Prediction of the yield of grains through artificial intelligence
Grass turns out to be an appropriate food for cattle, mainly in tropical climate countries such as Latin American countries. This is due to the high number of species that can be used, the possibility of growing them year-round, the ability of the ruminant to use fibrous supplies and be an economic...
- Autores:
-
Silva, Jose
Varela Izquierdo, Noel
Cabrera, Danelys
Lezama, Omar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7720
- Acceso en línea:
- https://hdl.handle.net/11323/7720
https://doi.org/10.1007/978-981-15-7907-3_34
https://repositorio.cuc.edu.co/
- Palabra clave:
- Artificial intelligence
Forage
Grass
Neural networks
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_53e15eb349ddbeb135a285a046749dc9 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7720 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prediction of the yield of grains through artificial intelligence |
title |
Prediction of the yield of grains through artificial intelligence |
spellingShingle |
Prediction of the yield of grains through artificial intelligence Artificial intelligence Forage Grass Neural networks |
title_short |
Prediction of the yield of grains through artificial intelligence |
title_full |
Prediction of the yield of grains through artificial intelligence |
title_fullStr |
Prediction of the yield of grains through artificial intelligence |
title_full_unstemmed |
Prediction of the yield of grains through artificial intelligence |
title_sort |
Prediction of the yield of grains through artificial intelligence |
dc.creator.fl_str_mv |
Silva, Jose Varela Izquierdo, Noel Cabrera, Danelys Lezama, Omar |
dc.contributor.author.spa.fl_str_mv |
Silva, Jose Varela Izquierdo, Noel Cabrera, Danelys Lezama, Omar |
dc.subject.spa.fl_str_mv |
Artificial intelligence Forage Grass Neural networks |
topic |
Artificial intelligence Forage Grass Neural networks |
description |
Grass turns out to be an appropriate food for cattle, mainly in tropical climate countries such as Latin American countries. This is due to the high number of species that can be used, the possibility of growing them year-round, the ability of the ruminant to use fibrous supplies and be an economic source (Sánchez et al., Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, 2018, [1]). In this work, an application of neural networks was carried out in the forecasting of more accurate values of production and quality of grasslands. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-01-19T21:22:02Z |
dc.date.available.none.fl_str_mv |
2021-01-19T21:22:02Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7720 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-981-15-7907-3_34 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7720 https://doi.org/10.1007/978-981-15-7907-3_34 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Sánchez L, Vásquez C, Viloria A, Rodríguez Potes L (2018) Greenhouse gases emissions and electric power generation in Latin American countries in the period 2006–2013. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham 2. Aitkenhead MJ, Dalgetty IA, Mullins CE, Strachan NJ C (2003) Weed and crop discrimination using image analysis and artificial intelligence methods. Comput Electron Agric 39(3) 3. Bustos JR (2005) Inteligencia Artificial en el Sector Agropecuario. 4. Olivera Y, Machado R, Pozo PP (2006) Características botánicas y agronómicas de especies forrajeras importantes del género Brachiaria. Pastos y Forrajes 29(1) 5. Ramírez J (2010) Rendimiento y calidad de cinco gramíneas en el Valle del Cauto. Tesis en opción al grado de Doctor en Ciencias Veterinarias. Instituto de Ciencias Agrícolas. La Habana, Cuba 6. SenseFly (2014) El dron para la agricultura de precisión 7. Cruz MC, Rodríguez LC, Vi RG (2013) Evaluación agronómica de cuatro nuevas variedades de pastos. Revista de Producción Animal 25(1) 8. Erenturk K, Erenturk S, Tabil LG (2004) A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regression analysis and neural network. Comput Electron Agric 45(1–3) 9. Hernández D, Carballo M, Reyes F (2000) Reflexiones sobre el uso de los pastos en la producción sostenible de leche y carne de res en el trópico. Pastos y Forrajes 23(4) 10. Hernández RM, Pérez VR, Caraballo EAH (2012) Predicción del rendimiento de un cultivo de plátano mediante redes neuronales artificiales de regresión generalizada. Publicaciones en Ciencias y Tecnología 6(1) 11. López AM, Adolfo A, Guido JP, Ortega AC (2006) Software de Predicción de la Producción Forrajera. 12. Martín B, Molina AS (2001) Redes neuronales y sistemas borrosos. 2ªed. Alfaomega, España. Ra-Ma 13. Carrilho PHM, Alonso J, Santo LDT, Sampaio RA (2012) Comportamiento vegetativo y reproductivo de Brachiariadecumbensvc. Basilisk bajo diferentes niveles de sombra. Revista Cubana de Ciencia Agrícola 46(1) 14. Lezama OBP, Izquierdo NV, Fernández DP, Dorta RLG, Viloria A, Marín LR (2018) Models of multivariate regression for labor accidents in different production sectors: comparative study. In International conference on data mining and big data, vol 10942(1). Springer, Cham, pp 43–52 15. Suárez JA, Beatón PA, Escalona RF, Montero OP (2012) Energy, environment and development in Cuba. Renew Sustain Energy Rev 16(5):2724–2731 16. Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119(1):314–325 17. Singh RK, Murty HR, Gupta SK, Dikshit AK (2009) An overview of sustainability assessment methodologies. Ecol Ind 9(2):189–212 18. Varela N, Fernandez D, Pineda O, Viloria A (2017) Selection of the best regression model to explain the variables that influence labor accident case electrical company. J Eng Appl Sci 12(1):2956–2962 19. Yao Z, Zheng X, Liu C, Lin S, Zuo Q, Butterbach-Bahl K (2017) Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Sci Rep 7(1):1–12 20. Suárez DFP, Román RMS (2016) Consumo de água em arroz irrigado por inundação em sistema de multiplas entradas. IRRIGA 1(1):78–95 21. Stuart AM, Pame ARP, Vithoonjit D, Viriyangkura L, Pithuncharurnlap J, Meesang N, Lampayan RM (2018) The application of best management practices increases the profitability and sustainability of rice farming in the central plains of Thailand. Field Crops Res 220(1):78–87 22. Izquierdo NV, Lezama OBP, Dorta RG, Viloria A, Deras I, Hernández-Fernández L (2018) Fuzzy logic applied to the performance evaluation. Honduran Coffee Sector Case. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. In: ICSI 2018. Lecture notes in computer science, vol 10942(1). Springer Cham, pp 1–12 23. Bezerra BG, Da Silva BB, Bezerra JRC, Brandão ZN (2010) Evapotranspiração real obtida através da relação entre o coeficiente dual de cultura da FAO-56 e o NDVI. Revista Brasileira De Meteorologia 25(3):404–414 24. Diaz-Balteiro L, González-Pachón J, Romero C (2009) Forest management with multiple criteria and multiple stakeholders: an application to two public forests in Spain. Scand J For Res 24(1):87–93 25. Hák T, Janoušková S, Moldan B (2016) Sustainable development goals: a need for relevant indicators. Ecol Ind 60(1):565–573 26. Lampayan RM, Rejesus RM, Singleton GR, Bouman BA (2015) Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res 170(1):95–108 27. Delgado A, Blanco FM (2009) Modelo Multicriterio Para El Análisis De Alternativas De Financiamiento De Productores De Arroz En El Estado Portuguesa, Venezuela. AGROALIMENTARIA 28(1):35–48 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Advances in Intelligent Systems and Computing |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-15-7907-3_34 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e22a2473-6950-422f-bf8a-c83af38d7550/download https://repositorio.cuc.edu.co/bitstreams/5132550c-648a-4b7e-bd27-338914ebe8dd/download https://repositorio.cuc.edu.co/bitstreams/01302841-8c8e-44b7-a864-57102ea0f572/download https://repositorio.cuc.edu.co/bitstreams/6a83e979-a1f9-49cb-bfcb-b7f5537bee37/download https://repositorio.cuc.edu.co/bitstreams/dd2b186e-caa1-4208-84f7-559c94ddc092/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 63356d93e851a887ef88923598835425 e234337fbc81cbb45eb545fb8adaf411 a5be442e3c63c34332953c314a4a48cd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760676644847616 |
spelling |
Silva, JoseVarela Izquierdo, NoelCabrera, DanelysLezama, Omar2021-01-19T21:22:02Z2021-01-19T21:22:02Z2021https://hdl.handle.net/11323/7720https://doi.org/10.1007/978-981-15-7907-3_34Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Grass turns out to be an appropriate food for cattle, mainly in tropical climate countries such as Latin American countries. This is due to the high number of species that can be used, the possibility of growing them year-round, the ability of the ruminant to use fibrous supplies and be an economic source (Sánchez et al., Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham, 2018, [1]). In this work, an application of neural networks was carried out in the forecasting of more accurate values of production and quality of grasslands.Silva, JoseVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Cabrera, Danelys-will be generated-orcid-0000-0002-9486-9764-600Lezama, Omarapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7907-3_34Artificial intelligenceForageGrassNeural networksPrediction of the yield of grains through artificial intelligenceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Sánchez L, Vásquez C, Viloria A, Rodríguez Potes L (2018) Greenhouse gases emissions and electric power generation in Latin American countries in the period 2006–2013. In: Tan Y, Shi Y, Tang Q (eds) Data mining and big data. DMBD 2018. Lecture notes in computer science, vol 10943. Springer, Cham2. Aitkenhead MJ, Dalgetty IA, Mullins CE, Strachan NJ C (2003) Weed and crop discrimination using image analysis and artificial intelligence methods. Comput Electron Agric 39(3)3. Bustos JR (2005) Inteligencia Artificial en el Sector Agropecuario.4. Olivera Y, Machado R, Pozo PP (2006) Características botánicas y agronómicas de especies forrajeras importantes del género Brachiaria. Pastos y Forrajes 29(1)5. Ramírez J (2010) Rendimiento y calidad de cinco gramíneas en el Valle del Cauto. Tesis en opción al grado de Doctor en Ciencias Veterinarias. Instituto de Ciencias Agrícolas. La Habana, Cuba6. SenseFly (2014) El dron para la agricultura de precisión7. Cruz MC, Rodríguez LC, Vi RG (2013) Evaluación agronómica de cuatro nuevas variedades de pastos. Revista de Producción Animal 25(1)8. Erenturk K, Erenturk S, Tabil LG (2004) A comparative study for the estimation of dynamical drying behavior of Echinacea angustifolia: regression analysis and neural network. Comput Electron Agric 45(1–3)9. Hernández D, Carballo M, Reyes F (2000) Reflexiones sobre el uso de los pastos en la producción sostenible de leche y carne de res en el trópico. Pastos y Forrajes 23(4)10. Hernández RM, Pérez VR, Caraballo EAH (2012) Predicción del rendimiento de un cultivo de plátano mediante redes neuronales artificiales de regresión generalizada. Publicaciones en Ciencias y Tecnología 6(1)11. López AM, Adolfo A, Guido JP, Ortega AC (2006) Software de Predicción de la Producción Forrajera.12. Martín B, Molina AS (2001) Redes neuronales y sistemas borrosos. 2ªed. Alfaomega, España. Ra-Ma13. Carrilho PHM, Alonso J, Santo LDT, Sampaio RA (2012) Comportamiento vegetativo y reproductivo de Brachiariadecumbensvc. Basilisk bajo diferentes niveles de sombra. Revista Cubana de Ciencia Agrícola 46(1)14. Lezama OBP, Izquierdo NV, Fernández DP, Dorta RLG, Viloria A, Marín LR (2018) Models of multivariate regression for labor accidents in different production sectors: comparative study. In International conference on data mining and big data, vol 10942(1). Springer, Cham, pp 43–5215. Suárez JA, Beatón PA, Escalona RF, Montero OP (2012) Energy, environment and development in Cuba. Renew Sustain Energy Rev 16(5):2724–273116. Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119(1):314–32517. Singh RK, Murty HR, Gupta SK, Dikshit AK (2009) An overview of sustainability assessment methodologies. Ecol Ind 9(2):189–21218. Varela N, Fernandez D, Pineda O, Viloria A (2017) Selection of the best regression model to explain the variables that influence labor accident case electrical company. J Eng Appl Sci 12(1):2956–296219. Yao Z, Zheng X, Liu C, Lin S, Zuo Q, Butterbach-Bahl K (2017) Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Sci Rep 7(1):1–1220. Suárez DFP, Román RMS (2016) Consumo de água em arroz irrigado por inundação em sistema de multiplas entradas. IRRIGA 1(1):78–9521. Stuart AM, Pame ARP, Vithoonjit D, Viriyangkura L, Pithuncharurnlap J, Meesang N, Lampayan RM (2018) The application of best management practices increases the profitability and sustainability of rice farming in the central plains of Thailand. Field Crops Res 220(1):78–8722. Izquierdo NV, Lezama OBP, Dorta RG, Viloria A, Deras I, Hernández-Fernández L (2018) Fuzzy logic applied to the performance evaluation. Honduran Coffee Sector Case. In: Tan Y, Shi Y, Tang Q (eds) Advances in swarm intelligence. In: ICSI 2018. Lecture notes in computer science, vol 10942(1). Springer Cham, pp 1–1223. Bezerra BG, Da Silva BB, Bezerra JRC, Brandão ZN (2010) Evapotranspiração real obtida através da relação entre o coeficiente dual de cultura da FAO-56 e o NDVI. Revista Brasileira De Meteorologia 25(3):404–41424. Diaz-Balteiro L, González-Pachón J, Romero C (2009) Forest management with multiple criteria and multiple stakeholders: an application to two public forests in Spain. Scand J For Res 24(1):87–9325. Hák T, Janoušková S, Moldan B (2016) Sustainable development goals: a need for relevant indicators. Ecol Ind 60(1):565–57326. Lampayan RM, Rejesus RM, Singleton GR, Bouman BA (2015) Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res 170(1):95–10827. Delgado A, Blanco FM (2009) Modelo Multicriterio Para El Análisis De Alternativas De Financiamiento De Productores De Arroz En El Estado Portuguesa, Venezuela. AGROALIMENTARIA 28(1):35–48PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/e22a2473-6950-422f-bf8a-c83af38d7550/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5132550c-648a-4b7e-bd27-338914ebe8dd/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALPrediction of the yield of grains through artificial intelligence.pdfPrediction of the yield of grains through artificial intelligence.pdfapplication/pdf97668https://repositorio.cuc.edu.co/bitstreams/01302841-8c8e-44b7-a864-57102ea0f572/download63356d93e851a887ef88923598835425MD51THUMBNAILPrediction of the yield of grains through artificial intelligence.pdf.jpgPrediction of the yield of grains through artificial intelligence.pdf.jpgimage/jpeg25378https://repositorio.cuc.edu.co/bitstreams/6a83e979-a1f9-49cb-bfcb-b7f5537bee37/downloade234337fbc81cbb45eb545fb8adaf411MD54TEXTPrediction of the yield of grains through artificial intelligence.pdf.txtPrediction of the yield of grains through artificial intelligence.pdf.txttext/plain817https://repositorio.cuc.edu.co/bitstreams/dd2b186e-caa1-4208-84f7-559c94ddc092/downloada5be442e3c63c34332953c314a4a48cdMD5511323/7720oai:repositorio.cuc.edu.co:11323/77202024-09-16 16:43:48.512http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |