Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers

This study evaluated Engineered Cementitious Composites (ECC) with polyvinyl alcohol (PVA), polypropylene (PP) or recycled polyester (POL) fibers inserted in a matrix with elevated silica fume content. Several PP (2.2–2.6%) and POL (2.3–2.7%) contents were tested and compared to a compound containin...

Full description

Autores:
Ehrenbring, H.Z.
Pacheco, F.
Christ, R.
Tutikian, B.F.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13421
Acceso en línea:
https://hdl.handle.net/11323/13421
https://repositorio.cuc.edu.co/
Palabra clave:
Engineered cementitious composites
Polypropylene fibers
Polyvinyl alcohol fibers
Recycled polyester fibers
Tensile behavior
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_56294791e681e2aa0bd09163cbdb4615
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13421
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
title Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
spellingShingle Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
Engineered cementitious composites
Polypropylene fibers
Polyvinyl alcohol fibers
Recycled polyester fibers
Tensile behavior
title_short Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
title_full Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
title_fullStr Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
title_full_unstemmed Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
title_sort Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers
dc.creator.fl_str_mv Ehrenbring, H.Z.
Pacheco, F.
Christ, R.
Tutikian, B.F.
dc.contributor.author.none.fl_str_mv Ehrenbring, H.Z.
Pacheco, F.
Christ, R.
Tutikian, B.F.
dc.subject.proposal.eng.fl_str_mv Engineered cementitious composites
Polypropylene fibers
Polyvinyl alcohol fibers
Recycled polyester fibers
Tensile behavior
topic Engineered cementitious composites
Polypropylene fibers
Polyvinyl alcohol fibers
Recycled polyester fibers
Tensile behavior
description This study evaluated Engineered Cementitious Composites (ECC) with polyvinyl alcohol (PVA), polypropylene (PP) or recycled polyester (POL) fibers inserted in a matrix with elevated silica fume content. Several PP (2.2–2.6%) and POL (2.3–2.7%) contents were tested and compared to a compound containing 2.0% PVA. Flexural bending strength tests, the bending rupture modulus, number and width of cracks and deformation were measured at 5 different curing ages (7, 14, 28, 56 e 84 days). The test results also showed that in the fresh state, ECCPVA2.0 presented the best result with an average spread of 255 mm, followed by ECCPP2.4 and ECCPOL2.3. All Γ values obtained confirmed that all composites attained plastic consistency. In the hardened state, composites with POL fibers had tensile strength performance similar to PVA fibers with regards to deformation, deflection, rupture modulus, average crack width and number of cracks. In addition, ECCPOL2.7 demonstrated mechanical properties superior to ECCPVA2.0. So, the use of 2.7% POL content resulted in strengths higher than the reference PVA compound and demonstrated the potential of POL fibers in ECC development at ages over 28 days. The use of recycled POL fibers, at a content of 2.7%, resulted in an increase in the ductility of the composite, reaching the values of ECC-PVA at 28 and 84 days. On the other hand, PP composites did not present the expected behavior of an ECC. More specifically, the matrix had high tensile strength, modulus of elasticity and tenacity, which limited crack formation and overloaded the reinforcement fibers. Thus, PP fibers were deemed incompatible for ECCs with rich matrices.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09-05
dc.date.accessioned.none.fl_str_mv 2024-10-03T15:56:33Z
dc.date.available.none.fl_str_mv 2024-10-03T15:56:33Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv H.Z. Ehrenbring, F. Pacheco, R. Christ, B.F. Tutikian, Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers, Construction and Building Materials, Volume 346, 2022,128355,ISSN 0950-0618,https://doi.org/10.1016/j.conbuildmat.2022.128355. (https://www.sciencedirect.com/science/article/pii/S0950061822020153) Abstract: This study evaluated Engineered Cementitious Composites (ECC) with polyvinyl alcohol (PVA), polypropylene (PP) or recycled polyester (POL) fibers inserted in a matrix with elevated silica fume content. Several PP (2.2–2.6%) and POL (2.3–2.7%) contents were tested and compared to a compound containing 2.0% PVA. Flexural bending strength tests, the bending rupture modulus, number and width of cracks and deformation were measured at 5 different curing ages (7, 14, 28, 56 e 84 days). The test results also showed that in the fresh state, ECCPVA2.0 presented the best result with an average spread of 255 mm, followed by ECCPP2.4 and ECCPOL2.3. All Γ values obtained confirmed that all composites attained plastic consistency. In the hardened state, composites with POL fibers had tensile strength performance similar to PVA fibers with regards to deformation, deflection, rupture modulus, average crack width and number of cracks. In addition, ECCPOL2.7 demonstrated mechanical properties superior to ECCPVA2.0. So, the use of 2.7% POL content resulted in strengths higher than the reference PVA compound and demonstrated the potential of POL fibers in ECC development at ages over 28 days. The use of recycled POL fibers, at a content of 2.7%, resulted in an increase in the ductility of the composite, reaching the values of ECC-PVA at 28 and 84 days. On the other hand, PP composites did not present the expected behavior of an ECC. More specifically, the matrix had high tensile strength, modulus of elasticity and tenacity, which limited crack formation and overloaded the reinforcement fibers. Thus, PP fibers were deemed incompatible for ECCs with rich matrices. Keywords: Engineered Cementitious Composites; Polyvinyl alcohol fibers; Polypropylene fibers; Recycled polyester fibers; Tensile behavior
dc.identifier.issn.none.fl_str_mv 0950-0618
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13421
dc.identifier.doi.none.fl_str_mv 10.1016/j.conbuildmat.2022.128355
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv H.Z. Ehrenbring, F. Pacheco, R. Christ, B.F. Tutikian, Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers, Construction and Building Materials, Volume 346, 2022,128355,ISSN 0950-0618,https://doi.org/10.1016/j.conbuildmat.2022.128355. (https://www.sciencedirect.com/science/article/pii/S0950061822020153) Abstract: This study evaluated Engineered Cementitious Composites (ECC) with polyvinyl alcohol (PVA), polypropylene (PP) or recycled polyester (POL) fibers inserted in a matrix with elevated silica fume content. Several PP (2.2–2.6%) and POL (2.3–2.7%) contents were tested and compared to a compound containing 2.0% PVA. Flexural bending strength tests, the bending rupture modulus, number and width of cracks and deformation were measured at 5 different curing ages (7, 14, 28, 56 e 84 days). The test results also showed that in the fresh state, ECCPVA2.0 presented the best result with an average spread of 255 mm, followed by ECCPP2.4 and ECCPOL2.3. All Γ values obtained confirmed that all composites attained plastic consistency. In the hardened state, composites with POL fibers had tensile strength performance similar to PVA fibers with regards to deformation, deflection, rupture modulus, average crack width and number of cracks. In addition, ECCPOL2.7 demonstrated mechanical properties superior to ECCPVA2.0. So, the use of 2.7% POL content resulted in strengths higher than the reference PVA compound and demonstrated the potential of POL fibers in ECC development at ages over 28 days. The use of recycled POL fibers, at a content of 2.7%, resulted in an increase in the ductility of the composite, reaching the values of ECC-PVA at 28 and 84 days. On the other hand, PP composites did not present the expected behavior of an ECC. More specifically, the matrix had high tensile strength, modulus of elasticity and tenacity, which limited crack formation and overloaded the reinforcement fibers. Thus, PP fibers were deemed incompatible for ECCs with rich matrices. Keywords: Engineered Cementitious Composites; Polyvinyl alcohol fibers; Polypropylene fibers; Recycled polyester fibers; Tensile behavior
0950-0618
10.1016/j.conbuildmat.2022.128355
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13421
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Construction and Building Materials
dc.relation.references.none.fl_str_mv [1] S. Wang, V.C. Li, Engineered cementitious composites with high-volume fly ash, ACI Mater. J., Detroit 104 (3) (2007) 233–241.
[2] M. Sahmaran, et al., Repeatability and pervasiveness of self-healing in engineered cementitious composites, ACI Mater. J., Detroit 111 (1) (2014) 1–6.
[3] M.B. Ahsan, Z. Hossain, Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry, Constr. Build. Mater., Guildford, Surrey 178 (2018) 1–9, https://doi.org/10.1016/j.conbuildmat.2018.05.101.
[4] A.N. Dancygier, Y.S. Karinski, Effect of cracking localization on the structural ductility of normal strength and high strength reinforced concrete beams with steel fibers, Int. J. Prot. Struct., Brentwood, Essex 10 (4) (2019) 457–469, https://doi. org/10.1177/2041419618824609.
[5] J. Xue, et al. Seismic resistance capacity of steel reinforced high-strength concrete columns with rectangular spiral stirrups. Construction and Building Materials, Guildford, Surrey, v. 229, art. 116880, 2019. DOI: https://doi.org/10.1016/j. conbuildmat.2019.116880.
[6] R. Christ, B.F. Tutikian, P. Helene, Proposition of Mixture Design Method for UltraHigh-Performance Concrete, ACI Mater. J. 119 (2022) 79–89.
[7] J. Blunt, G. Jen, C.P. Ostertag, Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete, Corros. Sci. Amsterdam 92 (2015) 182–191, https://doi.org/10.1016/j.corsci.2014.12.003.
[8] A.M. Neville, J.J. Brooks, Tecnologia do concreto. 2. ed. Porto Alegre: Bookman, 2013. E-book.
[9] K. Turk, M.L. Nehdi, Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC, Constr. Build. Mater., Guildford, Surrey 164 (2018) 185–192, https://doi.org/10.1016/j.conbuildmat.2017.12.186.
[10] X. Huang, et al., On the use of recycled tire rubber to develop low e-modulus ECC for durable concrete repairs, Constr. Build. Mater., Guildford, Surrey 46 (2013) 134–141, https://doi.org/10.1016/j.conbuildmat.2013.04.027.
[11] M. Singh, B. Saini, H.D. Chalak, Performance and composition analysis of engineered cementitious composite (ECC): a review. Journal of Building Engineering, Oxford, v. 26, art. 100851, 2019.
[12] Q. Wang, et al. Greener engineered cementitious composite (ECC): the use of pozzolanic fillers and unoiled PVA fibers. Construction and Building Materials, Guildford, Surrey, v. 247, art. 118211, 2020. DOI: https://doi.org/10.1016/j. conbuildmat.2020.118211.
[13] S. Wang, Micromechanics based matrix design for engineered cementitious composites. 2005. Dissertation (Degree of Doctor of Philosophy, Civil Engineering) – Horace H. Rackham School of Graduate Studies, University of Michigan, Michigan, 2005.
[14] H. Siad, et al., Mechanical, physical, and self-healing behaviors of engineered cementitious composites with glass powder, J. Mater. Civ. Eng., New York 29 (6) (2017) 1–12, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001864.
[15] M.A.E.M. Ali, M.L. Nehdi, Innovative crack-healing hybrid fiber reinforced engineered cementitious composite, Constr. Build. Mater., Guildford, Surrey 150 (2017) 689–702, https://doi.org/10.1016/j.conbuildmat.2017.06.023.
[16] P.C. Aïtcin, Cements of yesterday and today - concrete of tomorrow, Cem. Concr. Res. 30 (9) (2000) 1349–1359.
[17] ASTM C188. Standard Test Method for Density of Hydraulic Cement. American Society for Testing and Materials (ASTM), Pensilvˆ ania, 2017.
[18] ASTM C150/C150M. Standard Specification for Portland Cement. American Society for Testing and Materials (ASTM), Pensilvˆ ania, 2021.
[19] A. Alyousif, Self-Healing Capability of Engineered Cementitious Composites Incorporating Different Types of Pozzolanic Materials By Author ’ s, Declaration. (2016).
[20] A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites. Taylor & F ed. New York: 2007.
[21] M. Cao, L. Li, New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites, Constr. Build. Mater. 176 (2) (2018) 618–628.
[22] F. Costa, et al., Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers, Constr. Build. Mater. 213 (2019) 505–513.
[23] H. Deng, Utilization of Local Ingredients for the Production of High-Early-Strength Engineered Cementitious Composites, Adv. Mater. Sci. Eng. 2018 (2018).
[24] H.Z. Ehrenbring, et al., Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete, Structural Concrete 20 (3) (2019) 1064–1075.
[25] H.Z. Ehrenbring, B.F. Tutikian, U.C. DE Quinino, M., An´ alise comparativa da retraçao ˜ por secagem de concretos com fibras novas e recicladas de poli´ester, Ambiente Construído 18 (3) (2018) 195–209.
[26] A.P. Fantilli, B. Chiaia, A. Gorino, Fiber volume fraction and ductility index of concrete beams, Cem. Concr. Compos. 65 (2016) 139–149.
[27] B. Felekoglu, et al., Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Compos. B Eng. 60 (2014) 359–370.
[28] S. Gao, et al., Effect of shrinkage-reducing admixture and expansive agent on mechanical properties and drying shrinkage of Engineered Cementitious Composite (ECC), Constr. Build. Mater. 179 (2018) 172–185.
[29] E.O. Garcez, Investigaçao ˜ do Comportamento de Engineered Cementitious Composites Reforçados com Fibras de Polipropileno como Material para Recapeamento de Pavimentos, [s.l.] Universidade Federal do Rio Grande do Sul (2009).
[30] S. Gwon, M. Shin, Direct-tensile and flexural strength and toughness of highstrength fiber-reinforced cement composites with different steel fibers, Journal of Asian Concrete Federation 2 (1) (2016) 67.
[31] T. Horikoshi, et al., Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites, Int. RILEM Work. High Perform. Fiber Reinf. Cem. Compos. Struct. Appl. (2011).
[32] JSCE 82. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC). Concrete Engineereing Series, v. 82, p. Testing Method 6-10, 2008.
[33] A.L.F. Júnior, M.R. Garcez, Avaliaçao ˜ da resistˆencia a fadiga dos Engineered Cementitious Composites (ECC), reforçados com fibra de polipropileno e produzidos com adiç˜ ao de cinza de casca de arroz, TECNO-LOGICA ´ 21 (2) (2017) 116–124.
[34] M. Keskinates, B. Felekoglu, The influence of mineral additive type and water / binder ratio on matrix phase rheology and multiple cracking potential of HTPPECC. v. 173, p. 508–519, 2018.
[35] H.J. Kong, S.G. Bike, C. Li, Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization, Cem. Concr. Compos. 25 (3) (2003) 301–309.
[36] M. Lai, L. Hanzic, J.C.M. Ho, Fillers to improve passing ability of concrete, Structural Concrete, v 20 (1) (2019) 185–197.
[37] M.H. Lai, S.A.M. Binhowimal, L. Hanzic, Q. Wang, J.C.M. Ho, Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers, Structural Concrete 21 (3) (2020) 1164–1180, https://doi.org/10.1002/suco.201900320.
[38] M.H. Lai, S.A.M. Binhowimal, L. Hanzic, Q. Wang, J.C.M. Ho, Cause and mitigation of dilatancy in cement powder paste, Constr. Build. Mater. 236 (2020), 117595.
[39] B. Lhoneux, DE et al. Development of High Tenacity Polypropylene Fibres for Cementitious Composites. JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) Application and Evaluation, n. October 2014, p. 121–131, 2002.
[40] C. Li, Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure, Springer Nature, Germany, 2019.
[41] C. Li, C.K.Y. Leung, Steady-State and Multiple Cracking of Short Random Fiber Composites, J. Eng. Mech. 118 (11) (1992) 2246–2264.
[42] C. Li, S. Wang, Microstructure variability and macroscopic composite properties of high performance fiber reinforced cementitious composites, Probab. Eng. Mech. 21 (3) (2006) 201–206.
[43] X. Lin, et al., Recycling polyethylene terephthalate wastes as short fibers in StrainHardening Cementitious Composites (SHCC), J. Hazard. Mater. 357 (2018) 40–52.
[44] C. Lu, J. Yu, C.K.Y. Leung, Tensile performance and impact resistance of Strain Hardening Cementitious Composites (SHCC) with recycled fibers, Constr. Build. Mater. 171 (2018) 566–576.
[45] M. Maalej, C. Li, Flexural strength of fiber, Journal Material Civil Engineer 6 (3) (1994) 390–406.
[46] M. DA Magalhaes, ˜ S., Caracterizaç˜ ao experimental de compositos ´ cimentícios reforçados com fibras de PVA: processo de fratura, propriedades t´ermicas, deformaçoes ˜ diferidas e estabilidade t´ermica. [s.l.] Universidade Federal do Rio de Janeiro (UFRJ), 2010.
[47] D. Meng, et al., Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients, Constr. Build. Mater. 141 (2017) 259–270.
[48] W. Meng, Khayat, K. H. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cement and Concrete Research, v. 105, n. May 2017, p. 64–71, 2018.
[49] H.R. Pakravan, M. Jamshidi, M. Latifi, The effect of hybridization and geometry of polypropylene fibers on engineered cementitious composites reinforced by polyvinyl alcohol fibers, J. Compos. Mater. 50 (8) (2016) 1007–1020.
[50] J. Qiu, E.H. Yang, Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC), Cem. Concr. Res. 95 (2017) 65–74.
[51] R. Ranade, et al., Composite properties of high-Strength, high-Ductility concrete, ACI Mater. J. 110 (4) (2013) 413–422.
[52] R. Ranade, et al., Impact resistance of high strength-high ductility concrete, Cem. Concr. Res. 98 (2017) 24–35.
[53] J.D. Rathod, S.C. Patodi, Interface Tailoring of Polyester-Type Fiber in Engineered Cementitious Composite Matrix against Pullout. ACI Materials Journal, v. 107, n. 2, 2010.
[54] D.P. Righi, et al. Tensile behaviour and durability issues of Engineered Cementitious Composites with Rice Husk Ash. Revista Materia, v. 22, n. 2, 2017.
[55] C.A.M. Rodríguez, Avaliaç˜ ao do comportamento mecˆ anico de um ECC (Engineered Cementitious Composites). com fibras de polipropileno no recapeamento de pavimentos, 2018.
[56] M. S¸ ahmaran, et al., Frost resistance and microstructure of Engineered Cementitious Composites: Influence of fly ash and micro poly-vinyl-alcohol fiber, Cem. Concr. Compos. 34 (2) (2012) 156–165.
[57] M. S¸ ahmaran, et al., Improving the workability and rheological properties of Engineered Cementitious Composites using factorial experimental design, Compos. B Eng. 45 (1) (2013) 356–368.
[58] S.H. Said, H.A. Razak, The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC), Mater. Des. 86 (2015) 447–457.
[59] D.G. Soltan, C. Li, A self-reinforced cementitious composite for building-scale 3D printing, Cem. Concr. Compos. 90 (2018) 1–13.
[60] H. Stang, C. Li, Extrusion of ECC-Material.pdf. p. 1–10, 1999
[61] K. Wille, D.J. Kim, A.E. Naaman, Strain-hardening UHP-FRC with low fiber contents, Materials and Structures/Materiaux et Constructions 44 (3) (2011) 583–598.
[62] S. Yin, B. Li, Academic research institutes-construction enterprises linkages for the development of urban green building: Selecting management of green building technologies innovation partner, Sustainable Cities and Society v. 48, n. March (2019), 101555.
[63] D.Y. Yoo, et al., Development of cost effective ultra-high-performance fiberreinforced concrete using single and hybrid steel fibers, Constr. Build. Mater. 150 (2017) 383–394.
[64] J. Yu, et al., Mechanical performance of ECC with high-volume fly ash after subelevated temperatures, Constr. Build. Mater. 99 (2015) 82–89.
[65] K.Q. Yu, et al., Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers, Constr. Build. Mater. 158 (2018) 217–227.
[66] H. Zhang, et al., Experimental and numerical investigations on seismic responses of reinforced concrete structures considering strain rate effect, Constr. Build. Mater. 173 (2018) 672–686.
[67] Z. Zhang, Y. Ding, S. Qian, Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC), Constr. Build. Mater. 196 (2019) 195–203.
[68] Z. Zhang, S. Qian, H. Ma, Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash, Constr. Build. Mater. 52 (2014) 17–23.
[69] Z. Zhang, Q. Zhang, C. Li, Multiple-scale investigations on self-healing induced mechanical property recovery of ECC, Cem. Concr. Compos. 103 (March) (2019) 293–302.
[70] J. Zhou, et al., Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence, Cem. Concr. Compos. 34 (3) (2012) 342–348.
[71] R.G. Pillai, R. Gettu, M. Santhanam, Uso de materiais cimentícios suplementares (SCMs) em sistemas de concreto armado - Benefícios e limitaçoes. ˜ Revista ALCONPAT, Volume 10, Número 2 (maio – agosto, 2020): 147 – 164.
dc.relation.citationendpage.none.fl_str_mv 11
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationissue.none.fl_str_mv 5
dc.relation.citationvolume.none.fl_str_mv 346
dc.rights.eng.fl_str_mv © Copyright 2022 Elsevier B.V., All rights reserved.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© Copyright 2022 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Ltd
dc.publisher.place.none.fl_str_mv United Kingdom
publisher.none.fl_str_mv Elsevier Ltd
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0950061822020153?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9b9901ad-1323-47bb-9d2a-e86c743974c4/download
https://repositorio.cuc.edu.co/bitstreams/0c67f2cd-75b6-4a4a-8c84-dc67264d7ebc/download
https://repositorio.cuc.edu.co/bitstreams/d254a523-4d6a-486b-91bc-04abd58f82cc/download
https://repositorio.cuc.edu.co/bitstreams/1f8da6eb-2f47-4173-8582-1b1473ae3a10/download
bitstream.checksum.fl_str_mv 38f418e9578e0fe8e491dc18de547b62
73a5432e0b76442b22b026844140d683
06a377eba944b85c80a016b26318be23
a6d37763e571463c52292ef64fef339a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166848421560320
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© Copyright 2022 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ehrenbring, H.Z.Pacheco, F.Christ, R.Tutikian, B.F.2024-10-03T15:56:33Z2024-10-03T15:56:33Z2022-09-05H.Z. Ehrenbring, F. Pacheco, R. Christ, B.F. Tutikian, Bending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibers, Construction and Building Materials, Volume 346, 2022,128355,ISSN 0950-0618,https://doi.org/10.1016/j.conbuildmat.2022.128355. (https://www.sciencedirect.com/science/article/pii/S0950061822020153) Abstract: This study evaluated Engineered Cementitious Composites (ECC) with polyvinyl alcohol (PVA), polypropylene (PP) or recycled polyester (POL) fibers inserted in a matrix with elevated silica fume content. Several PP (2.2–2.6%) and POL (2.3–2.7%) contents were tested and compared to a compound containing 2.0% PVA. Flexural bending strength tests, the bending rupture modulus, number and width of cracks and deformation were measured at 5 different curing ages (7, 14, 28, 56 e 84 days). The test results also showed that in the fresh state, ECCPVA2.0 presented the best result with an average spread of 255 mm, followed by ECCPP2.4 and ECCPOL2.3. All Γ values obtained confirmed that all composites attained plastic consistency. In the hardened state, composites with POL fibers had tensile strength performance similar to PVA fibers with regards to deformation, deflection, rupture modulus, average crack width and number of cracks. In addition, ECCPOL2.7 demonstrated mechanical properties superior to ECCPVA2.0. So, the use of 2.7% POL content resulted in strengths higher than the reference PVA compound and demonstrated the potential of POL fibers in ECC development at ages over 28 days. The use of recycled POL fibers, at a content of 2.7%, resulted in an increase in the ductility of the composite, reaching the values of ECC-PVA at 28 and 84 days. On the other hand, PP composites did not present the expected behavior of an ECC. More specifically, the matrix had high tensile strength, modulus of elasticity and tenacity, which limited crack formation and overloaded the reinforcement fibers. Thus, PP fibers were deemed incompatible for ECCs with rich matrices. Keywords: Engineered Cementitious Composites; Polyvinyl alcohol fibers; Polypropylene fibers; Recycled polyester fibers; Tensile behavior0950-0618https://hdl.handle.net/11323/1342110.1016/j.conbuildmat.2022.128355Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study evaluated Engineered Cementitious Composites (ECC) with polyvinyl alcohol (PVA), polypropylene (PP) or recycled polyester (POL) fibers inserted in a matrix with elevated silica fume content. Several PP (2.2–2.6%) and POL (2.3–2.7%) contents were tested and compared to a compound containing 2.0% PVA. Flexural bending strength tests, the bending rupture modulus, number and width of cracks and deformation were measured at 5 different curing ages (7, 14, 28, 56 e 84 days). The test results also showed that in the fresh state, ECCPVA2.0 presented the best result with an average spread of 255 mm, followed by ECCPP2.4 and ECCPOL2.3. All Γ values obtained confirmed that all composites attained plastic consistency. In the hardened state, composites with POL fibers had tensile strength performance similar to PVA fibers with regards to deformation, deflection, rupture modulus, average crack width and number of cracks. In addition, ECCPOL2.7 demonstrated mechanical properties superior to ECCPVA2.0. So, the use of 2.7% POL content resulted in strengths higher than the reference PVA compound and demonstrated the potential of POL fibers in ECC development at ages over 28 days. The use of recycled POL fibers, at a content of 2.7%, resulted in an increase in the ductility of the composite, reaching the values of ECC-PVA at 28 and 84 days. On the other hand, PP composites did not present the expected behavior of an ECC. More specifically, the matrix had high tensile strength, modulus of elasticity and tenacity, which limited crack formation and overloaded the reinforcement fibers. Thus, PP fibers were deemed incompatible for ECCs with rich matrices.11 páginasapplication/pdfengElsevier LtdUnited Kingdomhttps://www.sciencedirect.com/science/article/pii/S0950061822020153?via%3DihubBending behavior of engineered cementitious composites (ECC) with different recycled and virgin polymer fibersArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Construction and Building Materials[1] S. Wang, V.C. Li, Engineered cementitious composites with high-volume fly ash, ACI Mater. J., Detroit 104 (3) (2007) 233–241.[2] M. Sahmaran, et al., Repeatability and pervasiveness of self-healing in engineered cementitious composites, ACI Mater. J., Detroit 111 (1) (2014) 1–6.[3] M.B. Ahsan, Z. Hossain, Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry, Constr. Build. Mater., Guildford, Surrey 178 (2018) 1–9, https://doi.org/10.1016/j.conbuildmat.2018.05.101.[4] A.N. Dancygier, Y.S. Karinski, Effect of cracking localization on the structural ductility of normal strength and high strength reinforced concrete beams with steel fibers, Int. J. Prot. Struct., Brentwood, Essex 10 (4) (2019) 457–469, https://doi. org/10.1177/2041419618824609.[5] J. Xue, et al. Seismic resistance capacity of steel reinforced high-strength concrete columns with rectangular spiral stirrups. Construction and Building Materials, Guildford, Surrey, v. 229, art. 116880, 2019. DOI: https://doi.org/10.1016/j. conbuildmat.2019.116880.[6] R. Christ, B.F. Tutikian, P. Helene, Proposition of Mixture Design Method for UltraHigh-Performance Concrete, ACI Mater. J. 119 (2022) 79–89.[7] J. Blunt, G. Jen, C.P. Ostertag, Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete, Corros. Sci. Amsterdam 92 (2015) 182–191, https://doi.org/10.1016/j.corsci.2014.12.003.[8] A.M. Neville, J.J. Brooks, Tecnologia do concreto. 2. ed. Porto Alegre: Bookman, 2013. E-book.[9] K. Turk, M.L. Nehdi, Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC, Constr. Build. Mater., Guildford, Surrey 164 (2018) 185–192, https://doi.org/10.1016/j.conbuildmat.2017.12.186.[10] X. Huang, et al., On the use of recycled tire rubber to develop low e-modulus ECC for durable concrete repairs, Constr. Build. Mater., Guildford, Surrey 46 (2013) 134–141, https://doi.org/10.1016/j.conbuildmat.2013.04.027.[11] M. Singh, B. Saini, H.D. Chalak, Performance and composition analysis of engineered cementitious composite (ECC): a review. Journal of Building Engineering, Oxford, v. 26, art. 100851, 2019.[12] Q. Wang, et al. Greener engineered cementitious composite (ECC): the use of pozzolanic fillers and unoiled PVA fibers. Construction and Building Materials, Guildford, Surrey, v. 247, art. 118211, 2020. DOI: https://doi.org/10.1016/j. conbuildmat.2020.118211.[13] S. Wang, Micromechanics based matrix design for engineered cementitious composites. 2005. Dissertation (Degree of Doctor of Philosophy, Civil Engineering) – Horace H. Rackham School of Graduate Studies, University of Michigan, Michigan, 2005.[14] H. Siad, et al., Mechanical, physical, and self-healing behaviors of engineered cementitious composites with glass powder, J. Mater. Civ. Eng., New York 29 (6) (2017) 1–12, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001864.[15] M.A.E.M. Ali, M.L. Nehdi, Innovative crack-healing hybrid fiber reinforced engineered cementitious composite, Constr. Build. Mater., Guildford, Surrey 150 (2017) 689–702, https://doi.org/10.1016/j.conbuildmat.2017.06.023.[16] P.C. Aïtcin, Cements of yesterday and today - concrete of tomorrow, Cem. Concr. Res. 30 (9) (2000) 1349–1359.[17] ASTM C188. Standard Test Method for Density of Hydraulic Cement. American Society for Testing and Materials (ASTM), Pensilvˆ ania, 2017.[18] ASTM C150/C150M. Standard Specification for Portland Cement. American Society for Testing and Materials (ASTM), Pensilvˆ ania, 2021.[19] A. Alyousif, Self-Healing Capability of Engineered Cementitious Composites Incorporating Different Types of Pozzolanic Materials By Author ’ s, Declaration. (2016).[20] A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites. Taylor & F ed. New York: 2007.[21] M. Cao, L. Li, New models for predicting workability and toughness of hybrid fiber reinforced cement-based composites, Constr. Build. Mater. 176 (2) (2018) 618–628.[22] F. Costa, et al., Experimental study of some durability properties of ECC with a more environmentally sustainable rice husk ash and high tenacity polypropylene fibers, Constr. Build. Mater. 213 (2019) 505–513.[23] H. Deng, Utilization of Local Ingredients for the Production of High-Early-Strength Engineered Cementitious Composites, Adv. Mater. Sci. Eng. 2018 (2018).[24] H.Z. Ehrenbring, et al., Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concrete, Structural Concrete 20 (3) (2019) 1064–1075.[25] H.Z. Ehrenbring, B.F. Tutikian, U.C. DE Quinino, M., An´ alise comparativa da retraçao ˜ por secagem de concretos com fibras novas e recicladas de poli´ester, Ambiente Construído 18 (3) (2018) 195–209.[26] A.P. Fantilli, B. Chiaia, A. Gorino, Fiber volume fraction and ductility index of concrete beams, Cem. Concr. Compos. 65 (2016) 139–149.[27] B. Felekoglu, et al., Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Compos. B Eng. 60 (2014) 359–370.[28] S. Gao, et al., Effect of shrinkage-reducing admixture and expansive agent on mechanical properties and drying shrinkage of Engineered Cementitious Composite (ECC), Constr. Build. Mater. 179 (2018) 172–185.[29] E.O. Garcez, Investigaçao ˜ do Comportamento de Engineered Cementitious Composites Reforçados com Fibras de Polipropileno como Material para Recapeamento de Pavimentos, [s.l.] Universidade Federal do Rio Grande do Sul (2009).[30] S. Gwon, M. Shin, Direct-tensile and flexural strength and toughness of highstrength fiber-reinforced cement composites with different steel fibers, Journal of Asian Concrete Federation 2 (1) (2016) 67.[31] T. Horikoshi, et al., Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites, Int. RILEM Work. High Perform. Fiber Reinf. Cem. Compos. Struct. Appl. (2011).[32] JSCE 82. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks (HPFRCC). Concrete Engineereing Series, v. 82, p. Testing Method 6-10, 2008.[33] A.L.F. Júnior, M.R. Garcez, Avaliaçao ˜ da resistˆencia a fadiga dos Engineered Cementitious Composites (ECC), reforçados com fibra de polipropileno e produzidos com adiç˜ ao de cinza de casca de arroz, TECNO-LOGICA ´ 21 (2) (2017) 116–124.[34] M. Keskinates, B. Felekoglu, The influence of mineral additive type and water / binder ratio on matrix phase rheology and multiple cracking potential of HTPPECC. v. 173, p. 508–519, 2018.[35] H.J. Kong, S.G. Bike, C. Li, Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization, Cem. Concr. Compos. 25 (3) (2003) 301–309.[36] M. Lai, L. Hanzic, J.C.M. Ho, Fillers to improve passing ability of concrete, Structural Concrete, v 20 (1) (2019) 185–197.[37] M.H. Lai, S.A.M. Binhowimal, L. Hanzic, Q. Wang, J.C.M. Ho, Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers, Structural Concrete 21 (3) (2020) 1164–1180, https://doi.org/10.1002/suco.201900320.[38] M.H. Lai, S.A.M. Binhowimal, L. Hanzic, Q. Wang, J.C.M. Ho, Cause and mitigation of dilatancy in cement powder paste, Constr. Build. Mater. 236 (2020), 117595.[39] B. Lhoneux, DE et al. Development of High Tenacity Polypropylene Fibres for Cementitious Composites. JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) Application and Evaluation, n. October 2014, p. 121–131, 2002.[40] C. Li, Engineered Cementitious Composites (ECC): Bendable Concrete for Sustainable and Resilient Infrastructure, Springer Nature, Germany, 2019.[41] C. Li, C.K.Y. Leung, Steady-State and Multiple Cracking of Short Random Fiber Composites, J. Eng. Mech. 118 (11) (1992) 2246–2264.[42] C. Li, S. Wang, Microstructure variability and macroscopic composite properties of high performance fiber reinforced cementitious composites, Probab. Eng. Mech. 21 (3) (2006) 201–206.[43] X. Lin, et al., Recycling polyethylene terephthalate wastes as short fibers in StrainHardening Cementitious Composites (SHCC), J. Hazard. Mater. 357 (2018) 40–52.[44] C. Lu, J. Yu, C.K.Y. Leung, Tensile performance and impact resistance of Strain Hardening Cementitious Composites (SHCC) with recycled fibers, Constr. Build. Mater. 171 (2018) 566–576.[45] M. Maalej, C. Li, Flexural strength of fiber, Journal Material Civil Engineer 6 (3) (1994) 390–406.[46] M. DA Magalhaes, ˜ S., Caracterizaç˜ ao experimental de compositos ´ cimentícios reforçados com fibras de PVA: processo de fratura, propriedades t´ermicas, deformaçoes ˜ diferidas e estabilidade t´ermica. [s.l.] Universidade Federal do Rio de Janeiro (UFRJ), 2010.[47] D. Meng, et al., Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients, Constr. Build. Mater. 141 (2017) 259–270.[48] W. Meng, Khayat, K. H. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cement and Concrete Research, v. 105, n. May 2017, p. 64–71, 2018.[49] H.R. Pakravan, M. Jamshidi, M. Latifi, The effect of hybridization and geometry of polypropylene fibers on engineered cementitious composites reinforced by polyvinyl alcohol fibers, J. Compos. Mater. 50 (8) (2016) 1007–1020.[50] J. Qiu, E.H. Yang, Micromechanics-based investigation of fatigue deterioration of engineered cementitious composite (ECC), Cem. Concr. Res. 95 (2017) 65–74.[51] R. Ranade, et al., Composite properties of high-Strength, high-Ductility concrete, ACI Mater. J. 110 (4) (2013) 413–422.[52] R. Ranade, et al., Impact resistance of high strength-high ductility concrete, Cem. Concr. Res. 98 (2017) 24–35.[53] J.D. Rathod, S.C. Patodi, Interface Tailoring of Polyester-Type Fiber in Engineered Cementitious Composite Matrix against Pullout. ACI Materials Journal, v. 107, n. 2, 2010.[54] D.P. Righi, et al. Tensile behaviour and durability issues of Engineered Cementitious Composites with Rice Husk Ash. Revista Materia, v. 22, n. 2, 2017.[55] C.A.M. Rodríguez, Avaliaç˜ ao do comportamento mecˆ anico de um ECC (Engineered Cementitious Composites). com fibras de polipropileno no recapeamento de pavimentos, 2018.[56] M. S¸ ahmaran, et al., Frost resistance and microstructure of Engineered Cementitious Composites: Influence of fly ash and micro poly-vinyl-alcohol fiber, Cem. Concr. Compos. 34 (2) (2012) 156–165.[57] M. S¸ ahmaran, et al., Improving the workability and rheological properties of Engineered Cementitious Composites using factorial experimental design, Compos. B Eng. 45 (1) (2013) 356–368.[58] S.H. Said, H.A. Razak, The effect of synthetic polyethylene fiber on the strain hardening behavior of engineered cementitious composite (ECC), Mater. Des. 86 (2015) 447–457.[59] D.G. Soltan, C. Li, A self-reinforced cementitious composite for building-scale 3D printing, Cem. Concr. Compos. 90 (2018) 1–13.[60] H. Stang, C. Li, Extrusion of ECC-Material.pdf. p. 1–10, 1999[61] K. Wille, D.J. Kim, A.E. Naaman, Strain-hardening UHP-FRC with low fiber contents, Materials and Structures/Materiaux et Constructions 44 (3) (2011) 583–598.[62] S. Yin, B. Li, Academic research institutes-construction enterprises linkages for the development of urban green building: Selecting management of green building technologies innovation partner, Sustainable Cities and Society v. 48, n. March (2019), 101555.[63] D.Y. Yoo, et al., Development of cost effective ultra-high-performance fiberreinforced concrete using single and hybrid steel fibers, Constr. Build. Mater. 150 (2017) 383–394.[64] J. Yu, et al., Mechanical performance of ECC with high-volume fly ash after subelevated temperatures, Constr. Build. Mater. 99 (2015) 82–89.[65] K.Q. Yu, et al., Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers, Constr. Build. Mater. 158 (2018) 217–227.[66] H. Zhang, et al., Experimental and numerical investigations on seismic responses of reinforced concrete structures considering strain rate effect, Constr. Build. Mater. 173 (2018) 672–686.[67] Z. Zhang, Y. Ding, S. Qian, Influence of bacterial incorporation on mechanical properties of engineered cementitious composites (ECC), Constr. Build. Mater. 196 (2019) 195–203.[68] Z. Zhang, S. Qian, H. Ma, Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash, Constr. Build. Mater. 52 (2014) 17–23.[69] Z. Zhang, Q. Zhang, C. Li, Multiple-scale investigations on self-healing induced mechanical property recovery of ECC, Cem. Concr. Compos. 103 (March) (2019) 293–302.[70] J. Zhou, et al., Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence, Cem. Concr. Compos. 34 (3) (2012) 342–348.[71] R.G. Pillai, R. Gettu, M. Santhanam, Uso de materiais cimentícios suplementares (SCMs) em sistemas de concreto armado - Benefícios e limitaçoes. ˜ Revista ALCONPAT, Volume 10, Número 2 (maio – agosto, 2020): 147 – 164.1115346Engineered cementitious compositesPolypropylene fibersPolyvinyl alcohol fibersRecycled polyester fibersTensile behaviorPublicationORIGINALBending behavior of engineered cementitious composites (ECC) with.pdfBending behavior of engineered cementitious composites (ECC) with.pdfapplication/pdf13285454https://repositorio.cuc.edu.co/bitstreams/9b9901ad-1323-47bb-9d2a-e86c743974c4/download38f418e9578e0fe8e491dc18de547b62MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/0c67f2cd-75b6-4a4a-8c84-dc67264d7ebc/download73a5432e0b76442b22b026844140d683MD52TEXTBending behavior of engineered cementitious composites (ECC) with.pdf.txtBending behavior of engineered cementitious composites (ECC) with.pdf.txtExtracted texttext/plain53371https://repositorio.cuc.edu.co/bitstreams/d254a523-4d6a-486b-91bc-04abd58f82cc/download06a377eba944b85c80a016b26318be23MD53THUMBNAILBending behavior of engineered cementitious composites (ECC) with.pdf.jpgBending behavior of engineered cementitious composites (ECC) with.pdf.jpgGenerated Thumbnailimage/jpeg14861https://repositorio.cuc.edu.co/bitstreams/1f8da6eb-2f47-4173-8582-1b1473ae3a10/downloada6d37763e571463c52292ef64fef339aMD5411323/13421oai:repositorio.cuc.edu.co:11323/134212024-10-04 03:02:02.606https://creativecommons.org/licenses/by-nc-nd/4.0/© Copyright 2022 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K