Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis

A porous activated carbon from Hovenia dulcis was prepared using zinc chloride (ZnCl2) as an activating agent and applied to remove diuron in aqueous solutions. The carbon presented a smooth and regular surface, with an area of 898 m² g−1, narrow pores of average diameter equal to 1.242 nm, and volu...

Full description

Autores:
georgin, jordana
Dison S.P., Franco
Netto, Matias S.
Gama, Brígida M.V.
Pinto Fernandes, Daniel
Sepúlveda, Pamela
Silva Oliveira, Luis Felipe
Mieli, Lucas
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10765
Acceso en línea:
https://hdl.handle.net/11323/10765
https://repositorio.cuc.edu.co/
Palabra clave:
Herbicide
Adsorption
Activated carbon
Mass transfer
Hovenia dulcis
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_566603f068552ec5c70b288f0751bd95
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10765
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
title Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
spellingShingle Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
Herbicide
Adsorption
Activated carbon
Mass transfer
Hovenia dulcis
title_short Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
title_full Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
title_fullStr Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
title_full_unstemmed Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
title_sort Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis
dc.creator.fl_str_mv georgin, jordana
Dison S.P., Franco
Netto, Matias S.
Gama, Brígida M.V.
Pinto Fernandes, Daniel
Sepúlveda, Pamela
Silva Oliveira, Luis Felipe
Mieli, Lucas
dc.contributor.author.none.fl_str_mv georgin, jordana
Dison S.P., Franco
Netto, Matias S.
Gama, Brígida M.V.
Pinto Fernandes, Daniel
Sepúlveda, Pamela
Silva Oliveira, Luis Felipe
Mieli, Lucas
dc.subject.proposal.eng.fl_str_mv Herbicide
Adsorption
Activated carbon
Mass transfer
Hovenia dulcis
topic Herbicide
Adsorption
Activated carbon
Mass transfer
Hovenia dulcis
description A porous activated carbon from Hovenia dulcis was prepared using zinc chloride (ZnCl2) as an activating agent and applied to remove diuron in aqueous solutions. The carbon presented a smooth and regular surface, with an area of 898 m² g−1, narrow pores of average diameter equal to 1.242 nm, and volume of 0.296 cm3 g−1. Adsorption was favored by increasing the pH and temperature. Isothermal curves formed a characteristic plateau of the Langmuir monolayer isotherm. Thermodynamic results indicated that herbicide adsorption was spontaneous, favorable, and endothermic (ΔH0 = 35.9093 kJ mol−1). The decay of the diuron concentration displays that equilibrium is attained in 120 min. The best results were obtained at pH 6, temperature of 328 K and 200 rpm and C0 of 200 mg·L−1. Langmuir model had the best adjustment, obtaining maximum adsorption capacity of 96.68 mg·g−1. Pore volume and surface diffusion model (PVSDM) was suitably represent the decline comportment of diuron. The adsorption mechanism was rate controlled by the external and internal mass transfer. In the treatment of a river water sample contaminated with diuron, activated carbon revealed high performance, reaching 95% removal of the emerging pollutant.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12
dc.date.accessioned.none.fl_str_mv 2024-02-21T22:54:35Z
dc.date.available.none.fl_str_mv 2024-12
2024-02-21T22:54:35Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Brígida M.V. Gama, Daniel Pinto Fernandes, Pamela Sepúlveda, Luis F.O. Silva, Lucas Meili, Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 654, 2022, 129900, ISSN 0927-7757, https://doi.org/10.1016/j.colsurfa.2022.129900
dc.identifier.issn.spa.fl_str_mv 0927-7757
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10765
dc.identifier.doi.none.fl_str_mv 10.1016/j.colsurfa.2022.129900
dc.identifier.eissn.spa.fl_str_mv 1873-4359
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Brígida M.V. Gama, Daniel Pinto Fernandes, Pamela Sepúlveda, Luis F.O. Silva, Lucas Meili, Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 654, 2022, 129900, ISSN 0927-7757, https://doi.org/10.1016/j.colsurfa.2022.129900
0927-7757
10.1016/j.colsurfa.2022.129900
1873-4359
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10765
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Colloids and Surfaces A: Physicochemical and Engineering Aspects
dc.relation.references.spa.fl_str_mv [1] K.E. Hall, C. Ray, S.J. Ki, K.A. Spokas, W.C. Koskinen, Pesticide sorption and leaching potential on three Hawaiian soils, J. Environ. Manag. 159 (2015) 227–234, https://doi.org/10.1016/j.jenvman.2015.04.046.
[2] A.El Imache, A. Dahchour, B. Elamrani, S. Dousset, F. Pozzonni, L. Guzzella, Leaching of diuron, linuron and their main metabolites in undisturbed field lysimeters, J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 44 (1) (2009) 31–37, https://doi.org/10.1080/03601230802519579.
[3] R. Loos, B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-wide survey of polar organic persistent pollutants in European river waters, Environ. Pollut. 157 (2) (2009) 561–568, https://doi.org/10.1016/j.envpol.2008.09.020.
[4] M.H. Lamoree, C.P. Swart, A. Van Der Horst, B. Van Hattum, Determination of diuron and the antifouling paint biocide irgarol 1051 in dutch marinas and coastal waters, J. Chromatogr. A 970 (1–2) (2002) 183–190, https://doi.org/10.1016/ S0021-9673(02)00878-6.
[5] B.M. Muendo, V.O. Shikuku, Z.M. Getenga, J.O. Lalah, S.O. Wandiga, M. Rothballer, Adsorption-desorption and leaching behavior of diuron on selected kenyan agricultural soils, Heliyon 7 (2) (2021), e06073, https://doi.org/10.1016/ j.heliyon.2021.e06073.
[6] E.C. Catalkaya, F. Kargi, Advanced oxidation of diuron by photo-fenton treatment as a function of operating parameters, J. Environ. Eng. 134 (12) (2008) 1006–1013, https://doi.org/10.1061/(asce)0733-9372(2008)134:12(1006).
[7] G.C. Chen, X.Q. Shan, Z.G. Pei, H. Wang, L.R. Zheng, J. Zhang, Y.N. Xie, Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead, J. Hazard. Mater. 188 (1–3) (2011) 156–163, https://doi.org/10.1016/j. jhazmat.2011.01.095.
[8] J. Dusek, M. Sanda, B. Loo, C. Ray, Field leaching of pesticides at five test sites in Hawaii: study description and results, Pest Manag. Sci. 66 (6) (2010) 596–611, https://doi.org/10.1002/ps.1914.
[9] L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo, Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron: chemical activation as alternative route for preparation of activated carbon from baobab seeds hulls and adsorption, Sci. Afr. 9 (2020), e00476, https://doi.org/10.1016/J.SCIAF.2020. E00476.
[10] A.M. Mohammed, M. Huovinen, K.H. Vah¨ akangas, ¨ Toxicity of diuron metabolites in human cells, Environ. Toxicol. Pharmacol. 78 (April) (2020), 103409, https:// doi.org/10.1016/j.etap.2020.103409.
[11] M. Zbair, K. Ainassaari, Z.El Assal, S. Ojala, N.El Ouahedy, R.L. Keiski, M. Bensitel, R. Brahmi, Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol a, and diuron adsorption by response surface methodology, Environ. Sci. Pollut. Res. 9 (35) (2018) 35657–35671, https://doi. org/10.1007/s11356-018-3455-3.
[12] A. Elouahli, M. Zbair, Z. Anfar, H.A. Ahsaine, H. Khallok, R. Chourak, Z. Hatim, Apatitic tricalcium phosphate powder: high sorption capacity of hexavalent chromium removal, Surf. Interfaces 13 (2018) 139–147, https://doi.org/10.1016/ j.surfin.2018.09.006.
[13] N. Ouasfi, M. Zbair, S. Bouzikri, Z. Anfar, M. Bensitel, H. Ait Ahsaine, E. Sabbar, L. Khamliche, Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights, RSC Adv. 9 (17) (2019) 9792–9808, https://doi.org/10.1039/C9RA01086F.
[14] P. Boguta, Z. Sokołowska, K. Skic, A. Tomczyk, Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste, Fuel 256 (July) (2019), 115893, https://doi.org/ 10.1016/j.fuel.2019.115893.
[15] S. Kopachon, K. Suriya, K. Hardwick, G. Pakaad, J.F. Maxwell, V. Anusarnsunthorn, D. Blakesley, N.C. Garwood, S. Elliot, Forest restoration research in Northern Thailand, 1. The fruits, Seeds and Seedlings of Hovenia dulcis Thunb. (Rhamnaceae) 44, The Natural History Bulletin of the Siam Society, 1996, pp. 41–52.
[16] B. Yang, Y. Luo, Q. Wu, Q. Yang, J. Kan, Hovenia dulcis polysaccharides: influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities, Int. J. Biol. Macromol. 148 (2020) 1010–1020, https://doi. org/10.1016/j.ijbiomac.2020.01.006.
[17] D.L. Padilha, A.C. Loregian, J.C. Budke, Forest fragmentation does not matter to invasions by Hovenia dulcis, Biodivers. Conserv. 24 (9) (2015) 2293–2304, https://doi.org/10.1007/s10531-015-0930-8.
[18] R.D. Zenni, R.S. Ziller, Visao geral das plantas exoticas invasoras no brasil, Rev. Bras. Bot. 34 (3) (2011) 431–446, https://doi.org/10.1590/S0100- 84042011000300016.
[19] T.K. Hyun, S.H. Eom, C.Y. Yu, T. Roitsch, Hovenia dulcis - an asian traditional herb, Planta Med 76 (10) (2010) 943–949, https://doi.org/10.1055/s-0030- 1249776.
[20] L. Kuglerova, ´ L. García, I. Pardo, Y. Mottiar, J.S. Richardson, Does leaf litter from invasive plants contribute the same support of a stream ecosystem function as native vegetation? Ecosphere 8 (4) (2017) https://doi.org/10.1002/ecs2.1779.
[21] S. Medina-Villar, A. ´ Alonso, P. Castro-Díez, M.E. P´erez-Corona, Allelopathic potentials of exotic invasive and native trees over coexisting understory species: the soil as modulator, Plant Ecol. 218 (5) (2017) 579–594, https://doi.org/ 10.1007/s11258-017-0713-2.
[22] A.F. Figueiredo, F.G. Augusto, L.D. Coletta, P.J. Duarte-Neto, E.A. Mazzi, L. A. Martinelli, Comparison of microbial processing of brachiaria brizantha, a c4 invasive species and a rainforest species in tropical streams of the atlantic forest of South-Eastern Brazil, Mar. Freshw. Res. 69 (9) (2018) 1397–1407, https://doi.org/ 10.1071/MF17080.
[23] K. Mohanty, D. Das, M.N. Biswas, Preparation and characterization of activated carbons from sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater, Adsorption 12 (2) (2006) 119–132, https://doi. org/10.1007/s10450-006-0374-2.
[24] J. Georgin, M.S. Netto, D.S.P. Franco, D.G.A. Piccilli, K. da Boit Martinello, L.F. O. Silva, E.L. Foletto, G.L. Dotto, Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water, Environ. Sci. Pollut. Res. 29 (12) (2022) 16988–17000, https://doi.org/10.1007/S11356-021-16792-0.
[25] De, Y.L.; Salomon, ´ O.; Georgin, J.; Dison,⋅; Franco, S.P.; Matias,⋅; Netto, S.; Daniel,⋅; Piccilli, G.A.; Luiz Foletto,⋅Edson; Manera, C.; Godinho, M.; Perondi, D.; Guilherme,⋅; Dotto, L. Development of Activated Carbon from Schizolobium parahyba (Guapuruvu) Residues Employed for the Removal of Ketoprofen. Environ. Sci. Pollut. Res. 〈https://doi.org/10.1007/s11356–021-17422–5〉.
[26] H. Freundlich, Über Die adsorption in Losungen, ¨ Z. Phys. Chem. 57U (1) (1907), https://doi.org/10.1515/zpch-1907-5723.
[27] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, Am. Chem. Soc. 40 (1918) (1918) 1361–1403, https://doi.org/10.1021/ ja02242a004.
[28] Dubinin, M.M.; Astakhov, V.A.; Bering, B.P.; Gordeeva, V.A.; Dubinin, M.M.; Efimova, L.I.; Serpinskii, V.V. Development of Concepts of the Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents - Communication 4. Differential Heats and Entropies of Adsorption. Bull. Acad. Sci. USSR Div. Chem. Sci. 1971, 20 (1), 17–22. https://doi.org/10.1007/BF00849310.
[29] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. wrong use of equilibrium constant in the van’t hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.
[30] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (5) (1985) 799–807, https://doi.org/10.1016/0009-2509(85)85032-6.
[31] D.S.P. Franco, K. da Boit Martinello, J. Georgin, M.S. Netto, E.L. Foletto, L.F. O. Silva, G.S. dos Reis, G.L. Dotto, Pore volume and surface diffusion model (PVSDM) applied for single and binary dye adsorption systems, Chem. Eng. Res. Des. 182 (2022) 645–658, https://doi.org/10.1016/J.CHERD.2022.04.037.
[32] T. Furusawa, J.M. Smith, Fluid—particle and intraparticle mass transport rates in slurries, Ind. Eng. Chem. Fundam. 12 (2) (1973) 197–203, https://doi.org/ 10.1021/i160046a009.
[33] C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. 1 (2) (1955) 264–270, https://doi.org/10.1002/aic.690010222.
[34] S.R.S. Sastri, S. Mohanty, K.K. Rao, Liquid volume at normal boiling point, Can. J. Chem. Eng. 74 (1) (1996) 170–172, https://doi.org/10.1002/cjce.5450740122.
[35] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (Iii) (2020), 112758, https://doi.org/10.1016/j. molliq.2020.112758.
[36] L.F. Shampine, M.W. Reichelt, The MATLAB Ode Suite, SIAM J. Sci. Comput. 18 (1) (1997) 1–22, https://doi.org/10.1137/S1064827594276424.
[37] O. Üner, C. Torlak, C. Ozcan, ¨ Determination of heavy metals and organochlorine pesticides in the leaves and flowers from linden trees in kırklareli province, Sustainability 1 (4) (2018) 1–8, https://doi.org/10.24294/sf.v1i2.789.
[38] Y.L.D.O. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E. L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (1) (2021), https://doi.org/10.1016/j.jece.2020.104911.
[39] V.E. Efeovbokhan, E.E. Alagbe, B. Odika, R. Babalola, T.E. Oladimeji, O.G. Abatan, E.O. Yusuf, Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators, J. Phys. Conf. Ser. 1378 (3) (2019), https://doi.org/10.1088/1742-6596/1378/3/032035.
[40] X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, C. Hua, Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber, Ionics 22 (4) (2016) 545–553, https://doi.org/ 10.1007/s11581-015-1571-3.
[41] J. Georgin, Y.L. Salomon, ´ O. de, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Development of highly porous activated carbon from jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen, J. Environ. Chem. Eng. 9 (4) (2021), 105676.
[42] C.M. Kerkhoff, K. da Boit Martinello, D.S.P.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, B. Martinello, D.S.P. P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G. L. Dotto, K. da Boit Martinello, D.S.P.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/ 10.1016/j.molliq.2021.117184.
[43] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (5) (2021), 105927, https://doi.org/10.1016/j. jece.2021.105927.
[44] J. Georgin, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, M. Yilmaz, L.F.O. Silva, G.L. Dotto, Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water, J. Environ. Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j.jece.2021.107006.
[45] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus Bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106843.
[46] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (4) (1985) 603–619, https://doi.org/10.1351/ pac198557040603.
[47] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9–10) (2015) 1051–1069.
[48] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (Iii) (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011.
[49] Y.L. de O. Salomon, ´ J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S.S. Oliveira, D.S.P. P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y.L. Yamil, J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y. L. de O. Salomon, ´ J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S.S. Oliveira, D.S.P. P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of pacara earpod tree (Enterolobium Contortisilquum) and ironwood (Caesalpinia Leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (26) (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.
[50] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/J.ECOENV.2015.11.012.
[51] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197 (2014) 316–323, https://doi.org/10.1016/j.micromeso.2014.06.020.
[52] M.M. Hamed, M.M.S. Ali, M. Holiel, Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies, J. Environ. Radioact. 164 (2016) 113–124, https://doi.org/10.1016/j.jenvrad.2016.07.005.
[53] Agarwal, A.K.; Kadu, M.S.; Pandhurnekar, C.P.; Muthreja, I.L. Langmuir, Freundlich and BET Adsorption Isotherm Studies for Zinc Ions onto Coal Fly Ash. Int. J. Appl. or Innov. Eng. Manag. 2014, 3 (1), 64–71.
[54] M. Jayachandran, S. Kishore Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar, Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications, Mater. Lett. 301 (May) (2021), 130335, https://doi.org/10.1016/j.matlet.2021.130335.
[55] Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology, J. Chem. 2014 (6) (2014), https://doi.org/10.1155/2014/491912.
[56] P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto, Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus Albus, Environ. Sci. Pollut. Res. (2019), https://doi.org/10.1007/s11356-019-06353-x.
[57] H.A. Pereira, P.R.T. Hernandes, M.S. Netto, G.D. Reske, V. Vieceli, L.F.S. Oliveira, G.L. Dotto, Adsorbents for glyphosate removal in contaminated waters: a review, Environ. Chem. Lett. 19 (0123456789) (2020) 1525–1543, https://doi.org/ 10.1007/s10311-020-01108-4.
[58] F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, Low-cost activated carbon preparation from corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Ind. Crops Prod. 178 (October 2021) (2022), 114546, https://doi.org/10.1016/j. indcrop.2022.114546.
[59] E. Yagmur, Y. Gokce, S. Tekin, N.I. Semerci, Z. Aktas, Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2, Fuel 267 (February) (2020), 117232, https://doi.org/ 10.1016/j.fuel.2020.117232.
[60] C.A. Igwegbe, O.D. Onukwuli, J.O. Ighalo, P.U. Okoye, Adsorption of cationic dyes on dacryodes edulis seeds activated carbon modified using phosphoric acid and sodium chloride, Environ. Process. 7 (4) (2020) 1151–1171, https://doi.org/ 10.1007/S40710-020-00467-Y.
[61] D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T, J. Solid State Chem. 269 (August 2018) (2019) 580–587, https://doi.org/10.1016/j.jssc.2018.10.035.
[62] X. Xing, W. Jiang, S. Li, X. Zhang, W. Wang, Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl 2 -H 3 PO 4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis, Waste Manag 89 (x) (2019) 64–72, https://doi.org/10.1016/j.wasman.2019.04.002.
[63] M. Fadel, N.M. Hassanein, M.M. Elshafei, A.H. Mostafa, M.A. Ahmed, H.M. Khater, Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae, HBRC J. 13 (1) (2017) 106–113, https://doi.org/10.1016/j. hbrcj.2014.12.006.
[64] M. Bahri, Al, L. Calvo, J. Lemus, M.A. Gilarranz, J. Palomar, J.J. Rodriguez, Mechanistic understanding of the behavior of diuron in the adsorption from water onto activated carbon, Chem. Eng. J. 198–199 (2012) 346–354, https://doi.org/ 10.1016/j.cej.2012.06.011.
[65] M. Barbosa De Andrade, A.C. Sestito Guerra, T.R. Tonial Dos Santos, L.F. Cusioli, R. De Souza Antonio, ˆ R. Bergamasco, Simplified synthesis of new GO-α-γ-Fe2O3-Sh adsorbent material composed of graphene oxide decorated with iron oxide nanoparticles applied for removing diuron from aqueous medium, J. Environ. Chem. Eng. 8 (4) (2020), 103903, https://doi.org/10.1016/j.jece.2020.103903.
[66] A. Wong, F.M. de Oliveira, C.R.T. Tarley, M. Del Pilar Taboada Sotomayor, Study on the cross-linked molecularly imprinted poly(Methacrylic Acid) and Poly(Acrylic Acid) towards selective adsorption of diuron, React. Funct. Polym. 100 (2) (2016) 26–36, https://doi.org/10.1016/j.reactfunctpolym.2016.01.006.
[67] E. Tchikuala, P. Mour˜ ao, J. Nabais, Valorisation of natural fibres from african baobab wastes by the production of activated carbons for adsorption of diuron, Procedia Eng. 200 (2017) 399–407, https://doi.org/10.1016/j. proeng.2017.07.056.
[68] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption processes for water treatment and purification, Adsorpt. Process. Water Treat. Purif. (No. July) (2017) 1–256, https://doi.org/10.1007/978-3-319-58136-1.
[69] G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (4) (2008) 399–447, https://doi. org/10.1016/j.progpolymsci.2007.11.001.
[70] P.S. Pauletto, G.L. Dotto, N.P.G. Salau, Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption, Chem. Eng. Res. Des. 157 (2020) 182–194, https://doi.org/10.1016/j.cherd.2020.02.031.
[71] S.J. Segovia-Sandoval, R. Ocampo-P´erez, M.S. Berber-Mendoza, R. Leyva-Ramos, A. Jacobo-Azuara, N.A. Medellín-Castillo, Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II, J. Water Process Eng. 25 (June) (2018) 45–53, https://doi.org/10.1016/j.jwpe.2018.06.007.
[72] R. Ocampo-P´erez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla, Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon, Adsorption 19 (5) (2013) 945–957, https://doi.org/10.1007/ s10450-013-9502-y.
[73] J. Moreno-P´erez, P.S. Pauletto, A.M. Cunha, A. ´ Bonilla-Petriciolet, N.P.G. Salau, G. L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/Biochar composite, Coll. Surf. A Physicochem. Eng. Asp. 614 (November 2020) (2021), https://doi.org/10.1016/j.colsurfa.2021.126170.
[74] M. Zbair, A. El Hadrami, A. Bellarbi, M. Monkade, A. Zradba, R. Brahmi, Herbicide diuron removal from aqueous solution by bottom ash: kinetics, isotherm, and thermodynamic adsorption studies, J. Environ. Chem. Eng. 8 (2) (2020), 103667, https://doi.org/10.1016/j.jece.2020.103667.
[75] J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou, X. Hu, Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution, Chem. Eng. J. 193–194 (2012) 339–347, https://doi.org/10.1016/j. cej.2012.04.051.
[76] S.K. Deokar, G.S. Bajad, P. Bhonde, R.P. Vijayakumar, S.A. Mandavgane, Adsorptive removal of diuron herbicide on carbon nanotubes synthesized from plastic waste, J. Polym. Environ. 2 (25) (2016) 165–175, https://doi.org/10.1007/ S10924-016-0794-3.
[77] E. Beltran-Flores, ´ J. Tor´ an, G. Caminal, P. Bl´ anquez, M. Sarr` a, The removal of diuron from agricultural wastewaters by trametes versicolor immobilized on pinewood in simple channel reactors, Sci. Total Environ. (2020) 728, https://doi. org/10.1016/j.scitotenv.2020.138414.
[78] F.M. de Souza, O.A.A. dos Santos, Adsorption of diuron from aqueous solution onto commercial organophilic clay: kinetic, equilibrium and thermodynamic study, Environ. Technol. 41 (5) (2020) 603–616, https://doi.org/10.1080/ 09593330.2018.1505967.
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 654
dc.rights.eng.fl_str_mv © 2022 Elsevier B.V. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier B.V. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0927775722016557
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a337c5b3-0d06-4f1b-b6bb-03495a8ca4b3/download
https://repositorio.cuc.edu.co/bitstreams/df12fe6a-70de-4d7a-8908-cf81eb1283f6/download
https://repositorio.cuc.edu.co/bitstreams/af3a40e5-ca9c-4d9d-bfe8-c61427e7ee5d/download
https://repositorio.cuc.edu.co/bitstreams/01971661-5a4f-4821-9275-17ec60f8216f/download
bitstream.checksum.fl_str_mv dcaab185dfd4c8d5505051e0fb690859
2f9959eaf5b71fae44bbf9ec84150c7a
02aa4baff78c9a4c2845fea9a40f2d6d
a85951d21806c082db586feb008f7394
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760667932229632
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfgeorgin, jordanaDison S.P., FrancoNetto, Matias S.Gama, Brígida M.V.Pinto Fernandes, DanielSepúlveda, PamelaSilva Oliveira, Luis FelipeMieli, Lucas2024-02-21T22:54:35Z2024-122024-02-21T22:54:35Z2022-12Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Brígida M.V. Gama, Daniel Pinto Fernandes, Pamela Sepúlveda, Luis F.O. Silva, Lucas Meili, Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 654, 2022, 129900, ISSN 0927-7757, https://doi.org/10.1016/j.colsurfa.2022.1299000927-7757https://hdl.handle.net/11323/1076510.1016/j.colsurfa.2022.1299001873-4359Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/A porous activated carbon from Hovenia dulcis was prepared using zinc chloride (ZnCl2) as an activating agent and applied to remove diuron in aqueous solutions. The carbon presented a smooth and regular surface, with an area of 898 m² g−1, narrow pores of average diameter equal to 1.242 nm, and volume of 0.296 cm3 g−1. Adsorption was favored by increasing the pH and temperature. Isothermal curves formed a characteristic plateau of the Langmuir monolayer isotherm. Thermodynamic results indicated that herbicide adsorption was spontaneous, favorable, and endothermic (ΔH0 = 35.9093 kJ mol−1). The decay of the diuron concentration displays that equilibrium is attained in 120 min. The best results were obtained at pH 6, temperature of 328 K and 200 rpm and C0 of 200 mg·L−1. Langmuir model had the best adjustment, obtaining maximum adsorption capacity of 96.68 mg·g−1. Pore volume and surface diffusion model (PVSDM) was suitably represent the decline comportment of diuron. The adsorption mechanism was rate controlled by the external and internal mass transfer. In the treatment of a river water sample contaminated with diuron, activated carbon revealed high performance, reaching 95% removal of the emerging pollutant.11 páginasapplication/pdfengElsevierNetherlandshttps://www.sciencedirect.com/science/article/pii/S0927775722016557Effective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcisArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colloids and Surfaces A: Physicochemical and Engineering Aspects[1] K.E. Hall, C. Ray, S.J. Ki, K.A. Spokas, W.C. Koskinen, Pesticide sorption and leaching potential on three Hawaiian soils, J. Environ. Manag. 159 (2015) 227–234, https://doi.org/10.1016/j.jenvman.2015.04.046.[2] A.El Imache, A. Dahchour, B. Elamrani, S. Dousset, F. Pozzonni, L. Guzzella, Leaching of diuron, linuron and their main metabolites in undisturbed field lysimeters, J. Environ. Sci. Heal. Part B Pestic. Food Contam. Agric. Wastes 44 (1) (2009) 31–37, https://doi.org/10.1080/03601230802519579.[3] R. Loos, B.M. Gawlik, G. Locoro, E. Rimaviciute, S. Contini, G. Bidoglio, EU-wide survey of polar organic persistent pollutants in European river waters, Environ. Pollut. 157 (2) (2009) 561–568, https://doi.org/10.1016/j.envpol.2008.09.020.[4] M.H. Lamoree, C.P. Swart, A. Van Der Horst, B. Van Hattum, Determination of diuron and the antifouling paint biocide irgarol 1051 in dutch marinas and coastal waters, J. Chromatogr. A 970 (1–2) (2002) 183–190, https://doi.org/10.1016/ S0021-9673(02)00878-6.[5] B.M. Muendo, V.O. Shikuku, Z.M. Getenga, J.O. Lalah, S.O. Wandiga, M. Rothballer, Adsorption-desorption and leaching behavior of diuron on selected kenyan agricultural soils, Heliyon 7 (2) (2021), e06073, https://doi.org/10.1016/ j.heliyon.2021.e06073.[6] E.C. Catalkaya, F. Kargi, Advanced oxidation of diuron by photo-fenton treatment as a function of operating parameters, J. Environ. Eng. 134 (12) (2008) 1006–1013, https://doi.org/10.1061/(asce)0733-9372(2008)134:12(1006).[7] G.C. Chen, X.Q. Shan, Z.G. Pei, H. Wang, L.R. Zheng, J. Zhang, Y.N. Xie, Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead, J. Hazard. Mater. 188 (1–3) (2011) 156–163, https://doi.org/10.1016/j. jhazmat.2011.01.095.[8] J. Dusek, M. Sanda, B. Loo, C. Ray, Field leaching of pesticides at five test sites in Hawaii: study description and results, Pest Manag. Sci. 66 (6) (2010) 596–611, https://doi.org/10.1002/ps.1914.[9] L.M. Ndjientcheu Yossa, S.K. Ouiminga, S.S. Sidibe, I.W.K. Ouedraogo, Synthesis of a cleaner potassium hydroxide-activated carbon from baobab seeds hulls and investigation of adsorption mechanisms for diuron: chemical activation as alternative route for preparation of activated carbon from baobab seeds hulls and adsorption, Sci. Afr. 9 (2020), e00476, https://doi.org/10.1016/J.SCIAF.2020. E00476.[10] A.M. Mohammed, M. Huovinen, K.H. Vah¨ akangas, ¨ Toxicity of diuron metabolites in human cells, Environ. Toxicol. Pharmacol. 78 (April) (2020), 103409, https:// doi.org/10.1016/j.etap.2020.103409.[11] M. Zbair, K. Ainassaari, Z.El Assal, S. Ojala, N.El Ouahedy, R.L. Keiski, M. Bensitel, R. Brahmi, Steam activation of waste biomass: highly microporous carbon, optimization of bisphenol a, and diuron adsorption by response surface methodology, Environ. Sci. Pollut. Res. 9 (35) (2018) 35657–35671, https://doi. org/10.1007/s11356-018-3455-3.[12] A. Elouahli, M. Zbair, Z. Anfar, H.A. Ahsaine, H. Khallok, R. Chourak, Z. Hatim, Apatitic tricalcium phosphate powder: high sorption capacity of hexavalent chromium removal, Surf. Interfaces 13 (2018) 139–147, https://doi.org/10.1016/ j.surfin.2018.09.006.[13] N. Ouasfi, M. Zbair, S. Bouzikri, Z. Anfar, M. Bensitel, H. Ait Ahsaine, E. Sabbar, L. Khamliche, Selected pharmaceuticals removal using algae derived porous carbon: experimental, modeling and DFT theoretical insights, RSC Adv. 9 (17) (2019) 9792–9808, https://doi.org/10.1039/C9RA01086F.[14] P. Boguta, Z. Sokołowska, K. Skic, A. Tomczyk, Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste, Fuel 256 (July) (2019), 115893, https://doi.org/ 10.1016/j.fuel.2019.115893.[15] S. Kopachon, K. Suriya, K. Hardwick, G. Pakaad, J.F. Maxwell, V. Anusarnsunthorn, D. Blakesley, N.C. Garwood, S. Elliot, Forest restoration research in Northern Thailand, 1. The fruits, Seeds and Seedlings of Hovenia dulcis Thunb. (Rhamnaceae) 44, The Natural History Bulletin of the Siam Society, 1996, pp. 41–52.[16] B. Yang, Y. Luo, Q. Wu, Q. Yang, J. Kan, Hovenia dulcis polysaccharides: influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities, Int. J. Biol. Macromol. 148 (2020) 1010–1020, https://doi. org/10.1016/j.ijbiomac.2020.01.006.[17] D.L. Padilha, A.C. Loregian, J.C. Budke, Forest fragmentation does not matter to invasions by Hovenia dulcis, Biodivers. Conserv. 24 (9) (2015) 2293–2304, https://doi.org/10.1007/s10531-015-0930-8.[18] R.D. Zenni, R.S. Ziller, Visao geral das plantas exoticas invasoras no brasil, Rev. Bras. Bot. 34 (3) (2011) 431–446, https://doi.org/10.1590/S0100- 84042011000300016.[19] T.K. Hyun, S.H. Eom, C.Y. Yu, T. Roitsch, Hovenia dulcis - an asian traditional herb, Planta Med 76 (10) (2010) 943–949, https://doi.org/10.1055/s-0030- 1249776.[20] L. Kuglerova, ´ L. García, I. Pardo, Y. Mottiar, J.S. Richardson, Does leaf litter from invasive plants contribute the same support of a stream ecosystem function as native vegetation? Ecosphere 8 (4) (2017) https://doi.org/10.1002/ecs2.1779.[21] S. Medina-Villar, A. ´ Alonso, P. Castro-Díez, M.E. P´erez-Corona, Allelopathic potentials of exotic invasive and native trees over coexisting understory species: the soil as modulator, Plant Ecol. 218 (5) (2017) 579–594, https://doi.org/ 10.1007/s11258-017-0713-2.[22] A.F. Figueiredo, F.G. Augusto, L.D. Coletta, P.J. Duarte-Neto, E.A. Mazzi, L. A. Martinelli, Comparison of microbial processing of brachiaria brizantha, a c4 invasive species and a rainforest species in tropical streams of the atlantic forest of South-Eastern Brazil, Mar. Freshw. Res. 69 (9) (2018) 1397–1407, https://doi.org/ 10.1071/MF17080.[23] K. Mohanty, D. Das, M.N. Biswas, Preparation and characterization of activated carbons from sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater, Adsorption 12 (2) (2006) 119–132, https://doi. org/10.1007/s10450-006-0374-2.[24] J. Georgin, M.S. Netto, D.S.P. Franco, D.G.A. Piccilli, K. da Boit Martinello, L.F. O. Silva, E.L. Foletto, G.L. Dotto, Woody residues of the grape production chain as an alternative precursor of high porous activated carbon with remarkable performance for naproxen uptake from water, Environ. Sci. Pollut. Res. 29 (12) (2022) 16988–17000, https://doi.org/10.1007/S11356-021-16792-0.[25] De, Y.L.; Salomon, ´ O.; Georgin, J.; Dison,⋅; Franco, S.P.; Matias,⋅; Netto, S.; Daniel,⋅; Piccilli, G.A.; Luiz Foletto,⋅Edson; Manera, C.; Godinho, M.; Perondi, D.; Guilherme,⋅; Dotto, L. Development of Activated Carbon from Schizolobium parahyba (Guapuruvu) Residues Employed for the Removal of Ketoprofen. Environ. Sci. Pollut. Res. 〈https://doi.org/10.1007/s11356–021-17422–5〉.[26] H. Freundlich, Über Die adsorption in Losungen, ¨ Z. Phys. Chem. 57U (1) (1907), https://doi.org/10.1515/zpch-1907-5723.[27] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, Am. Chem. Soc. 40 (1918) (1918) 1361–1403, https://doi.org/10.1021/ ja02242a004.[28] Dubinin, M.M.; Astakhov, V.A.; Bering, B.P.; Gordeeva, V.A.; Dubinin, M.M.; Efimova, L.I.; Serpinskii, V.V. Development of Concepts of the Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents - Communication 4. Differential Heats and Entropies of Adsorption. Bull. Acad. Sci. USSR Div. Chem. Sci. 1971, 20 (1), 17–22. https://doi.org/10.1007/BF00849310.[29] E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Piraj´ an, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. wrong use of equilibrium constant in the van’t hoof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq. 273 (2019) 425–434, https://doi.org/10.1016/j.molliq.2018.10.048.[30] R. Leyva-Ramos, C.J. Geankoplis, Model simulation and analysis of surface diffusion of liquids in porous solids, Chem. Eng. Sci. 40 (5) (1985) 799–807, https://doi.org/10.1016/0009-2509(85)85032-6.[31] D.S.P. Franco, K. da Boit Martinello, J. Georgin, M.S. Netto, E.L. Foletto, L.F. O. Silva, G.S. dos Reis, G.L. Dotto, Pore volume and surface diffusion model (PVSDM) applied for single and binary dye adsorption systems, Chem. Eng. Res. Des. 182 (2022) 645–658, https://doi.org/10.1016/J.CHERD.2022.04.037.[32] T. Furusawa, J.M. Smith, Fluid—particle and intraparticle mass transport rates in slurries, Ind. Eng. Chem. Fundam. 12 (2) (1973) 197–203, https://doi.org/ 10.1021/i160046a009.[33] C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. 1 (2) (1955) 264–270, https://doi.org/10.1002/aic.690010222.[34] S.R.S. Sastri, S. Mohanty, K.K. Rao, Liquid volume at normal boiling point, Can. J. Chem. Eng. 74 (1) (1996) 170–172, https://doi.org/10.1002/cjce.5450740122.[35] D.S.P. Franco, J. Vieillard, N.P.G. Salau, G.L. Dotto, Interpretations on the mechanism of In(III) adsorption onto chitosan and chitin: a mass transfer model approach, J. Mol. Liq. 304 (Iii) (2020), 112758, https://doi.org/10.1016/j. molliq.2020.112758.[36] L.F. Shampine, M.W. Reichelt, The MATLAB Ode Suite, SIAM J. Sci. Comput. 18 (1) (1997) 1–22, https://doi.org/10.1137/S1064827594276424.[37] O. Üner, C. Torlak, C. Ozcan, ¨ Determination of heavy metals and organochlorine pesticides in the leaves and flowers from linden trees in kırklareli province, Sustainability 1 (4) (2018) 1–8, https://doi.org/10.24294/sf.v1i2.789.[38] Y.L.D.O. Salomon, ´ J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E. L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4-dichlorophenoxyacetic acid herbicide in water using activated carbon derived from queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (1) (2021), https://doi.org/10.1016/j.jece.2020.104911.[39] V.E. Efeovbokhan, E.E. Alagbe, B. Odika, R. Babalola, T.E. Oladimeji, O.G. Abatan, E.O. Yusuf, Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators, J. Phys. Conf. Ser. 1378 (3) (2019), https://doi.org/10.1088/1742-6596/1378/3/032035.[40] X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, C. Hua, Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber, Ionics 22 (4) (2016) 545–553, https://doi.org/ 10.1007/s11581-015-1571-3.[41] J. Georgin, Y.L. Salomon, ´ O. de, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Development of highly porous activated carbon from jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen, J. Environ. Chem. Eng. 9 (4) (2021), 105676.[42] C.M. Kerkhoff, K. da Boit Martinello, D.S.P.P. Franco, M.S. Netto, J. Georgin, E. L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, B. Martinello, D.S.P. P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G. L. Dotto, K. da Boit Martinello, D.S.P.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A.A. Piccilli, L.F.O.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from butia capitata endocarp, J. Mol. Liq. 339 (2021), 117184, https://doi.org/ 10.1016/j.molliq.2021.117184.[43] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G. L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (5) (2021), 105927, https://doi.org/10.1016/j. jece.2021.105927.[44] J. Georgin, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, M. Yilmaz, L.F.O. Silva, G.L. Dotto, Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water, J. Environ. Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j.jece.2021.107006.[45] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G. A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus Bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ. Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106843.[46] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (4) (1985) 603–619, https://doi.org/10.1351/ pac198557040603.[47] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (9–10) (2015) 1051–1069.[48] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (Iii) (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011.[49] Y.L. de O. Salomon, ´ J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S.S. Oliveira, D.S.P. P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y.L. Yamil, J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S.S. Oliveira, D.S.P.P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Y. L. de O. Salomon, ´ J. Georgin, G.S. dos Reis, E.C. ´ Lima, M.L.S.S. Oliveira, D.S.P. P. Franco, M.S. Netto, D. Allasia, G.L. Dotto, Utilization of pacara earpod tree (Enterolobium Contortisilquum) and ironwood (Caesalpinia Leiostachya) seeds as low-cost biosorbents for removal of basic fuchsin, Environ. Sci. Pollut. Res. 27 (26) (2020) 33307–33320, https://doi.org/10.1007/s11356-020-09471-z.[50] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/J.ECOENV.2015.11.012.[51] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197 (2014) 316–323, https://doi.org/10.1016/j.micromeso.2014.06.020.[52] M.M. Hamed, M.M.S. Ali, M. Holiel, Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies, J. Environ. Radioact. 164 (2016) 113–124, https://doi.org/10.1016/j.jenvrad.2016.07.005.[53] Agarwal, A.K.; Kadu, M.S.; Pandhurnekar, C.P.; Muthreja, I.L. Langmuir, Freundlich and BET Adsorption Isotherm Studies for Zinc Ions onto Coal Fly Ash. Int. J. Appl. or Innov. Eng. Manag. 2014, 3 (1), 64–71.[54] M. Jayachandran, S. Kishore Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar, Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications, Mater. Lett. 301 (May) (2021), 130335, https://doi.org/10.1016/j.matlet.2021.130335.[55] Z. Xie, W. Guan, F. Ji, Z. Song, Y. Zhao, Production of biologically activated carbon from orange peel and landfill leachate subsequent treatment technology, J. Chem. 2014 (6) (2014), https://doi.org/10.1155/2014/491912.[56] P.T. Hernandes, M.L.S. Oliveira, J. Georgin, D.S.P. Franco, D. Allasia, G.L. Dotto, Adsorptive decontamination of wastewater containing methylene blue dye using golden trumpet tree bark (Handroanthus Albus, Environ. Sci. Pollut. Res. (2019), https://doi.org/10.1007/s11356-019-06353-x.[57] H.A. Pereira, P.R.T. Hernandes, M.S. Netto, G.D. Reske, V. Vieceli, L.F.S. Oliveira, G.L. Dotto, Adsorbents for glyphosate removal in contaminated waters: a review, Environ. Chem. Lett. 19 (0123456789) (2020) 1525–1543, https://doi.org/ 10.1007/s10311-020-01108-4.[58] F. Mbarki, T. Selmi, A. Kesraoui, M. Seffen, Low-cost activated carbon preparation from corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: study of methylene blue adsorption, stochastic isotherm and fractal kinetic, Ind. Crops Prod. 178 (October 2021) (2022), 114546, https://doi.org/10.1016/j. indcrop.2022.114546.[59] E. Yagmur, Y. Gokce, S. Tekin, N.I. Semerci, Z. Aktas, Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2, Fuel 267 (February) (2020), 117232, https://doi.org/ 10.1016/j.fuel.2020.117232.[60] C.A. Igwegbe, O.D. Onukwuli, J.O. Ighalo, P.U. Okoye, Adsorption of cationic dyes on dacryodes edulis seeds activated carbon modified using phosphoric acid and sodium chloride, Environ. Process. 7 (4) (2020) 1151–1171, https://doi.org/ 10.1007/S40710-020-00467-Y.[61] D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, Micro–mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T, J. Solid State Chem. 269 (August 2018) (2019) 580–587, https://doi.org/10.1016/j.jssc.2018.10.035.[62] X. Xing, W. Jiang, S. Li, X. Zhang, W. Wang, Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl 2 -H 3 PO 4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis, Waste Manag 89 (x) (2019) 64–72, https://doi.org/10.1016/j.wasman.2019.04.002.[63] M. Fadel, N.M. Hassanein, M.M. Elshafei, A.H. Mostafa, M.A. Ahmed, H.M. Khater, Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae, HBRC J. 13 (1) (2017) 106–113, https://doi.org/10.1016/j. hbrcj.2014.12.006.[64] M. Bahri, Al, L. Calvo, J. Lemus, M.A. Gilarranz, J. Palomar, J.J. Rodriguez, Mechanistic understanding of the behavior of diuron in the adsorption from water onto activated carbon, Chem. Eng. J. 198–199 (2012) 346–354, https://doi.org/ 10.1016/j.cej.2012.06.011.[65] M. Barbosa De Andrade, A.C. Sestito Guerra, T.R. Tonial Dos Santos, L.F. Cusioli, R. De Souza Antonio, ˆ R. Bergamasco, Simplified synthesis of new GO-α-γ-Fe2O3-Sh adsorbent material composed of graphene oxide decorated with iron oxide nanoparticles applied for removing diuron from aqueous medium, J. Environ. Chem. Eng. 8 (4) (2020), 103903, https://doi.org/10.1016/j.jece.2020.103903.[66] A. Wong, F.M. de Oliveira, C.R.T. Tarley, M. Del Pilar Taboada Sotomayor, Study on the cross-linked molecularly imprinted poly(Methacrylic Acid) and Poly(Acrylic Acid) towards selective adsorption of diuron, React. Funct. Polym. 100 (2) (2016) 26–36, https://doi.org/10.1016/j.reactfunctpolym.2016.01.006.[67] E. Tchikuala, P. Mour˜ ao, J. Nabais, Valorisation of natural fibres from african baobab wastes by the production of activated carbons for adsorption of diuron, Procedia Eng. 200 (2017) 399–407, https://doi.org/10.1016/j. proeng.2017.07.056.[68] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption processes for water treatment and purification, Adsorpt. Process. Water Treat. Purif. (No. July) (2017) 1–256, https://doi.org/10.1007/978-3-319-58136-1.[69] G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci. 33 (4) (2008) 399–447, https://doi. org/10.1016/j.progpolymsci.2007.11.001.[70] P.S. Pauletto, G.L. Dotto, N.P.G. Salau, Diffusion mechanisms and effect of adsorbent geometry on heavy metal adsorption, Chem. Eng. Res. Des. 157 (2020) 182–194, https://doi.org/10.1016/j.cherd.2020.02.031.[71] S.J. Segovia-Sandoval, R. Ocampo-P´erez, M.S. Berber-Mendoza, R. Leyva-Ramos, A. Jacobo-Azuara, N.A. Medellín-Castillo, Walnut shell treated with citric acid and its application as biosorbent in the removal of Zn(II, J. Water Process Eng. 25 (June) (2018) 45–53, https://doi.org/10.1016/j.jwpe.2018.06.007.[72] R. Ocampo-P´erez, R. Leyva-Ramos, M. Sanchez-Polo, J. Rivera-Utrilla, Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon, Adsorption 19 (5) (2013) 945–957, https://doi.org/10.1007/ s10450-013-9502-y.[73] J. Moreno-P´erez, P.S. Pauletto, A.M. Cunha, A. ´ Bonilla-Petriciolet, N.P.G. Salau, G. L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/Biochar composite, Coll. Surf. A Physicochem. Eng. Asp. 614 (November 2020) (2021), https://doi.org/10.1016/j.colsurfa.2021.126170.[74] M. Zbair, A. El Hadrami, A. Bellarbi, M. Monkade, A. Zradba, R. Brahmi, Herbicide diuron removal from aqueous solution by bottom ash: kinetics, isotherm, and thermodynamic adsorption studies, J. Environ. Chem. Eng. 8 (2) (2020), 103667, https://doi.org/10.1016/j.jece.2020.103667.[75] J. Deng, Y. Shao, N. Gao, Y. Deng, C. Tan, S. Zhou, X. Hu, Multiwalled carbon nanotubes as adsorbents for removal of herbicide diuron from aqueous solution, Chem. Eng. J. 193–194 (2012) 339–347, https://doi.org/10.1016/j. cej.2012.04.051.[76] S.K. Deokar, G.S. Bajad, P. Bhonde, R.P. Vijayakumar, S.A. Mandavgane, Adsorptive removal of diuron herbicide on carbon nanotubes synthesized from plastic waste, J. Polym. Environ. 2 (25) (2016) 165–175, https://doi.org/10.1007/ S10924-016-0794-3.[77] E. Beltran-Flores, ´ J. Tor´ an, G. Caminal, P. Bl´ anquez, M. Sarr` a, The removal of diuron from agricultural wastewaters by trametes versicolor immobilized on pinewood in simple channel reactors, Sci. Total Environ. (2020) 728, https://doi. org/10.1016/j.scitotenv.2020.138414.[78] F.M. de Souza, O.A.A. dos Santos, Adsorption of diuron from aqueous solution onto commercial organophilic clay: kinetic, equilibrium and thermodynamic study, Environ. Technol. 41 (5) (2020) 603–616, https://doi.org/10.1080/ 09593330.2018.1505967.111654HerbicideAdsorptionActivated carbonMass transferHovenia dulcisPublicationORIGINALEffective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis.pdfEffective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis.pdfArtículoapplication/pdf3488645https://repositorio.cuc.edu.co/bitstreams/a337c5b3-0d06-4f1b-b6bb-03495a8ca4b3/downloaddcaab185dfd4c8d5505051e0fb690859MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/df12fe6a-70de-4d7a-8908-cf81eb1283f6/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTEffective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis.pdf.txtEffective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis.pdf.txtExtracted texttext/plain66695https://repositorio.cuc.edu.co/bitstreams/af3a40e5-ca9c-4d9d-bfe8-c61427e7ee5d/download02aa4baff78c9a4c2845fea9a40f2d6dMD53THUMBNAILEffective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis.pdf.jpgEffective adsorption of harmful herbicide diuron onto novel activated carbon from Hovenia dulcis.pdf.jpgGenerated Thumbnailimage/jpeg12754https://repositorio.cuc.edu.co/bitstreams/01971661-5a4f-4821-9275-17ec60f8216f/downloada85951d21806c082db586feb008f7394MD5411323/10765oai:repositorio.cuc.edu.co:11323/107652024-09-16 16:39:30.027https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=