainable Energy Reviews, vol. 9, no. 3. Elsevier Ltd, pp. 255–271, Jun-2005, doi: 10.1016/j.rser.2004.05.003.
142.D. Schitea, M. Deveci, M. Iordache, K. Bilgili, İ. Z. Akyurt, and I. Iordache, “Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS,” Int. J. Hydrogen Energy, vol. 44, no. 16, pp. 8585–8600, Mar. 2019, doi:10.1016/j.ijhydene.2019.02.011.
143.K. Mazloomi and C. Gomes, “Hydrogen as an energy carrier: Prospects and challenges,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5. Pergamon, pp. 3024–3033, Jun-2012, doi: 10.1016/j.rser.2012.02.028.
144.E. David, “An overview of advanced materials for hydrogen storage,” in Journal of Materials Processing Technology, 2005, vol. 162–163, no. SPEC. ISS., pp. 169–177, doi:10.1016/j.jmatprotec.2005.02.027.
145.L. Chen, R. Xiao, C. Cheng, G. Tian, S. Chen, and Y. Hou, “Thermodynamic analysis of the para-to-ortho hydrogen conversion in cryo-compressed hydrogen vessels for automotive applications,” Int. J. Hydrogen Energy, vol. 45, no. 46, pp. 24928–24937, Sep. 2020, doi: 10.1016/j.ijhydene.2020.05.252.
146.R. Xiao, G. Tian, Y. Hou, S. Chen, C. Cheng, and L. Chen, “Effects of cooling-recovery venting on the performance of cryo-compressed hydrogen storage for automotive applications,” Appl. Energy, vol. 269, p. 115143, Jul. 2020, doi: 10.1016/j.apenergy.2020.115143.
147.R. K. Ahluwalia et al., “Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications,” Int. J. Hydrogen Energy, vol. 35, no. 9, pp. 4171–4184, May 2010, doi: 10.1016/j.ijhydene.2010.02.074.
148.R. K. Ahluwalia, J.-K. Peng, and T. Q. Hua, “Cryo-compressed hydrogen storage,” in Compendium of Hydrogen Energy, vol. 2, Ram B. Gupta, Angelo Basile, and T. Nejat Veziroğlu, Eds. Elsevier, 2016, pp. 119–145.
149.Detlef Stolten, Remzi C. Samsun, and Nancy Garland, Fuel Cells: Data, Facts, and Figures, vol. 1. 2016.
150.J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, “How a century of ammonia synthesis changed the world,” Nat. Geosci., vol. 1, no. 10, pp. 636–639, Oct. 2008, doi: 10.1038/ngeo325.
151.G. THOMAS, “Potential roles of ammonia in a hydrogen economy.,” 2006. .
152.D. Kirk, R. E., Othmer, D. F., Grayson, M., & Eckroth, “No Title,” Encyclopedia of chemical technology Vol 23. 2001.
153.M. Hirscher et al., “Materials for hydrogen-based energy storage – past, recent progress and future outlook,” J. Alloys Compd., vol. 827, p. 153548, Jun. 2020, doi: 10.1016/j.jallcom.2019.153548.
154.Z. Xin et al., “Towards Hydrogen Storage through an Efficient Ruthenium‐Catalyzed Dehydrogenation of Formic Acid,” ChemSusChem, vol. 11, no. 13, pp. 2077–2082, Jul. 2018, doi: 10.1002/cssc.201800408.
155.N. Mardini and Y. Bicer, “Direct synthesis of formic acid as hydrogen carrier from CO2 for cleaner power generation through direct formic acid fuel cell,” Int. J. Hydrogen Energy, vol. 46, no. 24, pp. 13050–13060, Apr. 2021, doi: 10.1016/j.ijhydene.2021.01.124.
156.K. Müller, K. Brooks, and T. Autrey, “Hydrogen Storage in Formic Acid: A Comparison of Process Options,” Energy and Fuels, vol. 31, no. 11, pp. 12603–12611, Nov. 2017, doi:10.1021/acs.energyfuels.7b02997.
157.R. van Putten, T. Wissink, T. Swinkels, and E. A. Pidko, “Fuelling the hydrogen economy: Scale-up of an integrated formic acid-topower system,” Int. J. Hydrogen Energy, vol. 44, no. 53, pp. 28533– 28541, Nov. 2019, doi: 10.1016/j.ijhydene.2019.01.153.
158.A. K. Singh, S. Singh, and A. Kumar, “Hydrogen Energy Future with Formic Acid: A Renewable Chemical Hydrogen Storage System,” Catal. Sci. Technol., vol. 6, no. 1, pp. 1–3, 2016, doi: 10.1039/x0xx00000x.
159.F. Joó, “Breakthroughs in hydrogen storage-formic acid as a sustainable storage material for hydrogen,” ChemSusChem, vol. 1, no. 10, pp. 805–808, Oct. 2008, doi: 10.1002/cssc.200800133.
160.Y. Zhou, X. Zhu, B. Zhang, D. D. Ye, R. Chen, and Q. Liao, “High performance formic acid fuel cell benefits from Pd–PdO catalyst supported by ordered mesoporous carbon,” Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 29235–29245, Oct. 2020, doi:10.1016/j.ijhydene.2020.07.169.
161.E. Ruse et al., “Hydrogen storage kinetics: The graphene nanoplatelet size effect,” Carbon N. Y., vol. 130, pp. 369–376, Apr. 2018, doi: 10.1016/j.carbon.2018.01.012.
162.E. Varkaraki, N. Lymberopoulos, and A. Zachariou, “Hydrogen based emergency back-up system for telecommunication applications,” in Journal of Power Sources, 2003, vol. 118, no. 1–2, pp. 14–22, doi: 10.1016/S0378-7753(03)00056-9.
163.G. Doucet, C. Etiévant, C. Puyenchet, S. Grigoriev, and P. Millet, “Hydrogen-based PEM auxiliary power unit,” Int. J. Hydrogen Energy, vol. 34, no. 11, pp. 4983–4989, Jun. 2009, doi:10.1016/j.ijhydene.2008.12.029.
164.J. Fernández-Moreno, G. Guelbenzu, A. J. Martín, M. A. Folgado, P. Ferreira-Aparicio, and A. M. Chaparro, “A portable system powered with hydrogen and one single air-breathing PEM fuel cell,” Appl. Energy, vol. 109, pp. 60–66, Sep. 2013, doi:10.1016/j.apenergy.2013.03.076.
165.G. Kyriakarakos, A. I. Dounis, S. Rozakis, K. G. Arvanitis, and G. Papadakis, “Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel,” Appl. Energy, vol. 88, no. 12, pp. 4517–4526, Dec. 2011, doi: 10.1016/j.apenergy.2011.05.038.
166.T. Maeda et al., “Numerical simulation of the hydrogen storage with reaction heat recovery using metal hydride in the totalized hydrogen energy utilization system,” Int. J. Hydrogen Energy, vol. 36, no. 17, pp. 10845–10854, Aug. 2011, doi: 10.1016/j.ijhydene.2011.06.024.
167.M. V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, and V. Yartys, “The use of metal hydrides in fuel cell applications,” Progress in Natural Science: Materials International, vol. 27, no. 1. Elsevier B.V., pp. 3–20, Feb-2017, doi: 10.1016/j.pnsc.2017.01.008.
168.D. Parra, M. Gillott, and G. S. Walker, “Design, testing and evaluation of a community hydrogen storage system for end user applications,” Int. J. Hydrogen Energy, vol. 41, no. 10, pp. 5215– 5229, Mar. 2016, doi: 10.1016/j.ijhydene.2016.01.098.
169.B. P. Tarasov et al., “Metal hydride hydrogen storage and compression systems for energy storage technologies,” Int. J. Hydrogen Energy, vol. 46, no. 25, pp. 13647–13657, Apr. 2020, doi: 10.1016/j.ijhydene.2020.07.085.
170.C. Milanese et al., “Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review,” Metals (Basel)., vol. 8, no. 8, p. 567, Jul. 2018, doi: 10.3390/met8080567.
171.W. S. Khan et al., “Hydrogen storage and PL properties of novel Cd/CdO shelled hollow microspheres prepared under NH3 gas environment,” Int. J. Hydrogen Energy, vol. 38, no. 5, pp. 2332–2336, Feb. 2013, doi: 10.1016/j.ijhydene.2012.11.121.
172.C. Iwakura, H. Inoue, and S. Nohara, “Hydrogen–Metal Systems: Electrochemical Reactions (Fundamentals and Applications),” in Encyclopedia of Materials: Science and Technology, P. V. K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, Ed. Elsevier, 2001, pp. 3923–3941.
173.J. Jepsen et al., “Fundamental Material Properties of the 2LiBH4- MgH2 Reactive Hydride Composite for Hydrogen Storage: (I) Thermodynamic and Heat Transfer Properties,” Energies, vol. 11, no. 5, p. 1081, Apr. 2018, doi: 10.3390/en11051081.
174.Y. Yang et al., “Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation,” Appl. Catal. B Environ., vol. 245, pp. 87–99, May 2019, doi:10.1016/j.apcatb.2018.12.049.
175.D. Golberg et al., “Boron Nitride Nanotubes and Nanosheets,” ACS Nano, vol. 4, no. 6, pp. 2979–2993, Jun. 2010, doi:10.1021/nn1006495.
176.M. V. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman, “Metal hydride hydrogen compressors: A review,” in International Journal of Hydrogen Energy, 2014, vol. 39, no. 11, pp. 5818–5851, doi: 10.1016/j.ijhydene.2014.01.158.
177.B. P. Tarasov, M. S. Bocharnikov, Y. B. Yanenko, P. V Fursikov, K. B. Minko, and M. V Lototskyy, “Metal hydride hydrogen compressors for energy storage systems: layout features and results of long-term tests,” J. Phys. Energy, vol. 2, no. 2, p. 024005, Feb. 2020, doi: 10.1088/2515-7655/ab6465.
178.P. T. Aakko-Saksa, C. Cook, J. Kiviaho, and T. Repo, “Liquid organic hydrogen carriers for transportation and storing of renewable energy – Review and discussion,” Journal of Power Sources, vol. 396. Elsevier B.V., pp. 803–823, Aug-2018, doi:10.1016/j.jpowsour.2018.04.011.
179.F. Sotoodeh and K. J. Smith, “Structure sensitivity of dodecahydroN-ethylcarbazole dehydrogenation over Pd catalysts,” J. Catal., vol. 279, no. 1, pp. 36–47, Apr. 2011, doi: 10.1016/j.jcat.2010.12.022.
180.R. B. Biniwale, S. Rayalu, S. Devotta, and M. Ichikawa, “Chemical hydrides: A solution to high capacity hydrogen storage and supply,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 360–365, Jan. 2008, doi:10.1016/j.ijhydene.2007.07.028.
181.K. Mü Ller, R. Aslam, A. Fischer, K. Stark, P. Wasserscheid, and W. Arlt, “Experimental assessment of the degree of hydrogen loading for the dibenzyl toluene based LOHC system,” Int. J. Hydrogen Energy, vol. 41, no. 47, pp. 22097–22103, Dec. 2016, doi:10.1016/j.ijhydene.2016.09.196.
182.D. Teichmann, W. Arlt, and P. Wasserscheid, “Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 18118–18132, Dec. 2012, doi: 10.1016/j.ijhydene.2012.08.066.
183.P. M. Modisha, C. N. M. Ouma, R. Garidzirai, P. Wasserscheid, and D. Bessarabov, “The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers,” Energy & Fuels, vol. 33, no. 4, pp. 2778–2796, Apr. 2019, doi: 10.1021/acs.energyfuels.9b00296.
184.P. Preuster, C. Papp, and P. Wasserscheid, “Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy,” Acc. Chem. Res., vol. 50, no. 1, pp. 74–85, Jan. 2017, doi: 10.1021/acs.accounts.6b00474.
185.M. Niermann, S. Drünert, M. Kaltschmitt, and K. Bonhoff, “Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain,” Energy Environ. Sci., vol. 12, no. 1, pp. 290–307, 2019, doi: 10.1039/C8EE02700E.
186.X. Qi, C. Gao, Z. Zhang, S. Chen, B. Li, and S. Wei, “Production and characterization of hollow glass microspheres with high diffusivity for hydrogen storage,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1518–1530, Jan. 2012, doi:10.1016/j.ijhydene.2011.10.034.
187.S. Dalai, S. Vijayalakshmi, P. Sharma, and K. Yeon Choo, “Magnesium and iron loaded hollow glass microspheres (HGMs) for hydrogen storage,” Int. J. Hydrogen Energy, vol. 39, pp. 16451– 16458, Oct. 2014, doi: 10.1016/j.ijhydene.2014.03.062.
188.M. Zarezadeh Mehrizi, J. Abdi, M. Rezakazemi, and E. Salehi, “A review on recent advances in hollow spheres for hydrogen storage,” Int. J. Hydrogen Energy, vol. 45, no. 35, pp. 17583–17604, 2020, doi: 10.1016/j.ijhydene.2020.04.201.
189.D. K. Kohli, R. K. Khardekar, R. Singh, and P. K. Gupta, “Glass micro-container based hydrogen storage scheme,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 417–422, Jan. 2008, doi: 10.1016/j.ijhydene.2007.07.044.
190.G. G. Wicks, L. K. Heung, and R. F. Schumacher, “Microspheres and microworlds,” Am. Ceram. Soc. Bull., vol. 87, no. 6, pp. 23–28, Jun. 2008.
191.J. E. Shelby, F.C. Raszewski, and M.M. Hall, Fuels-hydrogen storage: hydrogen storage in glass microspheres, Encyclopedia of Electrochemical Power Sources. 2013.
192.R. Singh, A. Altaee, and S. Gautam, “Nanomaterials in the advancement of hydrogen energy storage,” Heliyon, vol. 6, no. 7, p. e04487, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04487.
193.S. H. Jhi, Y. K. Kwon, K. Bradley, and J. C. P. Gabriel, “Hydrogen storage by physisorption: Beyond carbon,” Solid State Commun., vol. 129, no. 12, pp. 769–773, Mar. 2004, doi: 10.1016/j.ssc.2003.12.032.
194.H. Akasaka et al., “Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 580–585, 2011, doi: 10.1016/j.ijhydene.2010.09.102.
195.S. J. Yang, H. Jung, T. Kim, and C. R. Park, “Recent advances in hydrogen storage technologies based on nanoporous carbon materials,” Prog. Nat. Sci. Mater. Int., vol. 22, no. 6, pp. 631–638, Dec. 2012, doi: 10.1016/j.pnsc.2012.11.006.
196.R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, “Hydrogen storage by carbon materials,” J. Power Sources, vol. 159, pp. 781–801, 2006, doi: 10.1016/j.jpowsour.2006.03.047.
197.B. J. Kim and S. J. Park, “Preparation of nanoporous carbons from graphite nanofibres,” Nanotechnology, vol. 17, no. 17, pp. 4395–4398, Aug. 2006, doi: 10.1088/0957-4484/17/17/018.
198.M. Yoon, S. Yang, E. Wang, and Z. Zheng, “Charged fullerenes as high-capacity hydrogen storage media,” Nano Lett., vol. 7, no. 9, pp. 2578–2583, Sep. 2007, doi: 10.1021/nl070809a.
199.C. Liu, Y. Chen, C.-Z. Wu, S.-T. Xu, and H.-M. Cheng, “Hydrogen storage in carbon nanotubes revisited,” Carbon N. Y., vol. 48, no. 2, pp. 452–455, 2010, doi: 10.1016/j.carbon.2009.09.060.
200.Y. Yü Rü M, A. Taralp, and T. Nejat Veziroglu, “Storage of hydrogen in nanostructured carbon materials,” Int. J. Hydrogen Energy, vol. 34, pp. 3784–3798, Mar. 2009, doi:10.1016/j.ijhydene.2009.03.001.
201.H. C. J. Zhou and S. Kitagawa, “Metal-Organic Frameworks (MOFs),” Chem. Soc. Rev., vol. 43, no. 16, pp. 5415–5418, Aug. 2014, doi: 10.1039/c4cs90059f.
202.H. C. Zhou, J. R. Long, and O. M. Yaghi, “Introduction to metalorganic frameworks,” Chemical Reviews, vol. 112, no. 2. American Chemical Society, pp. 673–674, Feb-2012, doi: 10.1021/cr300014x.
203.G. Choubey, W. Huang, L. Yan, H. Babazadeh, and K. Pandey, “Hydrogen fuel in scramjet engines-A brief review,” Int. J. Hydrogen Energy, vol. 45, no. 33, pp. 16799–16815, Jun. 2020, doi: 10.1016/j.ijhydene.2020.04.086.
204.P. Kumar, R. Britter, and N. Gupta, “Hydrogen Fuel: Opportunities and Barriers,” J. Fuel Cell Sci. Technol., vol. 6, no. 2, May 2009, doi:10.1115/1.3005384.
205.Y. S. H. Najjar, “Hydrogen safety: The road toward green technology,” International Journal of Hydrogen Energy, vol. 38, no. 25. Elsevier Ltd, pp. 10716–10728, Aug-2013, doi: 10.1016/j.ijhydene.2013.05.126.
206.D. Cecere, E. Giacomazzi, and A. Ingenito, “A review on hydrogen industrial aerospace applications,” Int. J. Hydrogen Energy, vol. 39, no. 20, pp. 10731–10747, Jul. 2014, doi: 10.1016/j.ijhydene.2014.04.126.
207.T. Hübert, L. Boon-Brett, and W. J. Buttner, Sensors for Safety and Process Control in Hydrogen Technologies - Thomas Hübert, Lois Boon-Brett, William Buttner - Google Libros, Ilustrada., vol. 1. New York: CRC Press, 2018.
208.T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sensors Actuators, B Chem., vol. 157, no. 2, pp. 329–352, 2011, doi: 10.1016/j.snb.2011.04.070.
209.A. Kumar et al., “Hydrogen selective gas sensor in humid environment based on polymer coated nanostructured-doped tin oxide,” Sensors Actuators B, vol. 155, pp. 884–892, Jul. 2011, doi: 10.1016/j.snb.2011.01.065.
210.H. Hadef, B. Negrou, T. as Gonz alez Ayuso, M. ebarek Djebabra, M. Ramadan, and M. Ben Boulaid -Batna, “Preliminary hazard identification for risk assessment on a complex system for hydrogen production h i g h l i g h t s,” Int. J. Hydrogen Energy, vol. 45, no.20, pp. 11855–11865, Apr. 2019, doi:10.1016/j.ijhydene.2019.10.162.
211.W. Cao et al., “Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container,” Fuel, vol. 290, p. 120034, Apr. 2021, doi: 10.1016/j.fuel.2020.120034.
212.Y. Zhang et al., “Dynamic hazard evaluation of explosion severity for premixed hydrogen–air mixtures in a spherical pressure vessel,” Fuel, vol. 261, p. 116433, Feb. 2020, doi: 10.1016/j.fuel.2019.116433.
213.I. Ivanov, A. M. Baranov, S. Akbari, S. Mironov, and E. Karpova, “Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition,” Sensors Actuators, B Chem., vol. 293, pp. 273–280, Aug. 2019, doi: 10.1016/j.snb.2019.05.001.
214.B. J. Lee and I. S. Jeung, “Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube,” Int. J. Hydrogen Energy, vol. 34, no. 20, pp. 8763–8769, Oct. 2009, doi: 10.1016/j.ijhydene.2009.08.034.
215.I. Darmadi, F. A. A. Nugroho, and C. Langhammer, “HighPerformance Nanostructured Palladium-Based Hydrogen Sensors - Current Limitations and Strategies for Their Mitigation,” ACS Sensors, vol. 5, no. 11, pp. 3306–3327, Nov. 2020, doi:10.1021/acssensors.0c02019.
216.J. Lee, H. Koo, S. Y. Kim, S. J. Kim, and W. Lee, “Electrostatic spray deposition of chemochromic WO3-Pd sensor for hydrogen leakage detection at room temperature,” Sensors Actuators, B Chem., vol. 327, p. 128930, Jan. 2021, doi: 10.1016/j.snb.2020.128930.
217.W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy, vol. 36, no. 3, pp. 2462–2470, Feb. 2011, doi: 10.1016/j.ijhydene.2010.04.176.
218.L. Zhou, F. Kato, N. Nakamura, Y. Oshikane, A. Nagakubo, and H. Ogi, “MEMS hydrogen gas sensor with wireless quartz crystal resonator,” Sensors Actuators, B Chem., vol. 334, p. 129651, May 2021, doi: 10.1016/j.snb.2021.129651.
219.I. C. Tolias et al., “Best practice guidelines in numerical simulations and CFD benchmarking for hydrogen safety applications,” Int. J. Hydrogen Energy, vol. 44, no. 17, pp. 9050–9062, Apr. 2019, doi: 10.1016/j.ijhydene.2018.06.005.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Engineering Science and Technology Review
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv http://www.jestr.org/index.php?option=com_content&view=article&id=79&Itemid=126
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8991/1/A%20Review%20of%20History%2c%20Production%20and%20Storage%20of%20Hydrogen.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8991/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8991/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8991/4/A%20Review%20of%20History%2c%20Production%20and%20Storage%20of%20Hydrogen.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8991/5/A%20Review%20of%20History%2c%20Production%20and%20Storage%20of%20Hydrogen.pdf.txt
bitstream.checksum.fl_str_mv 6bf87ce330a64ac4e890e689caa0ba3d
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
999300506e4ff72ea32bc9f79a421f23
498f26fb593428df6232d6daf7d5875a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400228756226048
spelling Grimaldo Guerrero, John William4554b13a3632a3d9cb61becc3dd94e2dDe la Hoz Barcelo, Juane408f82c70d56916fed8e77dc2ecef18Rivera Pacheco, Daniel4ba0f9872b21994a13c6cf2484930842RAMOS BARRERA, LUIS FERNANDO17cda2255dd9a1f6e4d20a11b10346ceMartinez-Palacio, Ubaldo0453686ac9195e45836dfef54e91765c2022-01-21T15:00:34Z2022-01-21T15:00:34Z20211791-23771791-9320https://hdl.handle.net/11323/8991doi:10.25103/jestr.145.14Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The need to reduce fossil fuel consumption has created opportunities for alternative fuels, including the migration of hydrogen as an unconventional alternative fuel. This alternative has more significant environmental and energy benefits due to the acquisition of raw materials and the integration of renewable energy sources. The research presents a review of historical evolution, a bibliometric analysis, and the processes used to produce and store this molecule. The POx and pyrolysis processes have the highest amount of research. At the same time, electrolysis is the process that has had the most significant growth, and research indicates that they allow greater sustainability due to the integration of renewable energies. Research trends indicate studies for integrating renewable energy resources and materials to improve chemical properties to increase capacity storage and decrease the risks due to high volatility.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Engineering Science and Technology Reviewhttp://www.jestr.org/index.php?option=com_content&view=article&id=79&Itemid=126Renewable energyHydrogen productionHydrogen storageA review of history, production and storage of hydrogenArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. J. Osorio Tovar, J. W. Grimaldo Guerrero, P. Pacheco Torres, and L. Chaparro Badillo, “Chemical failure analysis of artificial lift system in petroleum industry: A review,” J. Eng. Appl. Sci., vol. 13, no. 19, 2018, doi: 10.3923/jeasci.2018.8010.8015.2. J. W. Grimaldo-Guerrero and Y. F. Contreras-Rueda, “Offshore oil exploitation in the Caribbean Sea: Challenges for Colombia,” IOP Conf. Ser. Mater. Sci. Eng., vol. 844, p. 012015, Jun. 2020, doi: 10.1088/1757-899X/844/1/012015.3. R. Shahnazi and Z. Dehghan Shabani, “Do renewable energy production spillovers matter in the EU?,” Renew. Energy, vol. 150, pp. 786–796, May 2020, doi: 10.1016/j.renene.2019.12.123.4. J. Huang, W. Li, L. Guo, X. Hu, and J. W. Hall, “Renewable energy and household economy in rural China,” Renew. Energy, Apr. 2020, doi: 10.1016/j.renene.2020.03.151.5. A. Navon, P. Kulbekov, S. Dolev, G. Yehuda, and Y. Levron, “Integration of distributed renewable energy sources in Israel: Transmission congestion challenges and policy recommendations,” Energy Policy, vol. 140, pp. 111–412, May 2020, doi:10.1016/j.enpol.2020.111412.6. K. Nigim, J. McQueen, and M. Persohn-Costa, “Operational modes of hydrogen energy storage in a micro grid system,” in 2015 IEEE Electrical Power and Energy Conference: Smarter Resilient Power Systems, EPEC 2015, 2016, pp. 473–477, doi:10.1109/EPEC.2015.7379997.7. I. Vinoth Kanna, K. Subramani, and A. Devaraj, “Experimental investigation on constant-speed diesel engine fueled with biofuel mixtures under the effect of fuel injection,” J. Comput. Appl. Res. Mech. Eng., vol. 9, no. 2, pp. 225–233, Dec. 2020, doi: 10.22061/jcarme.2018.3421.1387.8. M. Weiss, K. C. Cloos, and E. Helmers, “Energy efficiency trade ‑ offs in small to large electric vehicles,” Environ. Sci. Eur., vol. 32, no. 46, 2020, doi: 10.1186/s12302-020-00307-8.9. J. Lee, C. Park, J. Bae, Y. Kim, S. Lee, and C. Kim, “Comparison between gasoline direct injection and compressed natural gas port fuel injection under maximum load condition,” Energy, vol. 197, Apr. 2020, doi: 10.1016/j.energy.2020.117173.10. M. N. Anwar et al., “CO2 utilization: Turning greenhouse gas into fuels and valuable products,” J. Environ. Manage., vol. 260, Apr. 2020, doi: 10.1016/j.jenvman.2019.110059.11. M. Ali, R. Sultana, S. Tahir, I. A. Watson, and M. Saleem, “Prospects of microalgal biodiesel production in Pakistan – A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 1588–1596, Dec. 2017, doi:10.1016/j.rser.2017.08.062.12. T. Pregger et al., “Future fuels-Analyses of the future prospects of renewable synthetic fuels,” Energies, vol. 13, no. 1, Dec. 2019, doi:10.3390/en13010138.13. R. Pinsky, P. Sabharwall, J. Hartvigsen, and J. O’Brien, “Comparative review of hydrogen production technologies for nuclear hybrid energy systems,” Progress in Nuclear Energy, vol. 123. Elsevier Ltd, May-2020, doi: 10.1016/j.pnucene.2020.103317.14. D. E. Bechtold, “Otras aplicaciones de hidrógeno y sus futuros escenarios,” Centro Nacional de hidrógeno. pp. 1–22, 2011.15. I. Hadjipaschalis, A. Poullikkas, and V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications,” Renew. Sustain. Energy Rev., vol. 13, no. 6–7, pp. 1513–1522, 2009, doi: 10.1016/j.rser.2008.09.028.16. A. H. Al-Badi, H. Yousef, O. Alaamri, M. Alabdusalam, Y. Alshidi, and N. Alharthy, “Performance of a stand-alone renewable energy system based on hydrogen energy storage,” in ISCCSP 2014 - 2014 6th International Symposium on Communications, Control and Signal Processing, Proceedings, 2014, pp. 356–359, doi:10.1109/ISCCSP.2014.6877887.17. I. Staffell et al., “The role of hydrogen and fuel cells in the global energy system,” Energy Environ. Sci., vol. 12, no. 2, pp. 463–491,2019, doi: 10.1039/C8EE01157E.18. Y. Zhao et al., “A high-performance membrane electrode assembly for polymer electrolyte membrane fuel cell with poly(arylene ether sulfone) nanofibers as effective membrane reinforcements,” J. Power Sources, vol. 444, Dec. 2019, doi: 10.1016/j.jpowsour.2019.227250.19. J. I. Linares Hurtado and B. Y. Moratilla Soria, El hidrógeno y la energía, Universida. Asociación Nacional de Ingenieros del ICAI, 2007.20. G. D. Berry and S. M. Aceves, “La Economía del Hidrógeno como Solución al Problema de la Estabilización del Clima Mundial*,” Acta Univ., vol. 16, no. 1, pp. 5–14, 2006.21. H. Song, G. Meynet, Z. Li, W. Peng, R. Zhang, and Q. Zhan, “The Structure and Evolution of Massive Rotating Single and Binary Population III Stars,” Astrophys. J., vol. 892, no. 1, p. 41, Mar. 2020, doi: 10.3847/1538-4357/ab7993.22. P. Asensio, “Hidrógeno y pila de combustible,” 2007.23. M. Aguer Hortal and A. L. Miranda Barreras, El hidrógeno: Fundamento de un futuro equilibrado. Ediciones Díaz de Santos, 2007.24. L. Gutiérrez Jodra, “El hidrogéno, el combustible del futuro,” Cienc.Exact.Fís.Nat. (Esp), vol. 99, no. 1, pp. 49–67, 2005.25. A. C. Morales Ramos, M. Pérez Figueroa, J. R. Pérez Gallardo, and S. De León Almaraz, “Energías renovables y el hidrógeno: un par prometedor en la transición energética de México,” Investig. y Cienc. la Univ. Autónoma Aguascalientes, vol. 25, pp. 92–101, 2017.26. L. Pérez Moreno, “Producción de hidrógeno mediante reacciones de reformado en reactor de lecho fluidizado de dos zonas,” Universidad de zaragoza, 2012.27. Ministerio de Educación Politica Social y Deporte, Fuentes de energia para el futuro, SECRETARÍA. España: MEPSYD, 2008.28. J. Barco-Burgos, U. Eicker, N. Saldaña-Robles, A. L. SaldañaRobles, and V. Alcántar-Camarena, “Thermal characterization of an alkaline electrolysis cell for hydrogen production at atmospheric pressure,” Fuel, vol. 276, Sep. 2020, doi:10.1016/j.fuel.2020.117910.29. S. Li et al., “Chlorine-mediated photocatalytic hydrogen production based on triazine covalent organic framework,” Appl. Catal. B Environ., vol. 272, p. 118989, Sep. 2020, doi:10.1016/j.apcatb.2020.118989.30. A. Pino Priego, “Aprovechamiento de recursos energéticos renovables no integrables en la red eléctrica. El caso de la producción de hidrógeno.,” Universidad de Sevilla, Sevilla, 2009.31. C. M. Ayala Martínez and C. C. Grandett Campo, “Estado del Arte Sobre La Obtención De Hidrógeno Molecular a partir De Algas Verdes,” Cartagena, 2012.32. I. Asimov, A short history of chemistry. Greenwood Press, 1979. 33. J. Larminie and A. Dicks, Fuel Cell Systems Explained , vol. 2. UK: J. Wiley, 2003.34. W. Agila Gálvez, “Detección y control del estado de una pila PEM para funcionamiento óptimo: Arquitectura de agentes de percepción y control,” Leganés, 2013.35. R. Sanz Villuendas, “Estudio tecnológico sobre el vector hidrógeno y sus aplicaciones en el siglo XXI,” Universidad Zaragoza, 2010.36. A. Garcia-barrientos, Fuentes de Energías Alternas : Teoría y Práctica, no. August 2014. 2016.37. E. I. Zoulias and N. Lymberopoulos, Hydrogen-based Autonomous Power Systems. London: Springer London, 2008.38. J. A. Ruiz Díaz and P. Ramos Castellanos, Cambio climático, ¿un desafío a nuestro alcance? Ediciones Universidad de Salamanca, 2009.39. N. R. Council, Review of the Research Program of the FreedomCAR and Fuel Partnership. National Academies Press, 2008.40. Van Hool NV, “3EMOTION | Hydrogen,” Oct-2018. .41. T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A. G. Olabi, “Advances in stationary and portable fuel cell applications,” Int. J. Hydrogen Energy, vol. 41, no. 37, pp. 16509–16522, Oct. 2016, doi: 10.1016/j.ijhydene.2016.02.057.42. BBC News Mundo, “Así funciona el tren de hidrógeno que inició operaciones en Alemania, el primero en entrar en servicio comercial en el mundo - BBC News Mundo,” Sep-2018. .43. Presidencia de la República de Uruguay, “Proyecto para utilizar hidrógeno como energía de avanzada en Uruguay recibe el respaldo del BID,” Uruguay Presidencia, Dec-2019. .44. Energy Information Administration EE. UU. (EIA), “Use of hydrogen,” U.S Energy Information Administration, Jan-2020. .45. D. N. Luta and A. K. Raji, “Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation,” Int. J. Hydrogen Energy, vol. 43, no. 20, pp. 9535–9548, May 2018, doi: 10.1016/j.ijhydene.2018.04.032.46. Y. Zhao, V. McDonell, and S. Samuelsen, “Assessment of the combustion performance of a room furnace operating on pipeline natural gas mixed with simulated biogas or hydrogen,” Int. J. Hydrogen Energy, vol. 45, no. 19, pp. 11368–11379, Apr. 2020, doi:10.1016/j.ijhydene.2020.02.071.47. T. D. Rapson et al., “Engineering a solid-state metalloprotein hydrogen evolution catalyst,” Sci. Rep., vol. 10, no. 1, pp. 1–9, Feb. 2020, doi: 10.1038/s41598-020-60730-y.48. L. Wang, “Novel highly active Ni–Re super-alloy nanowire type catalysts for CO-free hydrogen generation from steam methane reforming,” Bull. Mater. Sci., vol. 43, no. 1, p. 93, Dec. 2020, doi: 10.1007/s12034-020-2070-3.49. L. Mastropasqua, I. Pecenati, A. Giostri, and S. Campanari, “Solar hydrogen production: Techno-economic analysis of a parabolic dishsupported high-temperature electrolysis system,” Appl. Energy, vol. 261, p. 114392, Mar. 2020, doi: 10.1016/j.apenergy.2019.114392.50. J. M. Rodríguez Cuesta, “Electrolisis a alta temperatura,” Universidad de Sevilla, Sevilla, 2016.51. J. Huang et al., “Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure,” Waste Manag., vol. 103, pp. 61–66, Feb. 2020, doi: 10.1016/j.wasman.2019.12.015.52. X. H. Li, D. W. Liang, Y. X. Bai, Y. T. Fan, and H. W. Hou, “Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement,” Int. J. Hydrogen Energy, vol. 39, no. 17, pp. 8977–8982, Jun. 2014, doi: 10.1016/j.ijhydene.2014.03.065.53. J. M. Thomas, P. P. Edwards, P. J. Dobson, and G. P. Owen, “Decarbonising energy: The developing international activity in hydrogen technologies and fuel cells,” Journal of Energy Chemistry, vol. 51. Elsevier B.V., pp. 405–415, Dec-2020, doi:10.1016/j.jechem.2020.03.087.54. F. Wang et al., “A comprehensive review on high-temperature fuel cells with carbon capture,” Appl. Energy, vol. 275, p. 115342, Oct. 2020, doi: 10.1016/j.apenergy.2020.115342.55. H. Zhang, W. Kong, F. Dong, H. Xu, B. Chen, and M. Ni, “Application of cascading thermoelectric generator and cooler for waste heat recovery from solid oxide fuel cells,” Energy Convers. Manag., vol. 148, pp. 1382–1390, Sep. 2017, doi:10.1016/j.enconman.2017.06.089.56. C.-Y. Hsieh, P. Pei, Q. Bai, A. Su, F.-B. Weng, and C.-Y. Lee, “Results of a 200 hours lifetime test of a 7 kW Hybrid–Power fuel cell system on electric forklifts,” Energy, vol. 214, p. 118941, Jan. 2021, doi: 10.1016/j.energy.2020.118941.57. S. Giddey, S. P. S. Badwal, A. Kulkarni, and C. Munnings, “A comprehensive review of direct carbon fuel cell technology,” Progress in Energy and Combustion Science, vol. 38, no. 3. Pergamon, pp. 360–399, 01-Jun-2012, doi:10.1016/j.pecs.2012.01.003.58. K. Kordesch et al., “Alkaline fuel cells applications,” J. Power Sources, vol. 86, no. 1, pp. 162–165, Mar. 2000, doi: 10.1016/S0378-7753(99)00429-2.59. J. L. Tan et al., “Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell,” Appl. Catal. A Gen., vol. 531, pp. 29–35, Feb. 2017, doi: 10.1016/j.apcata.2016.11.034.60. J. Asensio et al., “Pilas de combustible de Membrana polimérica,” Afinidad Rev. química teórica y Apl., vol. 68, no. 554, pp. 246–258, 2011.61. H. Peng, Q. Li, M. Hu, L. Xiao, J. Lu, and L. Zhuang, “Alkaline polymer electrolyte fuel cells stably working at 80 °C,” J. Power Sources, vol. 390, pp. 165–167, Jun. 2018, doi:10.1016/j.jpowsour.2018.04.047.62. S. Takahashi, T. Mashio, N. Horibe, K. Akizuki, and A. Ohma, “Analysis of the Microstructure Formation Process and Its Influence on the Performance of Polymer Electrolyte Fuel-Cell Catalyst Layers,” ChemElectroChem, vol. 2, no. 10, pp. 1560–1567, Oct. 2015, doi: 10.1002/celc.201500131.63. X. Chen, Y. Wang, L. Cai, and Y. Zhou, “Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system,” J. Power Sources, vol. 294, pp. 430–436, Jun. 2015, doi: 10.1016/j.jpowsour.2015.06.085.64. E. Açıkkalp, L. Chen, and M. H. Ahmadi, “Comparative performance analyses of molten carbonate fuel cell-alkali metal thermal to electric converter and molten carbonate fuel cell-thermoelectric generator hybrid systems,” Energy Reports, vol. 6, pp. 10– 16, Nov. 2020, doi: 10.1016/j.egyr.2019.11.108.65. B. Ghorbani, M. Mehrpooya, and S. A. Mousavi, “Hybrid molten carbonate fuel cell power plant and multiple-effect desalination system,” J. Clean. Prod., vol. 220, pp. 1039–1051, May 2019, doi: 10.1016/j.jclepro.2019.02.215.66. O. Tokio, “Energy carriers and conversion systems.,” 2009.67. S. Koomson and C. G. Lee, “Lifetime expectancy of molten carbonate fuel cells: Part II. Cell life simulation using bench and coin-type cells,” Int. J. Hydrogen Energy, Aug. 2020, doi: 10.1016/j.ijhydene.2020.07.217.68. T. Wejrzanowski et al., “Metallic foam supported electrodes for molten carbonate fuel cells,” Mater. Des., vol. 193, p. 108864, Aug. 2020, doi: 10.1016/j.matdes.2020.108864.69. L. Kouchachvili and M. Ikura, “Performance of direct carbon fuel cell,” Int. J. Hydrogen Energy, vol. 36, no. 16, pp. 10263–10268, Aug. 2011, doi: 10.1016/j.ijhydene.2010.10.036.70. L. Xing, X. Bai, Y. Gao, and Z. Cao, “Improving clean electrical power generation: A theoretical modelling analysis of a molten sodium hydroxide direct carbon fuel cell with low pollution,” J. Clean. Prod., p. 124623, Oct. 2020, doi:10.1016/j.jclepro.2020.124623.71. I. Filahi, M. Hasnaoui, A. Amahmid, A. El Mansouri, M. Alouah, and Y. Dahani, “Multiple-relaxation-time Lattice-Boltzmann simulation of direct carbon fuel cell,” in Materials Today: Proceedings, 2020, vol. 27, pp. 3157–3160, doi:10.1016/j.matpr.2020.03.831.72. H. J. Kim et al., “Ru/Samaria-doped ceria gradient cermet anode for direct-methane solid oxide fuel cell,” Appl. Surf. Sci., vol. 538, p. 148105, Feb. 2021, doi: 10.1016/j.apsusc.2020.148105.73. R. J. Braun, S. Kameswaran, J. Yamanis, and E. Sun, “Highly efficient IGFC hybrid power systems employing bottoming organic rankine cycles with optional carbon capture,” J. Eng. Gas Turbines Power, vol. 134, no. 2, Feb. 2012, doi: 10.1115/1.4004374.74. M. Ma, X. Yang, J. Qiao, W. Sun, Z. Wang, and K. Sun, “Progress and challenges of carbon-fueled solid oxide fuel cells anode,” Journal of Energy Chemistry, vol. 56. Elsevier B.V., pp. 209–222, May-2021, doi: 10.1016/j.jechem.2020.08.013.75. C. M. Kalamaras, A. M. Efstathiou, Y. Al-Assaf, and A. Poullikkas, “Hydrogen Production Technologies: Current State and Future Developments,” Conf. Pap. Energy, vol. 2013, 2013, doi: 10.1155/2013/690627.76. “Hydrogen Production: Natural Gas Reforming-Department of Energy,” Energy Efficiency & Renewable Energy. .77. G. W. Crabtree, Mildred S. Dresselhaus, and Michelle V. Buchanan., “The Hydrogen Energy,” Phys. Today, vol. 57, pp. 39–44, 2004.78. B. Anzelmo, J. Wilcox, and S. Liguori, “Hydrogen production via natural gas steam reforming in a Pd-Au membrane reactor. Comparison between methane and natural gas steam reforming reactions,” J. Memb. Sci., vol. 568, pp. 113–120, Dec. 2018, doi:10.1016/j.memsci.2018.09.054.79. S. Park, J. Yoo, S. J. Han, J. H. Song, E. J. Lee, and I. K. Song, “Steam reforming of liquefied natural gas (LNG) for hydrogen production over nickel–boron–alumina xerogel catalyst,” Int. J. Hydrogen Energy, vol. 42, no. 22, pp. 15096–15106, Jun. 2017, doi:10.1016/j.ijhydene.2017.04.282.80. K. Y. Koo, H. J. Eom, S. C. Kwon, U. H. Jung, and W. L. Yoon, “Ru-coated metal monolith catalyst prepared by novel coating method for hydrogen production via natural gas steam reforming,” Catal. Today, vol. 293–294, pp. 129–135, Sep. 2017, doi:10.1016/j.cattod.2016.11.016.81. V. V Petrunin, I. V Marov, and N. G. Kodochigov, “Hydrogen energy and large scale hydrogen production with nuclear power plants based on high-temperature reactors,” J. Phys. Conf. Ser., vol. 1683, p. 042031, 2020, doi: 10.1088/1742-6596/1683/4/042031.82. L. Kaiwen, Y. Bin, and Z. Tao, “Economic analysis of hydrogen production from steam reforming process: A literature review,” Energy Sources, Part B: Economics, Planning and Policy, vol. 13, no. 2. Taylor and Francis Inc., pp. 109–115, Feb-2018, doi:10.1080/15567249.2017.1387619.83. E. Shagdar, B. G. Lougou, Y. Shuai, E. Ganbold, O. P. Chinonso, and H. Tan, “Process analysis of solar steam reforming of methane for producing low-carbon hydrogen,” RSC Adv., vol. 10, no. 21, pp. 12582–12597, Mar. 2020, doi: 10.1039/c9ra09835f.84. A. Iulianelli and A. Basile, “Development of membrane reactor technology for H2 production in reforming process for lowtemperature fuel cells,” in Current Trends and Future Developments on (Bio-) Membranes, Elsevier, 2020, pp. 287–305.85. M. Klug, “Pirólisis, un proceso para derretir biomasa,” Rev. Quim. PUCP , vol. 26, pp. 27–40, 2012.86. A. Demirbas and G. Arin, “An Overview of Biomass Pyrolysis,” Energy Sources, vol. 24, no. 5, pp. 471–482, May 2002, doi:10.1080/00908310252889979.87. K. Rajendran, R. Lin, D. M. Wall, and J. D. Murphy, “Influential Aspects in Waste Management Practices,” in Sustainable Resource Recovery and Zero Waste Approaches, Elsevier, 2019, pp. 65–78.88. H. Yang, R. Yan, H. Chen, D. H. Lee, D. T. Liang, and C. Zheng, “Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases,” Fuel Process. Technol., vol. 87, no. 10, pp. 935–942, Oct. 2006, doi: 10.1016/j.fuproc.2006.07.001.89. A. C. Martínez Villalba and L. D. Bohórquez León, “Evaluación de la eficiencia de biochar producido a partir de pirólisis lenta de bagazo de caña como medio filtrante para retención de fenoles en matriz acuosa,” Universidad de La Salle, Bogotá, 2017.90. X. Wang, W. Lv, L. Guo, M. Zhai, P. Dong, and G. Qi, “Energy and exergy analysis of rice husk high-temperature pyrolysis,” Int. J. Hydrogen Energy, vol. 41, no. 46, pp. 21121–21130, Dec. 2016, doi: 10.1016/j.ijhydene.2016.09.155.91. A. Tahmasebi, K. Maliutina, T. Matamba, J. H. Kim, C. H. Jeon, and J. Yu, “Pressurized entrained-flow pyrolysis of lignite for enhanced production of hydrogen-rich gas and chemical raw materials,” J. Anal. Appl. Pyrolysis, vol. 145, p. 104741, Jan. 2020, doi:10.1016/j.jaap.2019.104741.92. S. Niu et al., “Investigation into the yields and characteristics of products from lignite low-temperature pyrolysis under CO 2 and N 2 atmospheres,” J. Anal. Appl. Pyrolysis, vol. 138, pp. 161–169, Mar. 2019, doi: 10.1016/j.jaap.2018.12.020.93. C. ping Ye, H. jun Huang, X. hong Li, W. ying Li, and J. Feng, “The oxygen evolution during pyrolysis of HunlunBuir lignite under different heating modes,” Fuel, vol. 207, pp. 85–92, Nov. 2017, doi:10.1016/j.fuel.2017.06.062.94. B. P. BP, “BP Statistical Review of World Energy 2019,” 2019.95. H. D. Setiabudi, M. A. A. Aziz, S. Abdullah, L. P. Teh, and R. Jusoh, “Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review,” Int. J. Hydrogen Energy, Nov. 2019, doi: 10.1016/j.ijhydene.2019.10.141.96. K. Bizkarra, J. M. Bermudez, P. Arcelus-Arrillaga, V. L. Barrio, J. F. Cambra, and M. Millan, “Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming,” Int. J. Hydrogen Energy, vol. 43, no. 26, pp. 11706–11718, Jun. 2018, doi: 10.1016/j.ijhydene.2018.03.049.97. X. Dai, C. Wu, H. Li, and Y. Chen, “The fast pyrolysis of biomass in CFB reactor,” Energy and Fuels, vol. 14, no. 3, pp. 552–557, May 2000, doi: 10.1021/ef9901645.98. R. Yan, H. Yang, T. Chin, D. T. Liang, H. Chen, and C. Zheng, “Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes,” Combust. Flame, vol. 142, no. 1– 2, pp. 24–32, Jul. 2005, doi: 10.1016/j.combustflame.2005.02.005.99. R. Pitchai and K. Klier, “Partial Oxidation of Methane,” Catal. Rev., vol. 28, no. 1, pp. 13–88, Feb. 1986, doi:10.1080/03602458608068085.100.G. Pantaleo, V. La Parola, F. Deganello, R. K. Singha, R. Bal, and A. M. Venezia, “Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects,” Appl. Catal. B Environ., vol. 189, pp. 233–241, Jul. 2016, doi:10.1016/j.apcatb.2016.02.064.101.L. Li, S. He, Y. Song, J. Zhao, W. Ji, and C. T. Au, “Fine-tunable Ni@porous silica core-shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas,” J. Catal., vol. 288, pp. 54–64, Apr. 2012, doi:10.1016/j.jcat.2012.01.004.102.J. V. Gimeno, “Oxidación parcial de metano sobre catalizadores NiAl 2 O 4 /CeO 2,” Universidad del País Vasco, 2016.103.R. Ma, B. Xu, and X. Zhang, “Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—A review,” Catalysis Today, vol. 338. Elsevier B.V., pp. 18–30, Nov-2019, doi: 10.1016/j.cattod.2019.06.025.104.I. Dincer and C. Acar, “Review and evaluation of hydrogen production methods for better sustainability,” Int. J. Hydrogen Energy, vol. 40, no. 34, pp. 11094–11111, Aug. 2015, doi: 10.1016/j.ijhydene.2014.12.035.105.J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Cuihua Xuebao/Chinese J. Catal., vol. 39, no. 3, pp. 390–394, Mar. 2018, doi: 10.1016/S1872-2067(17)62949-8.106.Y. Wu et al., “Solar-driven self-powered alkaline seawater electrolysis via multifunctional earth-abundant heterostructures,” Chem. Eng. J., vol. 411, p. 128538, May 2021, doi:10.1016/j.cej.2021.128538.107.I. Vincent and D. Bessarabov, “Low cost hydrogen production by anion exchange membrane electrolysis: A review,” Renew. Sustain. Energy Rev., vol. 81, pp. 1690–1704, 2017, doi: 10.1016/j.rser.2017.05.258.108.F. Safari and I. Dincer, “A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production,” Energy Convers. Manag., vol. 205, p. 112182, 2019, doi: 10.1016/j.enconman.2019.112182.109.Y. Kim, E. Cho, and C. Hyun Ko, “Preparation of Ni-based eggshell-type catalyst on cylinder-shaped alumina pellets and its application for hydrogen production via steam methane reforming,” Int. J. Hydrogen Energy, vol. 44, no. 11, pp. 5314–5323, Feb. 2019, doi: 10.1016/j.ijhydene.2018.08.100.110.P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, Jan. 2017, doi: 10.1016/j.rser.2016.09.044.111.P. T. Williams, “Hydrogen and Carbon Nanotubes from PyrolysisCatalysis of Waste Plastics: A Review,” Waste and Biomass Valorization, vol. 12, no. 1, pp. 1–28, Jan. 2021, doi:10.1007/s12649-020-01054-w.112.S. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 442–454, Dec. 2019, doi: 10.1016/j.mset.2019.03.002.113.M. Liao et al., “Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al 2 O 3 catalyst,” Appl. Energy, vol. 252, p. 113435, Oct. 2019, doi:10.1016/j.apenergy.2019.113435.114.M. Liao et al., “Efficient hydrogen production from partial oxidation of propane over SiC doped Ni/Al2O3 catalyst,” in Energy Procedia, 2019, vol. 158, pp. 1772–1779, doi:10.1016/j.egypro.2019.01.419.115.A. Yilanci, I. Dincer, and H. K. Ozturk, “A review on solarhydrogen/fuel cell hybrid energy systems for stationary applications,” Prog. Energy Combust. Sci., vol. 35, no. 3, pp. 231–244, Jun. 2009, doi: 10.1016/j.pecs.2008.07.004116.J. Wang, “Barriers of scaling-up fuel cells: Cost, durability and reliability,” Energy, vol. 80, pp. 509–521, Feb. 2015, doi: 10.1016/j.energy.2014.12.007.117.K. L. Salcedo Rodriguez and F. A. PEREZ Ph D, “Hydrogen and palladium properties and ther role in alternative energetic sources development,” Sci. Tech., vol. 15, pp. 343–346, 2009.118.A. Causapé Rodriguez, “Las tecnologías de almacenamiento de hidrógeno en vehículos y su proyección de futuro,” An. mecánica y Electr., pp. 20–23, 2006.119.A. Mardani and H. Karimi Motaalegh Mahalegi, “Hydrogen enrichment of methane and syngas for MILD combustion,” Int. J. Hydrogen Energy, vol. 44, no. 18, pp. 9423–9437, Apr. 2019, doi: 10.1016/j.ijhydene.2019.02.072.120.K. Jurewicz, E. Frackowiak, and F. Béguin, “Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials,” Appl. Phys. A, vol. 78, no. 7, pp. 981–987, Apr. 2004, doi: 10.1007/s00339-003-2418-8.121.D. A. Crowl and Y. Do Jo, “The hazards and risks of hydrogen,” J. Loss Prev. Process Ind., vol. 20, no. 2, pp. 158–164, Mar. 2007, doi: 10.1016/j.jlp.2007.02.002.122.L. Yin and Y. Ju, “Process optimization and analysis of a novel hydrogen liquefaction cycle,” Int. J. Refrig., vol. 110, pp. 219–230, Feb. 2020, doi: 10.1016/j.ijrefrig.2019.11.004.123.S. Seyam, I. Dincer, and M. Agelin-Chaab, “Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system,” J. Clean. Prod., vol. 243, p. 118562, Jan. 2020, doi: 10.1016/j.jclepro.2019.118562.124.C. Yilmaz and O. Kaska, “Performance analysis and optimization of a hydrogen liquefaction system assisted by geothermal absorption precooling refrigeration cycle,” Int. J. Hydrogen Energy, vol. 43, no. 44, pp. 20203–20213, Nov. 2018, doi: 10.1016/j.ijhydene.2018.08.019.125.M. Mendoza Juárez, “Síntesis Evolutiva del Proceso de Licuefacción de Hidrocarburos,” Universidad de las Américas Puebla, Puebla, 2004.126.C. M. White, R. R. Steeper, and A. E. Lutz, “The hydrogen-fueled internal combustion engine: a technical review,” Int. J. Hydrogen Energy, vol. 31, no. 10, pp. 1292–1305, Aug. 2006, doi: 10.1016/j.ijhydene.2005.12.001.127.R. Moradi and K. M. Groth, “Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis,” International Journal of Hydrogen Energy, vol. 44, no. 23. Elsevier Ltd, pp. 12254–12269, May-2019, doi:10.1016/j.ijhydene.2019.03.041.128.S. Niaz, T. Manzoor, and A. H. Pandith, “Hydrogen storage: Materials, methods and perspectives,” Renewable and Sustainable Energy Reviews, vol. 50. Elsevier Ltd, pp. 457–469, May-2015, doi: 10.1016/j.rser.2015.05.011.129.M. D. J. Marín A., “Remoción de As en solución empleando biomasas no vivas de maleza acuática,” Universidad Autónoma del estado de México, Toluca, 2010.130.F. Granados Correa, “Sorción de radioisótopos en sólidos inorgánicos,” Universidad Autónoma Metropolitana iztapalapa, Ciudad de Mexico, 2004.131.F. Zhang, P. Zhao, M. Niu, and J. Maddy, “The survey of key technologies in hydrogen energy storage,” Int. J. Hydrogen Energy, vol. 41, no. 33, pp. 14535–14552, Sep. 2016, doi:10.1016/j.ijhydene.2016.05.293.132.K. Müller and W. Arlt, “Status and Development in Hydrogen Transport and Storage for Energy Applications,” Energy Technol., vol. 1, no. 9, pp. 501–511, Sep. 2013, doi: 10.1002/ente.201300055.133.U. Sahaym and M. G. Norton, “Advances in the application of nanotechnology in enabling a ‘hydrogen economy,’” J. Mater. Sci., vol. 43, no. 16, pp. 5395–5429, Aug. 2008, doi: 10.1007/s10853- 008-2749-0.134.Y. Jia, C. Sun, S. Shen, J. Zou, S. S. Mao, and X. Yao, “Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage,” Renew. Sustain. Energy Rev., vol. 44, pp. 289–303, Apr. 2015, doi:10.1016/j.rser.2014.12.032.135.B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1121–1140, Jun. 2007, doi: 10.1016/j.ijhydene.2006.11.022.136.M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, “Hydrogen storage using physisorption – materials demands,” Appl. Phys. A Mater. Sci. Process., vol. 72, no. 5, pp. 619–623, May 2001, doi: 10.1007/s003390100847.137.J. Ogden, A. M. Jaffe, D. Scheitrum, Z. McDonald, and M. Miller, “Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature,” Energy Policy, vol. 115, pp. 317–329, Apr. 2018, doi: 10.1016/j.enpol.2017.12.049.138.H. Barthelemy, M. Weber, and F. Barbier, “Hydrogen storage: Recent improvements and industrial perspectives,” Int. J. Hydrogen Energy, vol. 42, no. 11, pp. 7254–7262, Mar. 2017, doi:10.1016/j.ijhydene.2016.03.178.139.F. Colom, S and Weber, M and Barbier, “Storhy: A European development of composite vessels for 70MPa Hydrogen storage,” in World Hydrogen Energy Conference, 2008.140.C. J. Webb, “A review of catalyst-enhanced magnesium hydride as a hydrogen storage material,” J. Phys. Chem. Solids, vol. 84, no. 1, pp. 96–106, Sep. 2015, doi: 10.1016/j.jpcs.2014.06.014.141.A. Midilli, M. Ay, I. Dincer, and M. A. Rosen, “On hydrogen and hydrogen energy strategies I : Current status and needs,” Renewable and Sustainable Energy Reviews, vol. 9, no. 3. Elsevier Ltd, pp. 255–271, Jun-2005, doi: 10.1016/j.rser.2004.05.003.142.D. Schitea, M. Deveci, M. Iordache, K. Bilgili, İ. Z. Akyurt, and I. Iordache, “Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS,” Int. J. Hydrogen Energy, vol. 44, no. 16, pp. 8585–8600, Mar. 2019, doi:10.1016/j.ijhydene.2019.02.011.143.K. Mazloomi and C. Gomes, “Hydrogen as an energy carrier: Prospects and challenges,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5. Pergamon, pp. 3024–3033, Jun-2012, doi: 10.1016/j.rser.2012.02.028.144.E. David, “An overview of advanced materials for hydrogen storage,” in Journal of Materials Processing Technology, 2005, vol. 162–163, no. SPEC. ISS., pp. 169–177, doi:10.1016/j.jmatprotec.2005.02.027.145.L. Chen, R. Xiao, C. Cheng, G. Tian, S. Chen, and Y. Hou, “Thermodynamic analysis of the para-to-ortho hydrogen conversion in cryo-compressed hydrogen vessels for automotive applications,” Int. J. Hydrogen Energy, vol. 45, no. 46, pp. 24928–24937, Sep. 2020, doi: 10.1016/j.ijhydene.2020.05.252.146.R. Xiao, G. Tian, Y. Hou, S. Chen, C. Cheng, and L. Chen, “Effects of cooling-recovery venting on the performance of cryo-compressed hydrogen storage for automotive applications,” Appl. Energy, vol. 269, p. 115143, Jul. 2020, doi: 10.1016/j.apenergy.2020.115143.147.R. K. Ahluwalia et al., “Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications,” Int. J. Hydrogen Energy, vol. 35, no. 9, pp. 4171–4184, May 2010, doi: 10.1016/j.ijhydene.2010.02.074.148.R. K. Ahluwalia, J.-K. Peng, and T. Q. Hua, “Cryo-compressed hydrogen storage,” in Compendium of Hydrogen Energy, vol. 2, Ram B. Gupta, Angelo Basile, and T. Nejat Veziroğlu, Eds. Elsevier, 2016, pp. 119–145.149.Detlef Stolten, Remzi C. Samsun, and Nancy Garland, Fuel Cells: Data, Facts, and Figures, vol. 1. 2016.150.J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter, “How a century of ammonia synthesis changed the world,” Nat. Geosci., vol. 1, no. 10, pp. 636–639, Oct. 2008, doi: 10.1038/ngeo325.151.G. THOMAS, “Potential roles of ammonia in a hydrogen economy.,” 2006. .152.D. Kirk, R. E., Othmer, D. F., Grayson, M., & Eckroth, “No Title,” Encyclopedia of chemical technology Vol 23. 2001.153.M. Hirscher et al., “Materials for hydrogen-based energy storage – past, recent progress and future outlook,” J. Alloys Compd., vol. 827, p. 153548, Jun. 2020, doi: 10.1016/j.jallcom.2019.153548.154.Z. Xin et al., “Towards Hydrogen Storage through an Efficient Ruthenium‐Catalyzed Dehydrogenation of Formic Acid,” ChemSusChem, vol. 11, no. 13, pp. 2077–2082, Jul. 2018, doi: 10.1002/cssc.201800408.155.N. Mardini and Y. Bicer, “Direct synthesis of formic acid as hydrogen carrier from CO2 for cleaner power generation through direct formic acid fuel cell,” Int. J. Hydrogen Energy, vol. 46, no. 24, pp. 13050–13060, Apr. 2021, doi: 10.1016/j.ijhydene.2021.01.124.156.K. Müller, K. Brooks, and T. Autrey, “Hydrogen Storage in Formic Acid: A Comparison of Process Options,” Energy and Fuels, vol. 31, no. 11, pp. 12603–12611, Nov. 2017, doi:10.1021/acs.energyfuels.7b02997.157.R. van Putten, T. Wissink, T. Swinkels, and E. A. Pidko, “Fuelling the hydrogen economy: Scale-up of an integrated formic acid-topower system,” Int. J. Hydrogen Energy, vol. 44, no. 53, pp. 28533– 28541, Nov. 2019, doi: 10.1016/j.ijhydene.2019.01.153.158.A. K. Singh, S. Singh, and A. Kumar, “Hydrogen Energy Future with Formic Acid: A Renewable Chemical Hydrogen Storage System,” Catal. Sci. Technol., vol. 6, no. 1, pp. 1–3, 2016, doi: 10.1039/x0xx00000x.159.F. Joó, “Breakthroughs in hydrogen storage-formic acid as a sustainable storage material for hydrogen,” ChemSusChem, vol. 1, no. 10, pp. 805–808, Oct. 2008, doi: 10.1002/cssc.200800133.160.Y. Zhou, X. Zhu, B. Zhang, D. D. Ye, R. Chen, and Q. Liao, “High performance formic acid fuel cell benefits from Pd–PdO catalyst supported by ordered mesoporous carbon,” Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 29235–29245, Oct. 2020, doi:10.1016/j.ijhydene.2020.07.169.161.E. Ruse et al., “Hydrogen storage kinetics: The graphene nanoplatelet size effect,” Carbon N. Y., vol. 130, pp. 369–376, Apr. 2018, doi: 10.1016/j.carbon.2018.01.012.162.E. Varkaraki, N. Lymberopoulos, and A. Zachariou, “Hydrogen based emergency back-up system for telecommunication applications,” in Journal of Power Sources, 2003, vol. 118, no. 1–2, pp. 14–22, doi: 10.1016/S0378-7753(03)00056-9.163.G. Doucet, C. Etiévant, C. Puyenchet, S. Grigoriev, and P. Millet, “Hydrogen-based PEM auxiliary power unit,” Int. J. Hydrogen Energy, vol. 34, no. 11, pp. 4983–4989, Jun. 2009, doi:10.1016/j.ijhydene.2008.12.029.164.J. Fernández-Moreno, G. Guelbenzu, A. J. Martín, M. A. Folgado, P. Ferreira-Aparicio, and A. M. Chaparro, “A portable system powered with hydrogen and one single air-breathing PEM fuel cell,” Appl. Energy, vol. 109, pp. 60–66, Sep. 2013, doi:10.1016/j.apenergy.2013.03.076.165.G. Kyriakarakos, A. I. Dounis, S. Rozakis, K. G. Arvanitis, and G. Papadakis, “Polygeneration microgrids: A viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel,” Appl. Energy, vol. 88, no. 12, pp. 4517–4526, Dec. 2011, doi: 10.1016/j.apenergy.2011.05.038.166.T. Maeda et al., “Numerical simulation of the hydrogen storage with reaction heat recovery using metal hydride in the totalized hydrogen energy utilization system,” Int. J. Hydrogen Energy, vol. 36, no. 17, pp. 10845–10854, Aug. 2011, doi: 10.1016/j.ijhydene.2011.06.024.167.M. V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, and V. Yartys, “The use of metal hydrides in fuel cell applications,” Progress in Natural Science: Materials International, vol. 27, no. 1. Elsevier B.V., pp. 3–20, Feb-2017, doi: 10.1016/j.pnsc.2017.01.008.168.D. Parra, M. Gillott, and G. S. Walker, “Design, testing and evaluation of a community hydrogen storage system for end user applications,” Int. J. Hydrogen Energy, vol. 41, no. 10, pp. 5215– 5229, Mar. 2016, doi: 10.1016/j.ijhydene.2016.01.098.169.B. P. Tarasov et al., “Metal hydride hydrogen storage and compression systems for energy storage technologies,” Int. J. Hydrogen Energy, vol. 46, no. 25, pp. 13647–13657, Apr. 2020, doi: 10.1016/j.ijhydene.2020.07.085.170.C. Milanese et al., “Solid State Hydrogen Storage in Alanates and Alanate-Based Compounds: A Review,” Metals (Basel)., vol. 8, no. 8, p. 567, Jul. 2018, doi: 10.3390/met8080567.171.W. S. Khan et al., “Hydrogen storage and PL properties of novel Cd/CdO shelled hollow microspheres prepared under NH3 gas environment,” Int. J. Hydrogen Energy, vol. 38, no. 5, pp. 2332–2336, Feb. 2013, doi: 10.1016/j.ijhydene.2012.11.121.172.C. Iwakura, H. Inoue, and S. Nohara, “Hydrogen–Metal Systems: Electrochemical Reactions (Fundamentals and Applications),” in Encyclopedia of Materials: Science and Technology, P. V. K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, Ed. Elsevier, 2001, pp. 3923–3941.173.J. Jepsen et al., “Fundamental Material Properties of the 2LiBH4- MgH2 Reactive Hydride Composite for Hydrogen Storage: (I) Thermodynamic and Heat Transfer Properties,” Energies, vol. 11, no. 5, p. 1081, Apr. 2018, doi: 10.3390/en11051081.174.Y. Yang et al., “Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation,” Appl. Catal. B Environ., vol. 245, pp. 87–99, May 2019, doi:10.1016/j.apcatb.2018.12.049.175.D. Golberg et al., “Boron Nitride Nanotubes and Nanosheets,” ACS Nano, vol. 4, no. 6, pp. 2979–2993, Jun. 2010, doi:10.1021/nn1006495.176.M. V. Lototskyy, V. A. Yartys, B. G. Pollet, and R. C. Bowman, “Metal hydride hydrogen compressors: A review,” in International Journal of Hydrogen Energy, 2014, vol. 39, no. 11, pp. 5818–5851, doi: 10.1016/j.ijhydene.2014.01.158.177.B. P. Tarasov, M. S. Bocharnikov, Y. B. Yanenko, P. V Fursikov, K. B. Minko, and M. V Lototskyy, “Metal hydride hydrogen compressors for energy storage systems: layout features and results of long-term tests,” J. Phys. Energy, vol. 2, no. 2, p. 024005, Feb. 2020, doi: 10.1088/2515-7655/ab6465.178.P. T. Aakko-Saksa, C. Cook, J. Kiviaho, and T. Repo, “Liquid organic hydrogen carriers for transportation and storing of renewable energy – Review and discussion,” Journal of Power Sources, vol. 396. Elsevier B.V., pp. 803–823, Aug-2018, doi:10.1016/j.jpowsour.2018.04.011.179.F. Sotoodeh and K. J. Smith, “Structure sensitivity of dodecahydroN-ethylcarbazole dehydrogenation over Pd catalysts,” J. Catal., vol. 279, no. 1, pp. 36–47, Apr. 2011, doi: 10.1016/j.jcat.2010.12.022.180.R. B. Biniwale, S. Rayalu, S. Devotta, and M. Ichikawa, “Chemical hydrides: A solution to high capacity hydrogen storage and supply,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 360–365, Jan. 2008, doi:10.1016/j.ijhydene.2007.07.028.181.K. Mü Ller, R. Aslam, A. Fischer, K. Stark, P. Wasserscheid, and W. Arlt, “Experimental assessment of the degree of hydrogen loading for the dibenzyl toluene based LOHC system,” Int. J. Hydrogen Energy, vol. 41, no. 47, pp. 22097–22103, Dec. 2016, doi:10.1016/j.ijhydene.2016.09.196.182.D. Teichmann, W. Arlt, and P. Wasserscheid, “Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy,” Int. J. Hydrogen Energy, vol. 37, no. 23, pp. 18118–18132, Dec. 2012, doi: 10.1016/j.ijhydene.2012.08.066.183.P. M. Modisha, C. N. M. Ouma, R. Garidzirai, P. Wasserscheid, and D. Bessarabov, “The Prospect of Hydrogen Storage Using Liquid Organic Hydrogen Carriers,” Energy & Fuels, vol. 33, no. 4, pp. 2778–2796, Apr. 2019, doi: 10.1021/acs.energyfuels.9b00296.184.P. Preuster, C. Papp, and P. Wasserscheid, “Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy,” Acc. Chem. Res., vol. 50, no. 1, pp. 74–85, Jan. 2017, doi: 10.1021/acs.accounts.6b00474.185.M. Niermann, S. Drünert, M. Kaltschmitt, and K. Bonhoff, “Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain,” Energy Environ. Sci., vol. 12, no. 1, pp. 290–307, 2019, doi: 10.1039/C8EE02700E.186.X. Qi, C. Gao, Z. Zhang, S. Chen, B. Li, and S. Wei, “Production and characterization of hollow glass microspheres with high diffusivity for hydrogen storage,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1518–1530, Jan. 2012, doi:10.1016/j.ijhydene.2011.10.034.187.S. Dalai, S. Vijayalakshmi, P. Sharma, and K. Yeon Choo, “Magnesium and iron loaded hollow glass microspheres (HGMs) for hydrogen storage,” Int. J. Hydrogen Energy, vol. 39, pp. 16451– 16458, Oct. 2014, doi: 10.1016/j.ijhydene.2014.03.062.188.M. Zarezadeh Mehrizi, J. Abdi, M. Rezakazemi, and E. Salehi, “A review on recent advances in hollow spheres for hydrogen storage,” Int. J. Hydrogen Energy, vol. 45, no. 35, pp. 17583–17604, 2020, doi: 10.1016/j.ijhydene.2020.04.201.189.D. K. Kohli, R. K. Khardekar, R. Singh, and P. K. Gupta, “Glass micro-container based hydrogen storage scheme,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 417–422, Jan. 2008, doi: 10.1016/j.ijhydene.2007.07.044.190.G. G. Wicks, L. K. Heung, and R. F. Schumacher, “Microspheres and microworlds,” Am. Ceram. Soc. Bull., vol. 87, no. 6, pp. 23–28, Jun. 2008.191.J. E. Shelby, F.C. Raszewski, and M.M. Hall, Fuels-hydrogen storage: hydrogen storage in glass microspheres, Encyclopedia of Electrochemical Power Sources. 2013.192.R. Singh, A. Altaee, and S. Gautam, “Nanomaterials in the advancement of hydrogen energy storage,” Heliyon, vol. 6, no. 7, p. e04487, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04487.193.S. H. Jhi, Y. K. Kwon, K. Bradley, and J. C. P. Gabriel, “Hydrogen storage by physisorption: Beyond carbon,” Solid State Commun., vol. 129, no. 12, pp. 769–773, Mar. 2004, doi: 10.1016/j.ssc.2003.12.032.194.H. Akasaka et al., “Hydrogen storage ability of porous carbon material fabricated from coffee bean wastes,” Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 580–585, 2011, doi: 10.1016/j.ijhydene.2010.09.102.195.S. J. Yang, H. Jung, T. Kim, and C. R. Park, “Recent advances in hydrogen storage technologies based on nanoporous carbon materials,” Prog. Nat. Sci. Mater. Int., vol. 22, no. 6, pp. 631–638, Dec. 2012, doi: 10.1016/j.pnsc.2012.11.006.196.R. Ströbel, J. Garche, P. T. Moseley, L. Jörissen, and G. Wolf, “Hydrogen storage by carbon materials,” J. Power Sources, vol. 159, pp. 781–801, 2006, doi: 10.1016/j.jpowsour.2006.03.047.197.B. J. Kim and S. J. Park, “Preparation of nanoporous carbons from graphite nanofibres,” Nanotechnology, vol. 17, no. 17, pp. 4395–4398, Aug. 2006, doi: 10.1088/0957-4484/17/17/018.198.M. Yoon, S. Yang, E. Wang, and Z. Zheng, “Charged fullerenes as high-capacity hydrogen storage media,” Nano Lett., vol. 7, no. 9, pp. 2578–2583, Sep. 2007, doi: 10.1021/nl070809a.199.C. Liu, Y. Chen, C.-Z. Wu, S.-T. Xu, and H.-M. Cheng, “Hydrogen storage in carbon nanotubes revisited,” Carbon N. Y., vol. 48, no. 2, pp. 452–455, 2010, doi: 10.1016/j.carbon.2009.09.060.200.Y. Yü Rü M, A. Taralp, and T. Nejat Veziroglu, “Storage of hydrogen in nanostructured carbon materials,” Int. J. Hydrogen Energy, vol. 34, pp. 3784–3798, Mar. 2009, doi:10.1016/j.ijhydene.2009.03.001.201.H. C. J. Zhou and S. Kitagawa, “Metal-Organic Frameworks (MOFs),” Chem. Soc. Rev., vol. 43, no. 16, pp. 5415–5418, Aug. 2014, doi: 10.1039/c4cs90059f.202.H. C. Zhou, J. R. Long, and O. M. Yaghi, “Introduction to metalorganic frameworks,” Chemical Reviews, vol. 112, no. 2. American Chemical Society, pp. 673–674, Feb-2012, doi: 10.1021/cr300014x.203.G. Choubey, W. Huang, L. Yan, H. Babazadeh, and K. Pandey, “Hydrogen fuel in scramjet engines-A brief review,” Int. J. Hydrogen Energy, vol. 45, no. 33, pp. 16799–16815, Jun. 2020, doi: 10.1016/j.ijhydene.2020.04.086.204.P. Kumar, R. Britter, and N. Gupta, “Hydrogen Fuel: Opportunities and Barriers,” J. Fuel Cell Sci. Technol., vol. 6, no. 2, May 2009, doi:10.1115/1.3005384.205.Y. S. H. Najjar, “Hydrogen safety: The road toward green technology,” International Journal of Hydrogen Energy, vol. 38, no. 25. Elsevier Ltd, pp. 10716–10728, Aug-2013, doi: 10.1016/j.ijhydene.2013.05.126.206.D. Cecere, E. Giacomazzi, and A. Ingenito, “A review on hydrogen industrial aerospace applications,” Int. J. Hydrogen Energy, vol. 39, no. 20, pp. 10731–10747, Jul. 2014, doi: 10.1016/j.ijhydene.2014.04.126.207.T. Hübert, L. Boon-Brett, and W. J. Buttner, Sensors for Safety and Process Control in Hydrogen Technologies - Thomas Hübert, Lois Boon-Brett, William Buttner - Google Libros, Ilustrada., vol. 1. New York: CRC Press, 2018.208.T. Hübert, L. Boon-Brett, G. Black, and U. Banach, “Hydrogen sensors-A review,” Sensors Actuators, B Chem., vol. 157, no. 2, pp. 329–352, 2011, doi: 10.1016/j.snb.2011.04.070.209.A. Kumar et al., “Hydrogen selective gas sensor in humid environment based on polymer coated nanostructured-doped tin oxide,” Sensors Actuators B, vol. 155, pp. 884–892, Jul. 2011, doi: 10.1016/j.snb.2011.01.065.210.H. Hadef, B. Negrou, T. as Gonz alez Ayuso, M. ebarek Djebabra, M. Ramadan, and M. Ben Boulaid -Batna, “Preliminary hazard identification for risk assessment on a complex system for hydrogen production h i g h l i g h t s,” Int. J. Hydrogen Energy, vol. 45, no.20, pp. 11855–11865, Apr. 2019, doi:10.1016/j.ijhydene.2019.10.162.211.W. Cao et al., “Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container,” Fuel, vol. 290, p. 120034, Apr. 2021, doi: 10.1016/j.fuel.2020.120034.212.Y. Zhang et al., “Dynamic hazard evaluation of explosion severity for premixed hydrogen–air mixtures in a spherical pressure vessel,” Fuel, vol. 261, p. 116433, Feb. 2020, doi: 10.1016/j.fuel.2019.116433.213.I. Ivanov, A. M. Baranov, S. Akbari, S. Mironov, and E. Karpova, “Methodology for estimating potential explosion hazard of hydrocarbon with hydrogen mixtures without identifying gas composition,” Sensors Actuators, B Chem., vol. 293, pp. 273–280, Aug. 2019, doi: 10.1016/j.snb.2019.05.001.214.B. J. Lee and I. S. Jeung, “Numerical study of spontaneous ignition of pressurized hydrogen released by the failure of a rupture disk into a tube,” Int. J. Hydrogen Energy, vol. 34, no. 20, pp. 8763–8769, Oct. 2009, doi: 10.1016/j.ijhydene.2009.08.034.215.I. Darmadi, F. A. A. Nugroho, and C. Langhammer, “HighPerformance Nanostructured Palladium-Based Hydrogen Sensors - Current Limitations and Strategies for Their Mitigation,” ACS Sensors, vol. 5, no. 11, pp. 3306–3327, Nov. 2020, doi:10.1021/acssensors.0c02019.216.J. Lee, H. Koo, S. Y. Kim, S. J. Kim, and W. Lee, “Electrostatic spray deposition of chemochromic WO3-Pd sensor for hydrogen leakage detection at room temperature,” Sensors Actuators, B Chem., vol. 327, p. 128930, Jan. 2021, doi: 10.1016/j.snb.2020.128930.217.W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, “An overview of hydrogen safety sensors and requirements,” Int. J. Hydrogen Energy, vol. 36, no. 3, pp. 2462–2470, Feb. 2011, doi: 10.1016/j.ijhydene.2010.04.176.218.L. Zhou, F. Kato, N. Nakamura, Y. Oshikane, A. Nagakubo, and H. Ogi, “MEMS hydrogen gas sensor with wireless quartz crystal resonator,” Sensors Actuators, B Chem., vol. 334, p. 129651, May 2021, doi: 10.1016/j.snb.2021.129651.219.I. C. Tolias et al., “Best practice guidelines in numerical simulations and CFD benchmarking for hydrogen safety applications,” Int. J. Hydrogen Energy, vol. 44, no. 17, pp. 9050–9062, Apr. 2019, doi: 10.1016/j.ijhydene.2018.06.005.ORIGINALA Review of History, Production and Storage of Hydrogen.pdfA Review of History, Production and Storage of Hydrogen.pdfapplication/pdf1025263https://repositorio.cuc.edu.co/bitstream/11323/8991/1/A%20Review%20of%20History%2c%20Production%20and%20Storage%20of%20Hydrogen.pdf6bf87ce330a64ac4e890e689caa0ba3dMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8991/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8991/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILA Review of History, Production and Storage of Hydrogen.pdf.jpgA Review of History, Production and Storage of Hydrogen.pdf.jpgimage/jpeg70333https://repositorio.cuc.edu.co/bitstream/11323/8991/4/A%20Review%20of%20History%2c%20Production%20and%20Storage%20of%20Hydrogen.pdf.jpg999300506e4ff72ea32bc9f79a421f23MD54open accessTEXTA Review of History, Production and Storage of Hydrogen.pdf.txtA Review of History, Production and Storage of Hydrogen.pdf.txttext/plain91104https://repositorio.cuc.edu.co/bitstream/11323/8991/5/A%20Review%20of%20History%2c%20Production%20and%20Storage%20of%20Hydrogen.pdf.txt498f26fb593428df6232d6daf7d5875aMD55open access11323/8991oai:repositorio.cuc.edu.co:11323/89912023-12-14 17:10:55.862CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==